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Abstract: While morphological and functional traits enable hydrophytes to survive under waterlog-
ging and partial or complete submergence, the data on responses of psammophytes—sand plants—to
flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic
apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and
ethylene in seedlings of psammophytes Alyssum desertorum and Secale sylvestre using electron mi-
croscopy, chlorophyll a fluorescence induction, and biochemical methods. It was found that seedlings
growing under soil flooding differed from those growing in stationary conditions with such traits
as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynam-
ics of ADH, HSP, and ethylene synthesis. Although flooding caused no apparent damage to the
photosynthetic apparatus in all the variants, a significant decrease in total photosynthesis efficiency
was observed in both studied plants, as indicated by decreased values of φR0 and PIABS,total. More
noticeable upregulation of ADH in S. sylvestre, as well as increasing HSP70 level and more intensive
ethylene emission in A. desertorum, indicate species-specific differences in these traits in response
to short-term soil flooding. Meanwhile, the absence of systemic anaerobic metabolic adaptation to
prolonged hypoxia causes plant death.

Keywords: ADH; chlorophyll a fluorescence; ethylene; HSP70; photosynthetic apparatus; soil
flooding; stress tolerance; ultrastructure

1. Introduction

Forecasts of climate global changes—warmer temperatures, flooding, and drought—focus
their attention on the problem of how plants, as sessile organisms, survive in the vary-
ing environment, including adverse changes in ecological factors. Soil flooding quickly
depletes oxygen, which, in water, has a low solubility and diffusion rate [1], alters plant
metabolism, and inhibits aerobic respiration. Hereupon, soil flooding is one of the re-
markable abiotic factors that negatively affects growth of the most terrestrial plants up to
death [2–4]. The sensitivity and tolerance of plants to flooding significantly depend on the
ecotype, the duration of flooding, and running or stagnant flood water [2]. The structural,
physiological, and metabolic features that enable hydrophytes—an ecological group of
plants growing in soil saturated with water (waterlogging) or in water (submerged rooted
or floating plants and aerial–aquatic plants)—to survive and reproduce in the conditions
of oxygen limited supply are well known now [5–12]. Significant attention is paid to the
risk of flooding to crops, which are mostly terrestrial plants sensitive to anaerobic soil
conditions, which drastically reduce yields [13–18]. The impact of soil flooding on wild
psammophytes—an ecological group, which is part of the ecological group xerophytes,
adapted to arid conditions—has, until now, been mostly ignored.
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Psammophytes grow in sandy soils on beaches, deserts, the edges of pine forests,
and sand dunes. They exhibit varying degrees of species diversity depending on habitat,
play an important role in soil stabilization and soil nutrient dynamics in sandy habitats,
and are often considered extremophiles. Alyssum desertorum Stapf (desert beetroot, family
Brassicaceae), the native range of which is Central Europe to Central Asia, is well adapted
to arid conditions and soil of light and medium structure [19]. In Ukraine, it grows on
dry slopes and outcrops of various rocks, on open slopes of mountains and hills, in flat
steppes on sandy soils, and less often in pine forests and on their edges. In addition, it
is ephemeral and dries up after fruiting [20]. Secale sylvestre Host (a wild species of rye,
family Poaceae) grows on loose sandy and loamy soils from the Hungarian plain to Central
Asia. In Ukraine, it is found in dense massifs in the steppe and forest-steppe zones [21].

To elucidate the morphological and biochemical responses and tolerance of these two
psammophytes to soil flooding, we performed simulation flooding experiments. Since
photosynthesis is very sensitive to the effects of drought and flooding [22–24], we investi-
gated the effect of soil flooding on chloroplast ultrastructure and chlorophyll fluorescence
induction. Plant adaptation to hypoxia conditions at the biochemical level is provided by
enhanced anaerobic energy metabolism [4,25–27]. The activity of alcohol dehydrogenase
(ADH) and pyruvate decarboxylase (PDC), which are key enzymes of ethanol fermentation,
is considered one of the important indices of plant resistance to waterlogging [6,28–31]. The
synthesis of heat shock proteins (HSP), which function as molecular chaperones and protect
protein homeostasis [32,33], is also well known as the key component of cellular responses
to a changing environment, in particular to hypoxia under waterlogging [34–38]. So, we also
examined ADH as the key enzyme of anaerobic energy metabolism and HSP70 as a marker
of stress reaction in the leaves of the experimental plants using biochemical methods.

2. Results
2.1. Ultrastructure of the Photosynthetic Apparatus
2.1.1. Alyssum Desertorum

The leaves of A. desertorum plants growing in sandy soil in Ukraine are densely
pubescent with stellate trichomes, and the leaf adaxial and abaxial surfaces are covered with
a cuticle. The mesophyll is weakly differentiated into palisade and spongy parenchyma.
In general, the leaf micromorphology is similar to that in plants of this species growing
in Eastern Anatolia, Turkey [39]. The ultrastructure of the mesophyll cells is typical for
photosynthesizing cells—a large central vacuole and a cytoplasm peripheral layer with
organelles located in it (Figure 1A).

Chloroplasts, depending on the cut plane, had an elongated, oval, or rounded shape
and were in close contact with mitochondria and single large peroxisomes, on average
2.29 ± 0.14 µm in diameter (Figure 1B; Table 1) with a granular and thin fibrillar content
of medium electron density, sometimes with electron-dense clusters of granular material
on the periphery of organelles in the contact zones between the mitochondria and plas-
tids. Particularly large, over 3 µm in diameter, peroxisomes were observed in cells that
surrounded the vascular bundles. Plastids contained starch grains (Figures 1C and 2A,B)
and plastoglobuli (Figure 2B,C), an average of 15 per organelle. The chloroplast grana
consisted of 6.5 thylakoids on average (Figures 1D and 2B,C, Table 1).

The population of mitochondria with well-developed cristae is polymorphic; round,
oval, and elongated organelles are observed.
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control, (E–H)—5 days of soil flooding. Scale bars: 5 µm (A,E), 0.5 µm (B,F), 1 µm (C,G), 100 nm 

(D,H).  Abbreviations:  Ch—chloroplast,  T—thylakoid,  G—granum,  SG—starch  grain,  P—

peroxisome, M—mitochondrion, N—nucleus, V—vacuole. 
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Figure 1. Cells (A,E) and cell fragments (B–D,F–H) of the A. desertorum leaf mesophyll.
(A–D)—control, (E–H)—5 days of soil flooding. Scale bars: 5 µm (A,E), 0.5 µm (B,F), 1 µm
(C,G), 100 nm (D,H). Abbreviations: Ch—chloroplast, T—thylakoid, G—granum, SG—starch grain,
P—peroxisome, M—mitochondrion, N—nucleus, V—vacuole.

Table 1. Morphometric parameters of Alyssum desertorum palisade parenchyma cells in control and
after 5 and 10 days of soil flooding.

Parameter/Variant
5 Days 10 Days

Control Flooding Control Flooding

chloroplasts: length, µm
width, µm

7.14 ± 0.55 c

2.85 ± 0.19 b

10.42 ± 0.8 a

2.88 ± 0.19 b
8.26 ± 0.63 b

2.03 ± 0.13 c
6.59 ± 0.56 c

3.39 ± 0.23 a

starch grains surface, µm2 0.64 ± 0.03 c 1.12 ± 0.08 a 0.44 ± 0.04 d 0.73 ± 0.06 b
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Table 1. Cont.

Parameter/Variant
5 Days 10 Days

Control Flooding Control Flooding

plastoglobule diameter, nm 57.06 ± 4.41 c 59.73 ± 7.35 c 101.2 ± 12.46 b 205.32 ± 26.19 a

thylakoids per granum, n 4.7 ± 0.53 c 4.3 ± 0.46 c 8.2 ± 0.9 b 11.65 ± 1.76 a

mitochondria diameter, µm 0.95 ± 0.06 a 0.89 ± 0.02 a 0.83 ± 0.04 d 0.71 ± 0.04 c

peroxisome diameter, µm 2.29 ± 0.14 b 2.61 ± 0.17 a 1.95 ± 0.07 c 2.19 ± 0.12 b

Note: there is no significant difference between the values of the parameters in rows with the same letters in
superscripts at p ≤ 0.05, n = 50.
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Figure 2. Fragments of the A. desertorum leaf mesophyll cells. (A–D)—control, (E–H)—10 days of soil
flooding. Scale bar: 1 µm (A,E), 0.2 µm (B,F), 200 nm (C,D,G,H). Abbreviations: Ch—chloroplast, G—
granum, SG—starch grain, Pl—plastoglobule, M—mitochondrion, P—peroxisome, D—dictyosome,
N—nucleus, MS—multivesicular structure.
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On the 5th and 10th day of soil flooding, the general organization of mesophyll
parenchyma cells is mainly similar to that in the control; there are also single large peroxi-
somes (Figure 1E,F). Certain differences were found in the ultrastructure of the chloroplasts;
first of all, a significant, almost twofold, increase in the size of the starch grains was ob-
served, especially on the 5th day of flooding (Figures 1G and 2E; Tables 1 and 2). The
diameter of plastoglobuli on the 5th day of flooding was not significantly different from
the control, but, on the 10th day, the plastoglobule diameter of the flood-treated samples
was twice as large as in the control (205.32 ± 26.19 nm and 101.2 ± 12.46 nm, respectively:
Figure 2F,G; Table 1).

Table 2. Partial volumes of chloroplast components in Alyssum desertorum palisade parenchyma cells
in control and after 5 and 10 days of soil flooding, %.

Control, Flooding/Days Granal Thylakoids Stroma Stromal Thylakoids Starch Grains Plastoglobuli

5 days
control 22.8 ± 2.7 a 47.4 ± 5.8 a 18.1 ± 2.1 a 8.8 ± 0.7 b 2.7 ± 0.2 b

flooding 21.2 ± 2.5 a 45.5 ± 5.6 a 16.9 ± 1.8 a 13.4 ± 1.6 a 2.9 ± 0.3 b

10 days
control 19.2 ± 2.2 a 51.5 ± 6.7 a 17.2 ± 1.8 a 9.0 ± 0.8 b 2.8 ± 0.2 b

flooding 18.9 ± 2.3 a 48.2 ± 6.2 a 15.9 ± 1.6 a 12.7 ± 1.4 a 4.1 ± 0.5 a

Note: there is no significant difference between the values of the parameters in rows with the same letters in
superscripts at p ≤ 0.05, n = 50.

The number of thylakoids in grana on the 5th day of the experiment did not dif-
fer significantly in the control and after flooding. On the 10th day, the number of thy-
lakoids per granum increased slightly (11.65 ± 1.76) compared to the control (8.2 ± 0.9)
(Figures 1H and 2G; Table 2). Usually, granal thylakoids are densely packed, but under
flooding, granal and stromal thylakoids with an increased lumen were sometimes observed
(Figure 2G). On the 5th day of flooding, the linear dimensions of chloroplasts increased due
to the augmentation of starch granules. On the 10th day of flooding, the length of plastids
decreased slightly (Table 1), but their number increased, and in general, the organelles had
smoothed, slightly rounded contours along with an increased starch content and enlarged
plastoglobuli. During flooding, the size of the mitochondria in the sections did not change
significantly (Table 1). Accumulations of multivesicular structures in the vacuole were
observed more often, which can be considered indicative of increased autophagy of the
cytoplasm under the influence of hypoxia (Figure 2D,H).

2.1.2. Secale Sylvestre

The leaves of S. sylvestre plants are covered with simple needle-like trichomes on
both surfaces, isobilateral and amphistomatic. The ultrastructure of leaf mesophyll cells of
S. sylvestre is typical for photosynthesizing cells—a large central vacuole and a cytoplasm
peripheral layer with organelles located in it (Figure 3A). Most chloroplasts with starch
grains had oval or rounded shapes (Figures 3A–C and 4A,B) and were in close contact with
mitochondria and peroxisomes, which sometimes contained electron-dense fibrils.

The population of mitochondria with moderately developed cristae is polymorphic:
round, oval, and elongated organelles were observed. Single lipid droplets 1.5–2 µm in
diameter were sometimes observed (Figure 4D).

The ultrastructural organization of mesophyll parenchyma cells on the 5th and 10th
days of soil flooding was basically similar to the control. Differences were found in the size
of starch grains, which decreased particularly on the 10th day of flooding (0.14 ± 0.03 µm2

and 0.46 ± 0.04 µm2 in the control: Figures 3E,F and 4E,F; Tables 3 and 4).
On the 10th day of flooding, linear dimensions of chloroplasts decreased, and round

organelles were observed (Figure 4G; Table 3). The average number of thylakoids per
granum did not differ significantly between the control (10.8 ± 0.92) and flooded chloro-
plasts (11.5 ± 1.25) on the 5th and 10th days of the experiment. On the 10th day, the partial
volume of thylakoids (both granular and stromal) was greater in the control (21.4 ± 2.7 and
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19.1 ± 2.2) compared to plastids from flooded samples (20.5 ± 2.5 and 17.2 ± 2.1). However,
on the 5th day of flooding, the partial volume of thylakoids (20.9 and 16.6) exceeded the
control values (15.6 ± 1.8 and 12.4 ± 1.5) (Figures 3C,D and 4B; Table 4). The diameter of
plastoglobules and their partial volume per chloroplast increased slightly (Tables 3 and 4).
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Figure 3. Cells (A,E) and cell fragments (B–D,F–H) of the S. sylvestre leaf mesophyll. (A–D)—control,
(E–H)—5 days of soil flooding. Scale bar: 2 µm (A,E), 1 µm (B,C,F,G), 0.2 µm (D,H). Abbreviations:
Ch—chloroplast, T—thylakoid, G—granum, SG—starch grain, Pl—plastoglobule, M—mitochondrion,
N—nucleus, V—vacuole, LD—lipid droplet.

Under soil flooding, the size of mitochondria did not change significantly, but the
matrix of organelles became more electron-lucent, which may indicate reduced respiratory
activity. Lipid droplets decreased in size but increased in number (Figure 4H).



Plants 2024, 13, 413 7 of 21
Plants 2024, 13, x FOR PEER REVIEW  7  of  24 
 

 

 

Figure 4. Fragments (A–H) of the S. sylvestre leaf mesophyll cells. (A–D)—control, (E–H)—10 days 

of soil flooding. Scale bars: 0.5 µm (A,E,D,H), 0.2 µm (B,F), 100 nm (C,G). Abbreviations: Ch—chlo-

roplast,  G—granum,  SG—starch  grain,  Pl—plastoglobule,  M—mitochondrion,  P—peroxisome, 

LD—lipid droplet. 

The population of mitochondria with moderately developed cristae is polymorphic: 

round, oval, and elongated organelles were observed. Single lipid droplets 1.5–2 µm in 

diameter were sometimes observed (Figure 4D). 

The ultrastructural organization of mesophyll parenchyma cells on the 5th and 10th 

days of soil flooding was basically similar to the control. Differences were found in the 

Figure 4. Fragments (A–H) of the S. sylvestre leaf mesophyll cells. (A–D)—control, (E–H)—10 days
of soil flooding. Scale bars: 0.5 µm (A,D,E,H), 0.2 µm (B,F), 100 nm (C,G). Abbreviations: Ch—
chloroplast, G—granum, SG—starch grain, Pl—plastoglobule, M—mitochondrion, P—peroxisome,
LD—lipid droplet.

Table 3. Morphometric parameters of Secale sylvestre mesophyll cells in control and after 5 and 10 days
of soil flooding.

Parameter/Variant
5 Days 10 Days

Control Flooding Control Flooding

chloroplasts: length, µm
width, µm

5.87 ± 0.42 a

2.74 ± 0.17 a
5.02 ± 0.36 a

2.53 ± 0.16 a
4.99 ± 0.38 a

2.18 ± 0.19 b
4.14 ± 0.32 b

2.27 ± 0.22 b

starch grain surface, µm2 0.19 ± 0.02 b 0.13 ± 0.08 b 0.46 ± 0.04 a 0.14 ± 0,03 b

plastoglobule diameter, nm. 42.5 ± 4.46 b 53.7 ± 5.19 a 50.3 ± 4.18 a 61.4 ± 6.85 a

thylakoids per granum, n 11.1 ± 0.85 a 11.6 ± 1.28 a 10.8 ± 0.92 a 11.5 ± 1.25 a
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Table 3. Cont.

Parameter/Variant
5 Days 10 Days

Control Flooding Control Flooding

mitochondria diameter, µm 0.63 ± 0.04 a 0.7 ± 0,02 a 0.72 ± 0.04 a 0.71 ± 0.04 a

peroxisome diameter, µm 1.15 ± 0.09 a 0.94 ± 0.06 b 1.13 ± 0.07 a 0.92 ± 0.07 b

Note: there is no significant difference between the values of the parameters in rows with the same letters in
superscripts at p ≤ 0.05, n = 50.

Table 4. Partial volumes of chloroplast components in Secale sylvestre mesophyll cells in control and
after 5 and 10 days of soil flooding, %.

Control, Flooding/Days Granal Thylakoids Stroma Stromal Thylakoids Starch Grains Plastoglobuli

5 days
control 15.6 ± 1.8 b 69.1 ± 8.5 a 12.4 ± 1.5 b 1.6 ± 0.2 b 1.3 ± 0.2 a

flooding 20.9 ± 2.5 a 59.7 ± 7.3 a 16.6 ± 1.9 a 1.4 ± 0.2 b 1.4 ± 0.2 a

10 days
control 21.4 ± 2.7 a 53.6 ± 6.5 a 19.1 ± 2.2 a 4.6 ± 0.8 a 1.3 ± 0.2 a

flooding 20.5 ± 2.5 a 59.1 ± 7.2 a 17.2 ± 2.1 a 1.8 ± 0.3 b 1.4 ± 0.2 a

Note: there is no significant difference between the values of the parameters in rows with the same letters in
superscripts at p ≤ 0.05, n = 50.

2.2. Chlorophyll Content

In S. sylvestre, a decrease of 45–59% in the content of chlorophylls and carotenoids in
leaves compared to the control was observed on both the 5th and 10th day of soil flooding
(Table 5). The chlorophyll a/b ratio increased after 5 days and decreased after 10 days of
flooding. In A. desertorum, the content of photosynthetic pigments was less affected by
flooding and decreased only by 5–25%. The most pronounced was the decrease in the
content of chlorophyll b, which constituted 25% after 5 days and 15% after 10 days of the
treatment. Therefore, soil flooding consistently increased the chlorophyll a/b ratio.

Table 5. The effect of flooding on the content of photosynthetic pigments in Secale sylvestre and
Alyssum desertorum.

Parameter
5 Days 10 Days
Control Flooded Control Flooded

S. sylvestre

Chlorophyll a * 13.09 ± 0.25 b 6.03 ± 0.20 d 13.98 ± 0.20 a 6.79 ± 0.12 c

Chlorophyll b 4.45 ± 0.14 a 1.85 ± 0.12 c 4.24 ± 0.07 a 2.37 ± 0.11 b

Carotenoids 2.60 ± 0.09 a 1.44 ± 0.17 b 2.71 ± 0.08 a 1.36 ± 0.07 b

Chlorophyll a/b ratio 2.94 3.26 3.30 2.86

A. desertorum

Chlorophyll a 7.22 ± 0.11 a 5.67 ± 0.10 c 7.00 ± 0.10 a 6.68 ± 0.06 b

Chlorophyll b 2.14 ± 0.06 c 1.60 ± 0.06 d 2.81 ± 0.04 a 2.40 ± 0.05 b

Carotenoids 1.52 ± 0.02 a 1.23 ± 0.07 b 1.47 ± 0.02 a 1.37 ± 0.03 b

Chlorophyll a/b ratio 3.38 3.54 2.49 2.78

*—concentrations of chlorophylls and carotenoids are presented as mg·g−1 dry weight. Note: there is no significant
difference between the values of the parameters in rows with the same letters in superscripts at p ≤ 0.05, n = 5.

2.3. Chlorophyll Fluorescence Induction

The observed values of Fv/Fm (Figure 5A,B) were generally higher than 0.8, indicat-
ing little evidence of stress in all variants, although flooding affected this parameter. In
S. sylvestris, a decrease in Fv/Fm was observed only after 5 days of treatment, and after
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10 days, the difference was insignificant (Figure 5A). φE0 was not affected by flooding
(Figure 5C), while both φR0 and PIABS,total were decreased significantly to a similar extent
at both 5 and 10 days of the experiment (Figure 5E,G), suggesting decreased efficiency of
the total linear electron transport in chloroplasts due to the limitation of electron transfer
from photosystem I to NADP+.
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(A,B), φE0 (C,D), φR0 (E,F), and PIABS,total (G,H) in leaves after 5 and 10 days of treatment. Error bars
represent the standard error (S.E.) of mean (n ≥ 30). Different letters indicate significant differences
at p < 0.05.
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In A. desertorum, the negative effect of flooding was more pronounced after 10 days
of treatment, and φE0 was even slightly stimulated (Figure 5D). The level of PS 2 damage
was generally lower than that in S. sylvestris, and on day 10, it was slightly lower in the
control than on day 5. However, a pronounced negative effect of flooding was observed
only after 10 days. The integral indicators of the efficiency of photosynthesis (φR0 and
PIABS,total) decreased significantly only on the 10th day of the experiment.

2.4. Protein Spectrum, HSP70, and Alcohol Dehydrogenase Synthesis in Leaves

SDS-PAG electrophoresis of the soluble protein of leaves did not reveal noticeable
qualitative and quantitative changes in the protein spectrum in both psammophyte species
during 6-day flooding (Figures 6A and 7A). Western blot analysis of HSP70 identified
two isoforms (70 kDa and 73 kDa) in A. desertorum, both of which showed a slight increase
during flooding (Figure 6B). However, the degree of their increase was less compared to
the heat shock reaction (Figure 6B, var. 8). In S. sylvestre, one HSP70 band was detected
only in heat-shocked leaves and was not detectable under flooding (Figure 7B). The same
result was obtained with plants grown from seeds collected in two different years.
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(C) the results of densitometric analysis of the Western blots. (1) Control 1 (terrestrial plants before
flooding), (2–6) under flooding for 4 h (2), 1 day (3), 2 days (4), 4 days (5), 6 days (6), (7) control
2 (terrestrial plants after 6 days of the experiment), (8) 40 ◦C for 2 h (internal control for HSP70
induction). (M) Molecular weights of marker proteins. In diagram (C), the relative HSP70 levels are
expressed as the percent difference from the basal level of the 73 kDa protein in control 1 (100%). The
data are the means and standard deviations from three independent experiments.
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To test ADH in leaves when the roots were flooded, native protein electrophoresis
was used, followed by staining of the product of the enzymatic reaction in the gel. ADH
zymograms of both plant species contained four bands with enzyme activity (Figure 8).
The total intensity of their color in each variant reflects the ADH level. A. desertorum
showed weak enzyme staining in the control, some activation of its synthesis for the first
day of flooding, and a decrease after 4 days (Figure 8A). In contrast, in S. sylvestre, a
gradual increase in ADH levels began after 1 day and reached a maximum by the 6th day
(Figure 8B).
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2.5. Ethylene Assay

A. desertorum plants responded to flooding by emitting ethylene up to ~100 nL g−1 h−1

during the first 2 h, maintaining this level for 5 days, and then increasing it four times by
the 10th day (Figure 9A). The response of S. sylvestre also started with a rapid increase
in ethylene production to ~80 nL g−1 h−1, increasing almost twofold in 5 days, but then
decreased by the 10th day (Figure 9B).

1 
 

 

Figure 9. Effect of flooding on ethylene emission in Alyssum desertorum (A) and Secale sylvestre (B)
plants. Ethylene emission is presented as nL·g−1 fresh weight·h−1. Smoothed plots of averages from
2 independent experiments (3 replicates each).

3. Discussion
3.1. Chloroplast Ultrastructure and the Content of Photosynthetic Pigments in Leaves

It is well known that soil flooding inhibits enzyme activity related to photosynthesis,
resulting in decreased chlorophyll synthesis and a reduction in photosynthetic rate, lead-
ing to leaf yellowing, senescence, and death of the plants [11,40]. Yellowing of leaves is
considered a visible symptom of flooded plants. Changes in the content of photosynthetic
pigments and chloroplast ultrastructure in the investigated psammophytes under soil
flooding are comparable with those of mesophytes—plants that grow in soil with medium
moisture content—in the same conditions, namely: increased or decreased chloroplast size,
chloroplast “rounding”, dilated thylakoids with swollen lumen, increased number and
size of plastoglobuli, increased or decreased size of starch grains, emergence of stroma
invaginations and protrusions, and decreased chlorophyll content. For example, decreasing
chlorophyll and carotenoid contents were reported for mesophyte plants of Momordica
charantia [41], Hordeum vulgare [42,43], Triticum aestivum [44,45], Vicea faba [46], and Sesamum
indicum [17]. In Zea mays seedlings, after the waterlogging treatments for 3 and 6 days, sig-
nificantly declined leaf chlorophyll content, decreased Fv/Fm and ΦPSII, reduced numbers
of grana and granal thylakoids, and chloroplasts of changed shape, as well as significantly
decreased photosynthetic capacity, have been described [47,48]. Similar changes in chloro-
plast size and shape, and also swelled granal thylakoids under waterlogging, have been
reported in Kosteletzkya virginica [49] and Phoebe sheareri [50]. The Fv/Fm ratio, especially
in young V. faba seedlings, was lower under flooding in comparison with the control [46].
The decreased photosynthetic pigment content, inhibited leaf carbon assimilation, and
limited PSII electron transport efficiency have also been described in Zingiber officinale under
waterlogging [51]. Modification of the structure of chloroplasts, in particular, condensation
or swelling of granal thylakoids, is believed to affect the structure of photosystem I (PSI)
and photosystem II (PSII) [22,52] and reduce maximum PSII quantum efficiency [53]. An
increase in thylakoid lumen may facilitate the diffusion of plastocyanin, increasing the
rate of electron transport between the two photosystems [49,54]. A model of control of
electron transport/photoprotection is proposed, which requires a clear consideration of
the ultrastructural dynamics of thylakoids, depending on the level of water exchange
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between the cytosol and chloroplasts in response to variations in environmental conditions,
primarily light intensity [55].

The accumulation of transient starch in chloroplasts under waterlogging is reported
in species sensitive to hypoxia, e.g., Helianthus annuus [56], Citrus jambhiri and C. auran-
tium [57], Phoebe sheareri, Chionanthus virginicus, and Carya illnoinensis [50], although it
is also known for resistant species, e.g., Quercus alba [58], Eucalyptus globulus [59], and
Distylium chinense [60], and is associated with the suppression of photosynthesis. Transient
starch accumulates inside the chloroplasts in the daytime and at night is degraded into
glucose and maltose, which are exported to the cytosol for sucrose synthesis or as energy
sources. Then, sugars produced by photosynthesis are transported to other organs, in
particular to roots, via the phloem [61,62]. The accumulation of transient starch in leaves, as
well as soluble carbohydrates in the phloem and the low concentration of carbohydrates in
the roots, is thought to be the result of a decrease in the rate of phloem transport to the roots
caused by the inhibition of root aerobic metabolism under low oxygen conditions [53,56,63].
It has been suggested [64] that starch accumulation in chloroplasts, reduced leaf chlorophyll
content, reduced activity of carboxylation enzymes, and maximum PSII quantum efficiency
underlie a decrease in the photosynthetic capacity under flooding. At the same time, the
reduction in starch in the leaf chloroplasts of various plant species in response to flooding,
e.g., Nicotiana tabacum [65], as well as drought, salinity, or extreme temperature, which often
correlates with increased plant resistance to the stressor, has been reported [66]. Therefore,
starch metabolism becomes a key factor determining plant survival under adverse condi-
tions, which requires further research to clarify the dependence on the plant species and
ecology, organ, and tissue type and the nature of the active factor. Our data on the changes
in transient starch volume in chloroplasts of A. desertorum and S. sylvestre in response to
soil flooding clearly demonstrate the species-dependent nature of starch metabolism. Both
species are psammophytes and grow in the same conditions but react differently to hypoxia
according to this characteristic: in the first species, starch volume in chloroplasts increased,
while in the second species, it decreased.

Plastoglobuli are supposed to maintain a constant lipid/protein ratio in thylakoid
membranes through a dynamic exchange of lipids with membranes in organelle biogenesis,
metabolism, developmental transitions, and responses to stress, providing fast adjustments
to changing environments. It was reported that the size and number of plastoglobuli
increase under unfavorable conditions [67,68]. Data about increasing the number and size
of plastoglobuli in chloroplasts of A. desertorum and S. sylvestre, as well as Kosteletzkya
virginica [49], Phoebe sheareri, Chionanthus virginicus, and Carya illnoinensis [50], under
waterlogging fit logically into these ideas.

A decrease in chlorophyll content is considered a marker of impaired photosynthesis
and damage to photosynthetic apparatus, which was usually observed under waterlogging
conditions and accompanied by visual yellowing of leaf tips [46,47]. A decrease in photo-
synthetic pigment content is consistent with the results of the JIP test, where we observed
a decrease in photosynthetic activity at the level of electron flow to the final acceptors
(decrease in φR0 and PIABS,total). Based on the results of the JIP test and the content of
chlorophylls, it can be concluded that the photosynthesis of S. sylvestre is sensitive to soil
flooding. The less pronounced effect of flooding on the content of photosynthetic pigments
and the increased chlorophyll a/b ratio in A. desertorum is consistent with the results of the
JIP test, which revealed an increase in the efficiency of electron transfer from photosystem
2 to plastoquinone and a decrease in total electron transport efficiency only after 10 days
of the treatment. At least up to 10 days of soil flooding, the photosynthetic apparatus of
A. desertorum is less sensitive to flooding than S. sylvestre.

3.2. Chlorophyll a Fluorescence Induction and JIP-Test

Flooding caused a significant decrease in total photosynthesis efficiency in both studied
plants, but in A. desertorum, this effect was observed only after 10 days of the treatment,
as indicated by decreased values of PIABS,total. This effect may be caused by decreased
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stomatal conductance and limited CO2 diffusion to mesophyll cells that were reported
under conditions of soil flooding (Pezeshki, 2001, as cited in [69]). Similar effects were
shown in plants sensitive to waterlogging [46,47]. At the same time, the treatment did not
lead to pronounced damage to the photosynthetic apparatus, as indicated by relatively
high Fv/Fm values in all variants that were only slightly decreased after flooding for 5 (in
S. sylvestre) or 10 days (A. desertorum).

A slight increase in φE0 in A. desertorum indicates increased efficiency of electron
transfer to the platoquinone pool from photosystem II. Although this effect may appear
paradoxical, it can result from a decreased light-harvesting antennae size that is indicated by
an increased chlorophyll a/b ratio. Decreased antennae lead to less quanta being absorbed
per reaction center, lowering the QA reduction rate and excitation pressure [70]. Thus, such
an increased efficiency of the partial electron transport is caused by decreased excitation
pressure rather than facilitated electron transfer on the photosystem 2 acceptor side.

3.3. Role of HSP70 and ADH in Response to Flooding

The main effect of short-term waterlogging is O2 shortage (hypoxia), leading to energy
deprivation in roots. In turn, root hypoxia causes a systemic response in a plant organism,
including reprogramming protein synthesis, stress response, and anaerobic adaptation.

Electrophoretic analysis of the total protein spectrum in leaves of A. desertorum and
S. sylvestre clearly showed that both species are able to maintain normal protein composition
at least for the first days of soil flooding. At the same time, analysis of HSP70 as an indicator
of stress response and ADH as an indicator of anaerobic adaptation showed the response
of protective and adaptive systems and revealed differences between species.

Molecular chaperones/HSPs protect cellular proteostasis under stressful conditions [32,71].
Their accumulation enhances the tolerance of plant organisms to environmental variations.
Inducible members of the HSP70 family are considered major actors of the stress response
in many species including plants [32,72]. A certain upregulation of two HSP70 isoforms
(70 kDa and 73 kDa) in leaves of A. desertorum in response to soil flooding showed a weak
systemic response in this species. This is consistent with our previous results obtained for
mesophyte Malva and hydrophyte Sium sisaroideum, where soil flooding led to a significant
upregulation of HSP70 in the leaves [37,73]. In contrast, one HSP70 isoform (70 kDa) in
S. sylvestre was detected only at heat shock and was not detected during flooding. Given
the significant changes in other traits in plants of this species, it is difficult to assume that
flooding does not cause a stress response in this case. Therefore, we may suppose that
other chaperones and/or protective systems play a key role in maintaining proteostasis in
this species.

Metabolic adaptation of plants to oxygen shortage is provided by the fermentative
pathway that consists of two steps: pyruvate decarboxylase (PDC) catalyzes the decar-
boxylation of pyruvate to acetaldehyde and ADH catalyzes the subsequent reduction of
acetaldehyde to ethanol with concomitant oxidation of NAD(P)H to NAD(P)+ [6,28,29,74].
The ADH function is inherent in hydrophytes, allowing them to withstand hypoxia. The
presence of ADH genes in mesophytes and xerophytes and their upregulation, to some
degree, in response to flooding conditions have been repeatedly reported [3,11,26,75,76].
Thus, the induction of the ADH1 gene in seedling roots of Coix lacroyma-jobi after soil flood-
ing was shown and it reached the highest level after 4 h [27]. In the allotetraploid Gossypium
hirsutum, which is highly sensitive to waterlogging, there are three ADH isozymes, and
ADH activity increased several-fold in both the roots and shoots of seedlings after flood-
ing [77]. ADH1 and ADH2 expression increased rapidly in the roots of Zea mays seedlings
after 4 h of anaerobic conditions through rigorous exclusion of O2, but it was followed by
a rapid decline between 12 and 18 h [78]. In Cucumis sativus seedlings, ADH expression
began in 2 h under soil flooding, reached a maximum at 4 h, and gradually declined
after 8 h of flooding [79]. ADH expression and protein synthesis temporarily increased in
seedling root tips of Glycine max after flooding [80]. Of at least six ADH genes in this species,
ADH2 expression increased most significantly after 6 h of flooding [81]. In Hordeum vulgare,
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the activity of ADH1 could be detected during aerobic growth, and hypoxia induced the
expression of ADH1, ADH2, and ADH3 [82,83]. A significant increase in ADH level was
reported in Passiflora edulis (var. Flavicarpa) seedlings in anaerobic conditions compared
to seedlings under normal irrigation [84]. Soil flooding induced ADH synthesis in the
desert species Acacia erioloba’s seedlings [85]. In the authors’ opinion, the presence of
functionally active ADH genes in the desert plant is not clear and is probably connected
with the limitation of oxygen supply during seed germination due to the hard seed coat. In
Arabidopsis thaliana, which is highly sensitive to hypoxia, soil flooding caused increasing
ADH expression in the first 6–8 h of flooding [34] with a protein maximum on the 6th day
of flooding and a subsequent reduction that preceded plant death [86]. On the contrary,
in Sium sisaroideum, which is intolerant to hypoxia, ADH synthesis was maintained at a
high level during 10-day flooding accompanied by the formation of adventitious roots with
aerenchyma [86,87]. The results of this research showed that psammophytes A. desertorum
and S. sylvestre also have an ADH system and are capable of short-term anaerobic metabolic
adaptation. Activation of ADH synthesis in leaves in response to root hypoxia indicated
a systemic response. S. sylvestre showed a gradual activation of ADH synthesis with a
maximum at the 6th day of soil flooding, which is similar to the dynamics, for example,
in A. thaliana [86]. In A. desertorum, a weak rapid activation of ADH was detected for the
first day of flooding followed by a gradual decrease, which was similar to, for example, the
ADH expression pattern in Cucumis sativus [79]. Further flooding led to a decrease in the
content of this protein, which preceded the death of the plants. These data suggest that
S. sylvestre can gradually adapt to short-term soil flooding, while A. desertorum can only
withstand impermanent flooding.

3.4. Ethylene Production in Response to Flooding

Another metabolic response to flooding is the production of the gaseous hormone
ethylene, an important player in root-to-shoot signaling during the first hours of soil
flooding [88]. The signal is the precursor of ethylene, 1-aminocyclopropane-1-carboxilic
acid (ACC), which is converted to ethylene by ACC oxidase (ACO). It leads to faster rates
of ethylene production in the aerial part of the plant. Ethylene can reduce plant damage
through epinastic leaf curvature, fast stem growth, adventitious root, and aerenchyma
formation [89,90]. In addition, ethylene can potentiate senescence [91].

A comparative analysis of ethylene production in leaves of two psammophyte species
during flooding showed similar primary activation of ethylene emission in the first hours of
flooding, but the subsequent dynamics were different. In A. desertorum, ethylene emission
significantly enhanced after 5 days. In contrast, in S. sylvestre, the activation of hormone
production was two times less and decreased by the 10th day. These data suggest that
rapid activation of ethylene production allows plants to minimize the risk of damage
and optimize plant growth during the early period of exposure. However, considering
that both species are unable to adapt to long-term flooding, the data may also point to
a role for ethylene as a signal for reduced growth and leaf senescence upon prolonged
exposure [91,92]. In turn, species-specific differences in dynamics may be a consequence of
different tuning of the signaling cascade, namely receptors (ETR), ion transporters (EIN2),
and ethylene-responsive factors (ERF) [90].

4. Conclusions

Based on the obtained data, we conclude that photosynthesis or the photosynthetic
apparatus of the investigated psammophytes functions during short-term soil flooding.
The following decrease in the chlorophyll content and random ADH and HSP70 synthesis
patterns indicate the absence of systemic anaerobic metabolic adaptation to long-term
root hypoxia, leading to plant death. In our opinion, these results clearly demonstrate
that adaptive phenotypic plasticity is the norm of the genotypes’ response to changing
environments [93,94]. Thus, to improve the hypoxic tolerance of psammophytes, it is
necessary to use the approaches and methods of genetic engineering.



Plants 2024, 13, 413 16 of 21

5. Material and Methods
5.1. Plant Material

Seeds of Alyssum desertorum and caryopses of Secale sylvestre were collected from plants
growing on the dry sandy areas of the ravine forests in the steppe zone of the Dnipropetro-
vsk region (A. desertorum 48.438965, 35.121684 and S. sylvestre 48.505838, 34.973898), sown in
pots, and watered 5–10 mm above the soil surface until the A. desertorum seedlings showed
four true leaves and the S. sylvestre seedlings showed tree leaves. The plants were grown at
22 ± 4 ◦C, with a 16 h light/8 h dark cycle, and a photosynthetic photon flux density of
100 ± 20 µmol quanta·m−2·s−1. Samples were withdrawn after 5 and 10 days of flooding
for data measurement.

5.2. Transmission Electron Microscopy

Specimen cutoffs of 3 mm diameter were fixed in 3% glutaraldehyde (0.1 M cacodylic
buffer, pH 7.2) for 3 h at ambient temperature and then in 1% osmium tetraoxide in the
same buffer for 1 h at ambient temperature and 12 h at 4 ◦C. Samples were dehydrated
through a graded acetone series and embedded in Epon–Araldite resins. Sections were
obtained on an ultramicrotome PowerTome XL (Boeckeler Instruments, Tucson, AZ, USA).
Ultrathin sections (about 55 nm) were stained with uranyl acetate and lead citrate and
examined with a transmission electron microscope JEM 1230EX (JEOL, Tokyo, Japan).

5.3. Quantification of Leaf Blade and Chloroplast Structure

The thickness of leaf blades and palisade and spongy parenchyma and the size of
chloroplasts from palisade parenchyma cells of young and mature leaves were determined
from TEM micrographs with the UTHSCSA Image Tool 3.0 for Windows. The number of
thylakoids in grana in chloroplasts in leaf cross-sections was counted.

5.4. Statistical Analysis

For statistical analysis of significance, quantitative data were analyzed by one-way
ANOVA for 4 groups.

5.5. Pigment Analysis

The content of chlorophyll a and b and carotenoids was determined on the spec-
trophotometer UV1100 (Spectrolab, Shanghai, China). A total of 20 mg of crushed leaves
was extracted in 7 mL of pure dimethyl sulfoxide. Extraction and measurements were
performed according to [95,96]. A minimum of 5 biological replicates were performed for
each variant.

5.6. Chlorophyll a Fluorescence Induction and JIP-Test

The state of the leaf photosynthetic apparatus was assessed with a custom-made
portable OJIP fluorometer “G-rep” (Ihor Panas, Kyiv, Ukraine). This device can register
the polyphasic fluorescence induction curve caused by the illumination of photosynthetic
samples by a flash of high-intensity (saturating) exciting light. The intensity of this light
in our experimental setup was 5000 µmol photons·m−2·s−1. The multiple (O, J, I, P) steps
of this fluorescence rise are clearly visible on the logarithmic time axis and reflect the
gradual reduction in electron carriers along the photosynthetic electron transport chain.
By analyzing the parameters of this curve, it is possible to determine some traits of both
light and dark phases of photosynthesis. The shape of the OJIP curve is sensitive to
changes in photosynthesis caused by the environment. For the integral assessment of the
photosynthetic apparatus state, the instrument’s sensor was pressed against the leaf blade
after 15 min dark adaptation, and fluorescence changes were recorded for 1 s. Based on the
obtained fluorescence curves, three quantum yields of electron fluxes and an integral index
were calculated and analyzed.
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1. φPo = FV/FM is the maximum quantum yield of the primary photochemical reaction
(at t0 = 0), which characterizes the probability of energy capture of the absorbed
photons (or excitons migrating by the antenna) by the reaction centers of PS 2. In the
case of a stress state, φPo is usually decreased.

2. φEo—quantum yield of electron transfer from PS 2 to plastoquinone.
3. φRo—quantum yield of reduction in electron terminal acceptors in the acceptor site

of PS 1.
4. PIABS,total—total performance index on an absorption basis, which characterizes the

total function of the linear electron transport.

All calculations were performed according to [97].

5.7. Alcohol Dehydrogenase Analysis

To determine alcohol dehydrogenase (alcohol/NAD oxidoreductase, ADH, EC 1.1.1.1)
level, native electrophoresis and ADH product staining were performed. Leaves of ter-
restrial plants before flooding (control) and plants flooded for 4 h, 1, 2, 4, and 6 days
were used. A total of 0.3 g of leaf material was ground in a mortar with liquid nitrogen,
homogenized with extraction buffer (0.1 M Tris-HCl, pH 7.0, 10% glycerol, 0.5% DTT, 1%
Triton X100), and centrifuged at 5000 rpm and 4 ◦C for 5 min. An equal protein quantity
of each sample was separated in 6% polyacrylamide gel (PAG) by native electrophoresis.
For ADH staining, PAG was incubated in 1 M Tris-HCl buffer, pH 8.0, containing 10 mM
NAD, 10 mM nitroblue tetrazolium (NBT), 10 mM phenazine methosulphate (PMS), and
0.6% ethanol. Three biological replicates were conducted.

5.8. Protein Extraction and Western Blot Analysis

Leaves of terrestrial plants before flooding (control 1), plants flooded for 4 h, 1, 2, 4,
and 6 days, and terrestrial plants after 6 days of the experiment (control 2) were used. In
addition, terrestrial plants heat shocked at 40 ◦C for 2 h were used as an internal control
for HSP70 induction. A total of 0.3 g of leaf material was ground in a mortar with liquid
nitrogen, homogenized with extraction buffer (25 mM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM
EDTA, 1 mM protease inhibitor PMSF), and centrifuged at 12,000× g and 4 ◦C for 15 min.
Protein concentration in the supernatant was determined according to the method in [98].
SDS buffer (0.125 M Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 5% β-mercaptoethanol) was
added to the supernatant (1:1). Protein electrophoresis and Western blot analysis were
conducted as described earlier [99]. An equal protein quantity of each sample was separated
in 10% PAG-SDS. After electrophoresis, a gel was either stained with Coomassie G-250 or
used for Western blotting. Blots were photographed and band intensity was determined
using GelAnalyzer 2019.1 (http://www.gelanalyzer.com/ accessed on 1 January 2024).
HSP70 staining density in each blot was normalized to the 73 kDa protein in control 1
(100%). The PageRuler Prestained Protein Ladder 10–180 kDa (TermoFisher, Rodano, Italy)
was used to determine the molecular weight of the proteins. Three biological replicates
were conducted.

5.9. Ethylene Assay

Ethylene emission was evaluated according to the method of [100] with modifica-
tions [92]. Leaves of terrestrial plants of both species before flooding (control) and plants
flooded for 2 h, 1, 2, 5, and 10 days were used. Freshly harvested leaf samples were
incubated in 30 mL glass vials sealed with a rubber stopper for 24 h at 21 ± 1 ◦C in
the dark. Then, 1 mL of gas was sampled from each vial, and the ethylene content was
measured using a FOCUS GC gas chromatograph (Thermo Scientific, Rodano, Italy) with
a flame ionization detector, a stainless-steel matrix 80/100 column PROPAC R (Sigma-
Aldrich, Burlington, MA, USA), helium as a carrier gas, a column temperature of 90 ◦C,
an injector temperature 110 ◦C, and a detector temperature 150 ◦C. Amounts of ethylene
were expressed in nanoliters per gram of fresh tissue per hour (nL·g−1 fresh weight·h−1).
Calibration was performed with an ethylene standard (Sigma-Aldrich, Erlangen, Germany).

http://www.gelanalyzer.com/
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of Wheat and Maize Seedlings Grown under Water Deficit Are Modulated by Pre-Application of Auxin-Type Plant Growth
Regulators. Plants 2022, 11, 3251. [CrossRef] [PubMed]

24. Sharma, S.; Bhatt, U.; Sharma, J.; Kalaji, H.M.; Mojski, J.; Soni, V. Ultrastructure, Adaptability, and Alleviation Mechanisms of
Photosynthetic Apparatus in Plants under Waterlogging: A Review. Photosynthetica 2022, 60, 430–444. [CrossRef]

25. Sachs, M.; Vartapetian, B. Plant Anaerobic Stress I. Metabolic Adaptation to Oxygen Deficiency. Plant Stress 2007, 1, 123–135.
26. Ferreira, C.S.; Fernandez, M.T.; Cesar, P.A.; Gonçalves, F.F. Adaptive strategies to tolerate prolonged flooding in seedlings of

floodplain and populations of Himatanthus sucuuba, a Central Amazon tree. Aquat. Bot. 2009, 90, 46–252. [CrossRef]
27. Chen, D.; Zhu, Y.; Wu, G.; Li, Y. Characterization Analysis of Response of Alcohol Dehydrogenase Gene (ADH 1) in Coix

Lacroyma Jobi L. to Waterlogging Stress. Adv. J. Food Sci. Technol. 2013, 4, 417–425.
28. Chung, H.-J.; Ferl, R.J. Arabidopsis Alcohol Dehydrogenase Expression in Both Shoots and Roots Is Conditioned by Root Growth

Environment. Plant Physiol. 1999, 121, 429–436. [CrossRef] [PubMed]
29. Dat, J.F.; Capelli, N.; Folzer, H.; Bourgeade, P.; Badot, P.-M. Sensing and Signalling during Plant Flooding. Plant Physiol. Biochem.

2004, 42, 273–282. [CrossRef]
30. Zhang, Y.; Song, X.; Yang, G.; Li, Z.; Lu, H.; Kong, X.; Eneji, A.E.; Dong, H. Physiological and Molecular Adjustment of Cotton to

Waterlogging at Peak-Flowering in Relation to Growth and Yield. Field Crops Res. 2015, 179, 164–172. [CrossRef]
31. Casarotto, G.; Kaspary, T.E.; Cutti, L.; Thomas, A.L.; Barbosa Neto, J.F. Expression of Genes Related to Soil Flooding Tolerance in

Soybeans. Acta Sci. Agron. 2019, 41, e42709. [CrossRef]
32. Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The Evolutionary and Ecological Role of Heat Shock Proteins. Ecol. Lett. 2003, 6,

1025–1037. [CrossRef]
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