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Abstract: The development of adaptation strategies for crops under ever-changing climate conditions
is a critically important food security issue. Studies of barley responses to ionising radiation showed
that this evolutionarily ancient stress factor can be successfully used to identify molecular pathways
involved in adaptation to a range of abiotic stressors. In order to identify potential molecular
contributors to abiotic stress resilience, we examined the transcriptomic profiles of barley seedlings
after exposure to γ-rays, electrons, and protons. A total of 553 unique differentially expressed genes
with increased expression and 124 with decreased expression were detected. Among all types of
radiation, the highest number of differentially expressed genes was observed in electron-irradiated
samples (428 upregulated and 56 downregulated genes). Significant upregulation after exposure to
the three types of radiation was shown by a set of ROS-responsive genes, genes involved in DNA
repair, cell wall metabolism, auxin biosynthesis and signalling, as well as photosynthesis-related
genes. Most of these genes are known to be involved in plant ROS-mediated responses to other abiotic
stressors, especially with genotoxic components, such as heavy metals and drought. Ultimately, the
modulation of molecular pathways of plant responses to ionising radiation may be a prospective tool
for stress tolerance programmes.

Keywords: plant radiobiology; common barley; abiotic stress resilience; seedling irradiation; ionising
radiation; gamma-rays; electrons; protons; reactive oxygen species

1. Introduction

In the modern world, where food security is paramount, increasing crop yield has
become a critically important task [1–3]. Changing climatic conditions will impose ad-
ditional stress exposure on agricultural plants, such as increasing drought, salinity, and
phytopathogens metabolic activity. Therefore, developing adaptation strategies for crops
under those challenging growth conditions is of utmost importance. One of the most
complex tasks in crop improvement is elucidating the signal transduction pathways and
how they are activated and respond to different stressors [4]. As an evolutionarily ancient
stress factor [5], ionising radiation (IR) is a promising tool for studying plant adaptation
mechanisms to abiotic stress factors [6–8]. An important aspect of plant responses to IR
is the activation of antioxidant defence and DNA repair mechanisms [9–12]. High doses
or long-term (chronic) irradiation can cause physiological damage, resulting in decreased
photosynthetic activity, suppressed metabolic processes, and, ultimately, disruption of
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normal plant development [9,13–17], which is often attributed to the genotoxic effects of
γ-radiation [8,10,11,18].

One of the most extensively studied agricultural species is common barley (Hordeum
vulgare L.), an important cereal crop used in various food industry sectors, especially
for bread and beer production [19]. Despite high nutritional value and adaptability, the
maximal productivity of this crop is limited by climate changes, anthropogenic pollutants,
and the presence of pathogens and phytotoxins [20–22]. Understanding the mechanisms
of barley adaptation to extreme conditions can contribute to developing new methods for
enhancing yield and resilience in this cereal.

Radiobiological studies of barley responses to IR showed that this stress factor can
be successfully used to identify molecular pathways involved in barley adaptation to
abiotic stressors [23–25]. Numerous papers are focused on barley’s adaptive responses to
γ-radiation, as it is the radiation type more available for research [9,23–28], where growth-
stimulating and growth-inhibiting dose-dependent effects are considered in molecular
details. Several studies of proton and electron radiation effects on barley plants are also
available in the literature, demonstrating both positive and negative impacts on its growth,
development, and productivity, alone or in combination with other stress factors [29,30].
The effects are usually attributed to the direct (DNA damage) or indirect (reactive oxygen
species (ROS) production) action of ionising radiation.

Common environmental pollutants and other abiotic stress factors also possess geno-
toxic properties. For instance, polycyclic aromatic hydrocarbons, relatively chemically
inert compounds, through metabolic activation of electrophilic derivatives, are capable
of covalently interacting with nucleophilic centres of DNA and induce base pair substitu-
tions, frame-shift mutations, deletions, S-phase arrest, DNA strand breaks, and various
chromosomal alterations [31–33]. Drought can provoke stress that activates genes involved
in antioxidant functions and DNA repair [34], including those involved in nucleotide and
base excision repair pathways [35]. Heavy metals, such as chromium, lead, cadmium,
and arsenic, also exhibit genotoxic effects, triggering apoptosis in plant cells and increas-
ing the frequency of aberrant cells [36–39]. Having in mind that adaptation pathways to
many stress agents have similar mechanisms [39,40], it is plausible to use ionising radia-
tion as a tool for revealing potential molecular contributors to abiotic and anthropogenic
stress resilience.

In the current work, we used three different IR types with low linear energy transfer
(LET, gamma, electrons, and protons) and whole-transcriptome sequencing to reveal com-
monly responsive molecules and to identify if those molecules are involved in responses
to other abiotic stress factors. Ionising radiation is a convenient tool for such research as
its dose, intensity, and homogeneity of tissue exposure are easier to control than other
stress types.

2. Results
2.1. Overview of Differential Gene Expression for the Three IR Types

A total of 553 unique differentially expressed genes (DEGs) with increased expres-
sion and 124 DEGs with decreased expression were detected compared to the control
(Figures 1 and 2, Supplementary Table S1).

In samples subjected to γ-irradiation, 119 DEGs were found, with 104 genes upregu-
lated and 15 downregulated (Figure 1A, Supplementary Table S1). A significant change
in the transcriptional profile was also observed in proton-irradiated samples. A total of
409 DEGs were detected, with 338 genes showing upregulation and 71 genes presenting
downregulation compared to the control group (Figure 1B, Supplementary Table S1). Fi-
nally, 484 differentially expressed genes were observed in samples subjected to electron
irradiation, the highest number among all types of radiation. Among them, 428 were
upregulated, and 56 were downregulated (Figure 1C, Supplementary Table S1).
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Figure 1. Overview of differential gene expression for gamma (A), proton (B), and electron (C)
irradiated seedlings of H. vulgare in comparison with the non-irradiated samples. The plots were
created using the DeSeq2 Packages for RStudio v 1.4 (R-Tools Technology, Richmond Hill, ON,
Canada). Graphical changes were made with Microsoft PowerPoint 2019 (Microsoft Corporation,
Redmond, WA, USA). Y-axis—log2FC values; X-axis—mean of normalised counts.

Figure 2. Venn diagrams reflecting unique and common up- (A,C,E,G) and downregulated (B,D,F,H) genes
24 h after gamma and electron (A,B); proton and gamma (C,D); proton and electron (E,F) exposures;
all 3 types of irradiation (G,H).
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2.2. Overlapping Transcriptional Responses among Different Types of IR

The pairwise comparisons revealed DEGs unique for each radiation type, as well as
transcripts involved in the overlapping response to all three types of IR. All identified
genes are presented in Figure 2, Supplementary Table S1.

2.3. γ-Radiation/Electrons and γ-Radiation/Protons Pairwise Comparisons

Fifty-nine DEGs were identified as overlapping between γ-radiation and electron
exposures (Figure 2A). Among them, two genes, HORVU.MOREX.r3.1HG0073500 and
HORVU.MOREX.r3.2HG0206630, had the highest values of differential expression in both
conditions (|log2FC| > 2) (Supplementary Table S1). HORVU.MOREX.r3.1HG0073500
encodes laccase, which is involved in lignin decomposition and the detoxification of lignin-
derived products, while HORVU.MOREX.r3.2HG0206630 encodes a protein containing
the Rx_N domain, often found in plant resistance proteins [41]. Among other interest-
ing upregulated transcripts is a gene, HORVU.MOREX.r3.5HG0512410, homologous to
a negative regulator of p53 (Supplementary Table S1). The equivalent of p53 in plants
is SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) [42], and upregulation of its neg-
ative regulator may reflect control of double-strand break plant responses. Significant
downregulation was observed for three transcripts (Figure 2B, Supplementary Table S1):
BaRT2v18chr7HG356510, HORVU.MOREX.r3.6HG0545390 (BaRT2v18chr6HG285660), and
HORVU.MOREX.r3.6HG0539130, which encode membrane protein kinases.

The comparison of transcriptional responses of γ- and proton irradiation revealed
61 upregulated DEGs (Figure 2C, Supplementary Table S1). The highest differential ex-
pression values (|log2FC| > 2) were observed for the same two genes, HORVU.MOREX.
r3.1HG0073500 and HORVU.MOREX.r3.2HG0206630, as for gamma/electron comparison.
However, three downregulated genes were different (Figure 2D, Supplementary Table S1):
HORVU.MOREX.r3.4HG0418190 encodes a metacaspase that plays a key role in apopto-
sis; HORVU.MOREX.r3.1HG0094920 encodes flavonoid 3′-monooxygenase, catalysing the
oxidation of flavonoids in cells; HORVU.MOREX.r3.3HG0285150 is presumed to encode a
protein associated with tryptophan aminotransferase.

The GO enrichment analysis results for pairwise comparisons of γ- and electrons and
γ- and protons exposures were similar for upregulated DEGs (Supplementary Table S2;
Supplementary Figures S1–S6). For example, when considering the molecular func-
tion (MF) group (Supplementary Figures S3 and S6), protein folding chaperone, single-
stranded RNA binding, phosphate group as acceptor, pseudouridine synthase, beta-
galactosidase, and phosphotransferase activities were almost equally enriched under
the mentioned experimental conditions. However, MF in barley irradiated with γ-rays
and electrons showed a high degree of enrichment in genes involved in phenylalanine
ammonia-lyase activity, pyruvate kinase activity, hydroquinone:oxygen oxidoreductase
activity, while barley irradiated with γ-rays and protons had DEGs associated with trans-
ferase activity, transferring aldehyde or ketonic groups. Similar levels of enrichment were
observed in terms of cellular component (CC) in the γ- and protons and γ- and elec-
trons comparisons for chromatin, apoplast, cell wall, and ribosome and plastid stroma
(Supplementary Figures S2 and S5). Enrichment of genes related to microtubules was also
shared by γ- and protons-irradiation groups (Supplementary Figure S5). Conversely,
in the γ- and electrons condition, a high level of enrichment was found in the plastid-
encoded RNA polymerase complex (Supplementary Figure S2). Regarding biological
processes (BP) (Supplementary Figures S1 and S4), the highest enrichment levels were
found for the GTP metabolic process. In plants irradiated with protons and γ-rays, a
high level of enrichment was also presented in the regulation of the photosynthesis light
reaction (Supplementary Figure S4), while in samples irradiated with γ-rays and electrons,
the cinnamic acid biosynthetic process group was highlighted (Supplementary Figure S1).
Among downregulated genes under γ- and proton irradiation conditions, enrichment was
identified for a group of carbon-sulphur lyase activity; in the plants exposed to γ-rays and
electrons, enrichment was detected for polysaccharide binding.
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2.4. Proton and Electron Pairwise Comparison

The highest number of upregulated genes was shared by proton and electron treatments.
Two hundred forty-four genes were upregulated (Figure 2E, Supplementary Table S1), and
12 genes (Figure 2F, Supplementary Table S1) were downregulated. Among downregulated
genes, the lowest expression was recorded for HORVU.MOREX.r3.4HG0346410 encoding
monogalactosyldiacylglycerol synthase, which is involved in the normal functioning of the
photosynthetic system, maintenance of chloroplast membrane integrity, and protection of
plants from stress conditions, and HORVU.MOREX.r3.3HG0296450 encoding glycerophos-
phodiester phosphodiesterase, which participates in the regulation of signalling pathways
and plays a role in photosynthesis and phosphorus metabolism.

The total number of commonly expressed genes under proton and electron irradiation
was 256 (Figure 2E,F), which is several times higher compared to γ-radiation-induced
changes (Supplementary Table S2), and a large number of highly specific GO terms were
enriched in terms of MF dictionary, such as ferrous iron binding, glutathione binding, xylan-
1,4-beta-xylosidase, DNA topoisomerase type II (double strand cut, ATP-hydrolysing),
pyruvate dehydrogenase a, tripeptide transmembrane transporter, acid-amino acid ligase,
and acyl carrier activities (Supplementary Figure S7). At the CC dictionary, a glycerol-
3-phosphate dehydrogenase complex was noted (Supplementary Figure S8). In terms of
BP, regulation of oxidoreductase activity, regulation of cell shape, threonine biosynthetic
process, NADH oxidation, cotyledon development, dipeptide transmembrane transport, and
photosystem I assembly were of particular interest, largely due to the fact that these groups
were specific and were not observed under γ-radiation treatment (Supplementary Figure S9).

Downregulated DEGs, common for electron and proton treatments, revealed several
enriched GO terms, including UDP-galactosyltransferase, glycerophosphodiester phos-
phodiesterase, protein tyrosine kinase activities (MF), the salicylic acid biosynthetic pro-
cess, anion homeostasis, cellular response to cold, and the alditol metabolic process (BP)
(Supplementary Figures S10 and S11).

2.5. Overlapping Response to Three Types of Ionising Radiation Exposure

When comparing transcriptional responses to the three types of irradiations,
47 common DEGs were identified (Figure 2G,H), all upregulated, and 15 encoded various
ribosomal proteins and translation-related transcription factors (Table 1).

Table 1. DEGs with the common expression pattern after irradiation with γ-rays, electrons,
and protons.

Gene Uniprot ID Protein
log2FC

γ e− p+

CELL CYCLE

BaRT2v18chr2HG061030
HORVU.MOREX.r3.2HG0116520 A0A8I7B533 Chloroplastic pseudouridine synthase 2 1.52 2.67 2.69
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Table 1. Cont.

Gene Uniprot ID Protein
log2FC

γ e− p+

SIGNAL TRANSDUCTION

BaRT2v18chr1HG005570
HORVU.MOREX.r3.1HG0012160 A0A287EMU9 Cysteine-rich protein kinase 1.38 2.86 1.71

BaRT2v18chr1HG026150
HORVU.MOREX.r3.1HG0057590 F2CXV3 Nucleoside diphosphate kinase 1.64 2.06 2.39

METABOLISM

BaRT2v18chr1HG008880 Q96565 3-aminomethylindole N-methyltransferase 1.06 1.92 2.03

BaRT2v18chr4HG198110 - ATP-dependent Clp protease proteolytic subunit 1.18 1.78 1.83

BaRT2v18chr5HG235800
HORVU.MOREX.r3.5HG0456510 A0A8I7B8L0 Dihydrolipoamide acetyltransferase, component

of pyruvate dehydrogenase complex 1.14 1.67 1.79

BaRT2v18chr3HG132390
HORVU.MOREX.r3.3HG0252270 A0A287KQB5 Germin-like protein 5-1; Cupin type-1

domain-containing protein 1.87 2.27 2.19

BaRT2v18chr3HG141240
HORVU.MOREX.r3.3HG0274060 A0A287L592 Aspartic proteinase oryzasin-1 1.37 2.74 2.44

BaRT2v18chr6HG320720
HORVU.MOREX.r3.6HG0620630 A0A8I6Y7Y0 Subtilisin-like protease 1.37 2.09 2.53

CELL WALL

BaRT2v18chr1HG017980
HORVU.MOREX.r3.1HG0041280 D9IXC7 Cellulose synthase 1.80 1.70 1.70

BaRT2v18chr1HG036030
HORVU.MOREX.r3.1HG0073500 F2D9J2 Laccase 2.34 2.06 2.24

BaRT2v18chr3HG149100
HORVU.MOREX.r3.3HG0288960 F2DMG1 Cellulose synthase 1.15 1.47 1.38

BaRT2v18chr3HG157600
HORVU.MOREX.r3.3HG0302570 F2DXF2 Laccase 1.33 2.14 1.84

BaRT2v18chr4HG210440
HORVU.MOREX.r3.4HG0402760 A0A8I6X4I5 Beta-galactosidase 1.41 2.17 2.19

BaRT2v18chr6HG284110
HORVU.MOREX.r3.6HG0540930 A0A8I7BAT6 Isoflavone reductase 1.53 2.45 1.97

TRANSPORT

BaRT2v18chr2HG058330
HORVU.MOREX.r3.2HG0111570 A0A8I6WX86 Protein transport protein sec16 1.52 2.29 1.97

BaRT2v18chr5HG257150
HORVU.MOREX.r3.5HG0496010 A0A8I6XRW4 Trigger_N domain-containing protein 1.52 2.07 2.34

PHOTOSYNTHESIS

BaRT2v18chr4HG203760
HORVU.MOREX.r3.4HG0392110 A0A8I7BCP4 High molecular mass early light-inducible

protein HV58, chloroplastic 1.55 1.95 2.10

BaRT2v18chr7HG352120
HORVU.MOREX.r3.7HG0680970 F2CWQ1 Transcription termination factor MTERF6,

chloroplastic/mitochondrial 1.33 1.96 1.79

ROS DEFENCE

BaRT2v18chr5HG274520
HORVU.MOREX.r3.5HG0525430 A0A8I6YN10 PMR5N domain-containing protein 1.45 2.19 2.46

BaRT2v18chr7HG341270
HORVU.MOREX.r3.7HG0659410 M0XEM7 Protein CDI 1.44 2.02 2.41
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Table 1. Cont.

Gene Uniprot ID Protein
log2FC

γ e− p+

BaRT2v18chr7HG379410
HORVU.MOREX.r3.7HG0737470 M0XLI1 Peroxidase 1.59 2.14 1.93

BaRT2v18chr6HG304290
HORVU.MOREX.r3.2HG0120250 A0A8I6XDH6 Glutathione-S-transferase T3-like protein 1.49 1.74 1.81

CONTROL OF GENE EXPRESSION

BaRT2v18chr5HG271560
HORVU.MOREX.r3.5HG0520550 A0A8I6YMI0 Protein Argonaute 1-like 1.58 2.31 2.19

BaRT2v18chr3HG143530
HORVU.MOREX.r3.3HG0279110 F2D6W9 NAC domain-containing protein 1.50 1.80 2.14

BaRT2v18chr5HG266730
HORVU.MOREX.r3.5HG0512410 F2E6W2 SWIB domain-containing protein; p53 negative

regulator-like 1.33 2.70 2.44

RIBOSOME

BaRT2v18chr3HG158290 - 40S ribosomal protein S23-like 1.34 2.23 2.38

BaRT2v18chr7HG368730 - 40S ribosomal protein S24-1 1.39 2.05 2.35

BaRT2v18chr7HG351350 - 60S ribosomal protein L31 1.57 2.36 2.43

BaRT2v18chr5HG268570 - 60S ribosomal protein L35a-3 1.54 1.72 2.14

BaRT2v18chr5HG268620 - 60S ribosomal protein L44 1.45 1.98 2.26

BaRT2v18chr5HG266050 - 60S ribosomal protein L13a-4-like 1.35 2.01 2.36

BaRT2v18chr4HG174880 - 40S ribosomal protein S25 1.50 1.70 2.25

BaRT2v18chr3HG143320 - 60S ribosomal protein L18a-like 1.32 1.91 2.08

BaRT2v18chr2HG080740 - 40S ribosomal protein S8 1.25 1.99 2.07

BaRT2v18chr2HG054760 - 40S ribosomal protein S6 1.33 2.10 2.35

BaRT2v18chr1HG014270 - 40S ribosomal protein S7 1.34 1.95 2.06

BaRT2v18chr1HG033630 - 60S ribosomal protein L30 1.38 2.09 2.21

BaRT2v18chr3HG158010 - Putative ribosomal protein S8 1.37 1.94 2.15

BaRT2v18chr4HG204910
HORVU.MOREX.r3.4HG0332030 A0A8I6XW53 Ubiquitin-60S ribosomal protein L40-1 1.46 2.14 2.26

BaRT2v18chr7HG361220 60S acidic ribosomal protein P0 1.22 1.72 2.01

UNKNOWN/UNCERTAIN

BaRT2v18chr2HG052720
HORVU.MOREX.r3.2HG0100380 A0A8I6WJY6 Uncharacterised protein 1.23 1.45 1.52

BaRT2v18chr2HG108330
HORVU.MOREX.r3.2HG0206630 A0A8I6WWY3 Rx_N domain-containing protein 2.01 2.45 2.70

BaRT2v18chr4HG195150 - Hypothetical protein ZWY2020_048147 1.24 1.73 1.95

BaRT2v18chr6HG327620
HORVU.MOREX.r3.6HG0632840 A0A8I6YZJ2 NB-ARC domain-containing protein 1.32 2.06 1.90

BaRT2v18chr2HG062780
HORVU.MOREX.r3.2HG0119860 F2DB07 Chaperonin 10-like 1.23 1.76 1.66

BaRT2v18chr6HG321270 - Hypothetical protein ZWY2020_023007 1.45 2.20 2.36

To identify common response patterns to different types of radiation, the GO enrich-
ment analysis was performed based on the DEGs in each treatment type (Supplementary
Table S2). According to the annotation, at the CC level, 10 enrichment groups can be
distinguished (Supplementary Figure S12). The highest enrichment was observed in the
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nuclear chromatin group and genes associated with apoplast, followed by a group related
to the cell periphery, within which more specific genes related to the plant cell wall can be
identified. When considering the molecular function (Supplementary Figure S13), genes
involved in chaperone folding, beta-galactosidase activity, phosphotransferase activity, and
phosphate group as acceptor were noted. At the same time, the highest enrichment was
observed in the cellulose synthase activity and single-stranded RNA binding groups.

3. Discussion

Ionising radiation, including γ-radiation, electrons, and protons, converts neutral
atoms or molecules into reactive ions, triggering various biological effects and targeting
plant signalling systems [43,44]. The IR types studied here can be considered as low linear
energy transfer radiation, with relative biological effectiveness close to 1. However, the
penetration ability of these IRs is different, and their effects on plants vary on morpho-
anatomical, biochemical, and molecular levels [5,12,45,46]. Depending on the dose applied,
IR might be used as a tool for abiotic stress mitigation, potentially enhancing nutrient
uptake, secondary metabolite biosynthesis, and osmolytes [47]. Therefore, the modulation
of molecular pathways of IR responses may be a prospective tool for plant abiotic stress
tolerance programmes.

In order to identify molecular pathways involved in barley adaptation to abiotic
stressors and reveal potential molecular contributors to abiotic stress resilience, we classified
DEGs common for the three types of IR into groups of most typical responses to ionising
radiation exposure. All genes were distributed into 20 groups based on the functions of
their protein products (Supplementary Table S3). Next, we discuss those DEGs known to
respond to abiotic stress factors other than IR.

One of the major consequences of exposure to any ionising radiation is the increase
in ROS production [12,26], leading to oxidative stress and the increased activity of the
antioxidant system [23]. Oxidative stress may also be induced by other genotoxic agents,
such as excess copper [48], cadmium [49–51], lead [52], zinc [53], as well as polycyclic
aromatic hydrocarbon pollution [54], and benzene stress conditions [55]. The accumulation
of ROS that are detrimental to plant growth and development is induced by such abiotic
stresses as drought and salinity [56]. Excessive production of ROS, including hydrogen
peroxide, poses a threat to plant growth and reproduction [57]. In plants, hydrogen peroxide
affects the expression of a large set of genes involved in various growth aspects and response
to environmental stimuli [58]. To regulate hydrogen peroxide balance, plants synthesise
various enzymes with peroxidase activity, such as ascorbate peroxidase [59] and glutathione
peroxidase [60]. The group “ROS and antioxidant processes” (Supplementary Table S3)
includes 11 genes that were upregulated after exposure to different types of radiation,
including six shared by all three types of IR. These encompass an M0XLI1 peroxidase gene
and A0A8I6XDH6 glutathione-S-transferase T3-like protein (NAM-associated domain-
containing). Plant glutathione-S-transferase proteins (GSTs) have been shown to regulate
redox homeostasis by modulating glutathione content and redox state [61]. GSTs also
participate in light signalling in Arabidopsis [62], in salt tolerance through regulating xylem
cell proliferation, ion homeostasis, and reactive oxygen species scavenging in poplars [63],
and in plant drought tolerance [64]. The glutathione-S-transferase T3-like protein contains
the NAM-domain (No Apical Meristem) and showed discrete localisation within the
nucleus in Arabidopsis, possibly serving a role in reducing nucleic acid hydroperoxides or in
signalling [65]. A NAM domain gene, GhNAC79, improves resistance to drought stress in
upland cotton [66]. NAM is a part of NAC and CUC2 transcription factors, constituting one
of the largest groups of plant-specific transcription factors, widely involved in signalling
in response to multiple abiotic stresses [67,68]. Our study revealed the upregulation of
another NAC domain-containing protein, F2D6W9 (Table 1), for all IR types.

The upregulated genes shared by the three types of IR also involve two laccase
genes (F2DXF2 and F2D9J2, Table 1), and these multicopper oxidase enzymes catalyse a
range of oxidative reactions of aromatic and non-aromatic compounds related to cell wall
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functioning and lignin biodegradation [69,70]. Laccase involvement in plant response to
other types of abiotic stress has been reported: PeuLAC2 in Populus euphratica improves
drought tolerance by enhancing water transport capacity, and lines with overexpression
of PeuLAC2 exhibit a stronger antioxidant response and greater drought tolerance than
wild-type plants [71]; the citrus laccase gene CSLAC18 contributes to cold tolerance [72];
gene expression analysis of Aeluropus littoralis laccases reveals their induction in response
to abiotic stresses such as cold, salt, and osmotic stress, as well as ABA treatment [73].

Another upregulated by the three types of IR ROS-related genes is M0XEM7 (Table 1),
encoding a CDI (Cd2+-induced) protein (nucleotide-diphospho-sugar transferase), which
is required for pollen germination and tube growth, involving cell wall biosynthesis and
modification, in Arabidopsis [74]. The Chlamydomonas reinhardtii gene, encoding a protein
with strong similarity to Arabidopsis proteins of the nucleotide-diphospho-sugar transferases
superfamily, is important for acclimation to phosphorus and sulphur deprivation [75].

A0A287KQB5 encodes for germin-like protein 5-1 (GLP, Table 1). GLPs were upregu-
lated during the early somatic embryogenesis and responded to high temperature stress
and 2,4-D treatment [76]. Moreover, overexpression of Dimocarpus longan GLP1-5-1 in the
globular embryos of longan promoted lignin accumulation and decreased the H2O2 content
by regulating the activities of ROS-related enzymes [76].

Special attention should be given to the gene A0A8I6WYP3, which encodes a protein
with disulfide reductase activity (thioredoxin domain-containing protein). The gene was
significantly upregulated only in samples exposed to protons and electrons (Supplementary
Table S3). A higher expression level of this gene may indicate increased oxidative stress, as
thioredoxin isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox
regulatory factors involved in multiple plastid biogenesis and metabolic processes [77] and
offer protection against oxidative damage [78].

Additionally, the upregulation of the gene A0A8I6WG88, encoding aquaporin, is noted
in plants irradiated by electrons and protons. Aquaporins are membrane channels that
facilitate water transport and small neutral molecules across biological membranes in
most living organisms [79]. They also play a key role in hydraulic regulation in roots and
leaves during drought, as well as in response to various stimuli such as flooding, nutrient
availability, temperature, or light [80–82]. Aquaporins can also facilitate hydrogen peroxide
transport [83] and are known to be upregulated under chronic irradiation conditions [84].
The increase in their activity in our data is associated with the upregulation of ROS-related
responses (Supplementary Table S3).

The direct and indirect (through ROS generation) action of ionising radiation results in
DNA damage [85]. We identified 3 upregulated genes (Supplementary Table S3) involved
in DNA repair, namely A0A8I6WGY7 (encoding SAP domain-containing protein), which
was actively expressed after proton and electron exposure; A0A8I6YZJ2, associated with
adenosine 5′-diphosphate, was significantly upregulated under all types of exposure;
F2E6W2, encoding SWIB domain-containing protein; p53 negative regulator-like.

The cell wall appears to be one of the main targets of ionising radiation exposure [15],
reacting to direct ionisation and subsequent ROS exposure. The upregulation of the
cellulose synthases D9IXC7 and F2DMG1 genes, as well as A0A8I6X4I5 beta-galactosidase,
was noted (Table 1, Supplementary Table S3). Recent advancements demonstrate the tight
regulation of cellulose synthesis and microtubule arrangement at the primary cell wall by
phytohormone networks under stress [86]. The expression of beta-galactosidases is also
phytohormone-dependent [87].

It is known that phytohormonal balance changes after radiation exposure [27]. In our
data, we specifically identified two upregulated genes involved in auxin biosynthesis and
signalling (Supplementary Table S3): A0A8I6YN81 (proton and electron radiation) and
A0A8I6XJC3 (electron and gamma radiation). Research shows that auxins play a critical
role in regulating the effects of plant stress [88]. The dynamics and differential distribution
of the auxin in plant tissues control an impressive variety of developmental processes that
adapt plant growth and morphology to environmental conditions. Various ecological and
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endogenous signals can be integrated into changes in auxin distribution through their
influence on local auxin biosynthesis and intercellular auxin transport [89]. In response to
ionising radiation, auxin dynamics is associated with radiation hormesis, a phenomenon of
growth stimulation after low-dose radiation exposure [27]. Besides plant development and
stress response processes, auxin signalling is involved in DNA repair mechanisms and cell
cycle arrest [90].

Photosynthesis is the main energy source for plants, and any abiotic stress affecting
this process leads to a cascade of reactions to ensure the proper functioning of the photo-
synthetic apparatus, and ionising radiation is no exception [6]. We identified two genes,
F2CWQ1 and A0A8I7BCP4, as transcription factors involved in photosynthesis, which are
actively expressed under all types of radiation. Two other photosynthesis-related genes,
A0A8I6YCH8, involved in electron transfer and the chaperone gene F2DDU3 [91], were
upregulated only after proton and electron exposure.

Theoretical crosstalk of the products of IR-responsive transcripts, revealed in this
work, and studies of other abiotic stressors are schematically presented in Figure 3.

Figure 3. Schematic representation of the revealed molecular players in plant cell responses to IR and
other abiotic stress factors.

4. Materials and Methods

An extended multiomics experiment involving ionising radiation with low- and high-
LET exposure of winter barley (Hordeum vulgare L.) seedlings was performed [40]. The
specific subset of transcriptomic data related to low-LET IRs was analysed in detail and
presented in the current article.
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4.1. Growing Conditions and Sampling

Grains of the cultivar Fox 1 were planted in pots with 120 g of soil (macronutrients
(mg × L−1): N—100, P2O5—50, K2O—200, MgO—30; trace elements (mg × kg−1):
Cu—3.0–5.0; Zn—0.2–0.3; Mn—8.0–40.0; Fe—0.8–2.0; Mo—0.1–0.4; B—0.4–1.6; pH—5.5–6.5,
according to the manufacturer) at a depth of 1.5–2 cm and watered with 50 mL of H2O. Five
seeds were sown into each pot. The growth chamber “Fitotron LiA-2” (OOO “Fitotron”,
Zelenograd, Russia) was used for plants germination and development under 21 ◦C and
50% humidity, continuous LED light (set of wavelengths 440, 460, 525, 620, and 660 nm),
150–300 µmol photons m−2 s–1 (depending on plant height).

The seedlings were irradiated on the 7th day after sowing at the stage of the first true
leaf unfolded, having a height of 5–7 cm. Control plants underwent the same growing
and transportation conditions as irradiated plants. Twenty-four hours after irradiation,
the leaves of both control and irradiated plants were harvested. Plants from the same pot
were pooled into one sample. Twelve pooled samples (3 biological replicates per condition:
control, γ-, electron, and proton irradiations) were used for transcriptome analysis.

4.2. Irradiation Conditions and Dosimetry

For irradiation, the facilities of A. Tsyb Medical Radiological Research Centre (Obninsk,
Russia) were used. Preliminary tests showed that an absorbed dose of 15 Gy was tolerable
for barley juvenile plants and did not lead to growth arrest [92].

The γ-radiation source “Agat” (60Co isotope, Scientific Research Institute of Technical
Physics and Automation, Moscow, Russia) was used for γ-irradiation (γ) at a dose of
15 Gy. The pots were placed in the 12 × 12 cm2 radiation field to cover the leaves and
the root system. A NOVAC11 linear electron accelerator (New Radiant Technology, Mi-
lan, Italy) was applied for irradiating seedlings with 8 MeV electrons (e−) at a dose of
15 Gy. Pots were placed in a beam of electrons with a diameter of 10 cm to expose both
leaves and root system. Proton irradiation (p+) was performed at the Prometheus Proton
Therapy Complex (JSC-PROTOM, Oryol, Russia), capable of accelerating protons in the
30–250 MeV energy range with an average output beam current of 5 × 108 protons per
cycle. The pots were placed in the isocentre of the setup opposite each other. The irradiation
was performed on the initial phase of the Bragg curve at 100 MeV energy at a dose of 15 Gy,
fluence 1.2 × 1010 proton/cm2.

Dosimetry was performed using a PTW Farmer chamber type 30013 (PTW-Freiburg
GmbH, Freiburg im Breisgau, Germany) and a PTW Unidose webline electrometer in a
water-equivalent solid-state phantom PTW RW3 Slab (PTW-Freiburg GmbH, Germany).
Measurements were executed according to TRS 398 recommendations [42]. The heterogene-
ity of the irradiation field was checked using 2D array of PTW Octavius 1500XDR ionisation
cameras (PTW-Freiburg GmbH, Germany) and did not exceed 5% in the irradiation area in
all directions (3% for proton irradiation).

4.3. Transcriptome Analysis
4.3.1. RNA Isolation, Library Preparation, Illumina Sequencing

Total RNA was isolated using the GeneJET RNA Purification Kit (Thermo Fisher Scien-
tific, Cleveland, OH, USA) with polyvinylpyrrolidone addition (Sigma-Aldrich, Darmstadt,
Germany). The quality and purity of isolated RNA were assessed using the NanoDrop
OneC (Thermo Fisher Scientific, USA) and horizontal gel electrophoresis. cDNA synthesis,
library preparation, and sequencing were provided by the “Evrogen” (Moscow, Russia).
Using the TruSeq mRNA Stranded reagent kit (Illumina, San Diego, CA, USA), poly(A+)-
fraction enrichment and random primer cDNA synthesis were performed in 12 RNA
samples (four conditions (γ-irradiated, p+-irradiated, e−-irradiated and non-irradiated as
control) × three replicates). The cDNA was used as templates for Illumina sequencing
technology libraries. The libraries’ quality was tested using Fragment Analyzer (Agilent,
Santa Clara, CA, USA). Quantitative analysis was accomplished using the qPCR method.
The cDNA libraries were sequenced at Illumina NovaSeq 6000 (2 × 150 bp). FASTQ
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files were acquired using bcl2fastq v2.20 Conversion Software (Illumina, USA). As a re-
sult, 1,183,039,344 raw reads were received: 299,026,364 reads for e−-irradiated samples,
310,498,678 reads for γ-irradiated samples, 297,436,970 reads for p+-irradiated samples,
and 276,077,332 reads for non-irradiated (control) samples.

4.3.2. Data Processing

Data pre-processing, including quality control, screening of sequence library against
a set of reference sequence databases, and filtering, was performed on Debian 10.13 re-
leases. The quality control checks of raw sequence data were conducted using FastQC
v 0.11.9 and MultiQC v 1.11 [93]. The search for the received sequence dataset against a
panel of different genomes to determine the sequences’ origin was performed using Fastq
Screen v 0.14.0. Afterwards, low-quality reads were filtered with Trimmomatic v 0.39 [94]
for paired-end data, using ILLUMINACLIP, HEADCROP, LEADING, TRAILING, and
MINLEN parameters.

The filtered reads were quasi-mapped to barley reference transcriptome (Barley Ref-
erence Transcript Dataset (BaRTv2.18) [95]) using Kallisto v 0.46.1 [96]. The results of
differential gene expression for the obtained TPM (transcripts per million reads) values
were obtained with DESeq2 v 1.38.3 [97] using the negative binomial distribution and were
shown as the logarithm of fold change (log2FC). The accepted level of significance was 0.05
(attained by the Wald test, corrected for multiple testing using the Benjamini–Hochberg
method). Only genes showing log2FC > |1| were considered as differentially expressed.

faSomeRecords v 1.0 was used to obtain FASTA records for all differentially expressed
genes (DEGs) from BARTv2.18. These sequences were subsequently utilised for BLASTx
analysis with the UniProt database to gain additional gene information using the pseu-
domolecule assembly MorexV3 (release 54). After analysing DEGs common to the three
types of radiation applied, the unidentified proteins were examined, and their closest
homologues were identified manually using the NCBI database.

Functional enrichment analysis was performed using the Gene Ontology (GO) database
with ShinyGo v 0.75c for the MorexV3, and the visualisation was performed using the
agriGO v 2. The accepted significance level was 0.05 (applying Fisher as a statistical
test method).

5. Conclusions

By examining the gene expression patterns after different types of radiation exposure,
we observed similarities in the transcriptional responses to other abiotic stressors. Consider-
ing the diverse mode of action of different IRs, we have conducted pairwise comparisons of
the expression profiles after exposure and have identified differences that can primarily be
attributed to the nature of the ionising radiation used. The genes commonly regulated after
exposure to three different types of IR contribute to our understanding of the overall plant
response to ionising radiation. Considering the similarity in transcriptional responses to dif-
ferent stressors, we identified which DEGs were known to be involved in responses to other
stressors, providing insights into the universal mechanisms of response to abiotic stressors.
The obtained data allow us to hypothesise that the majority of genes with high expression
levels after exposure to three types of ionising radiation not only help plants survive radia-
tion stress but also other abiotic stressors, especially with genotoxic components (such as
heavy metals and drought). They include a set of ROS-responsive genes (Uniprot IDs of pro-
teins: M0XLI1, A0A8I6XDH6, F2D6W9, F2DXF2, F2D9J2, A0A287KQB5, A0A8I6WYP3, and
A0A8I6WG88); genes involved in DNA repair (A0A8I6WGY7, A0A8I6YZJ2, and F2E6W2);
cell wall metabolism-related genes (D9IXC7, F2DMG1, and A0A8I6X4I5); genes involved
in auxin biosynthesis and signalling (A0A8I6YN81 and A0A8I6XJC3), and photosynthesis-
related genes (F2CWQ1, A0A8I7BCP4, A0A8I6YCH8, and F2DDU3). These molecules can
be plausible targets for creating barley cultivars resilient to multiple stress exposures.
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