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Abstract: Buddleja cordata cell suspension cultures could be used as a tool for investigating the
capabilities of this species to tolerate heavy metals (HMs) and for assessing the effects of HMs on the
accumulation of phenolic compounds in this species. It grows in a wide range of habitats in Mexico,
including ultramafic soils, and mobilizes some HMs in the soil. The mobilization of these HMs has
been associated with phenolic substances. In addition, this species is used in Mexican traditional
medicine. In the present study, a B. cordata cell suspension culture was grown for 18 days in a culture
medium enriched with Cu (0.03–0.25 mM), Fe (0.25–1.5 mM), Mn (0.5–3.0 mM), or Zn (0.5–2.0 mM) to
determine the effects of these HMs on growth and HM accumulation. We also assessed the effects of
the HMs on phenolic compound accumulation after 1 and 18 days of HM exposure. Cells were able to
grow at almost all tested HM concentrations and accumulated significant amounts of each HM. The
highest accumulation levels were as follows: 1160 mg Cu kg−1, 6845 mg Fe kg−1, 3770 mg Mn kg−1,
and 6581 mg Zn kg−1. Phenolic compound accumulation was affected by the HM exposure time and
corresponded to each HM and its concentration. Future research should analyze whole plants to
determine the capabilities of Buddleja cordata to accumulate abnormally high amounts of HM and to
evaluate the physiological impact of changes in the accumulation of phenolic compounds.

Keywords: heavy metal tolerance; elicitation; secondary metabolite; verbascoside

1. Introduction

Plants are evolutionarily adapted to environmental changes, allowing them to ab-
sorb heavy metals (HMs) present at high levels in soils via well-coordinated molecular
mechanisms through morphological, physiological, and metabolic adaptations [1–3]. All
plant species presumably have a basal heavy metal (HM) tolerance provided by a complex
system of uptake/efflux, transport/sequestration, and chelation processes. However, the
characteristics of these processes vary among species, and plant species can be categorized
as hyperaccumulators or non-accumulators [4]. Most plants are non-accumulators and
tend to avoid metal uptake, which is the simplest strategy for tolerating high HM exposure.
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However, HMs can induce phytotoxicity, which presents as altered metabolic activity,
growth reduction, and low biomass production [3,4]. The capability of plants to accumulate
abnormally high amounts of metals (at levels 100- to 1000-fold greater than those typically
measured in non-accumulator plants) in their aboveground organs is represented by the
term “hyperaccumulation” [5,6]. Hyperaccumulator species are characterized by their
tolerance of HMs and detoxification mechanisms. For example, the overexpression of the
transport protein systems required to enhance sequestration, the chelation of metals, and
the fast and effective repair of damage caused by HMs may include changes in antioxidant
defenses, the expression of heat shock proteins, and the induction of secondary metabolites
(e.g., phenolic compounds). Chelation with ligands may also occur, enabling HM ions to be
transported and sequestered in different plant tissues [4,5,7]. Phenolic compounds can act
as ligands that form complexes with metals. This complexation may have indirect effects
such as facilitating cell penetration; changing the redox state of the metal, consequently
altering its bioavailability; and producing reduction activity in redox-active metals. Phe-
nolic compounds can also act as antioxidants during the oxidation process due to their
radical-scavenging activities based on hydrogen or electron donation, which results in
stable phenoxyl radicals [8].

Hyperaccumulator species have been found in at least 52 families, including Brassi-
caceae, Fabaceae, Euphorbiaceae, Asteraceae, Lamiaceae, and Scrophulariaceae [2,5,6]. In
addition, several hyperaccumulator species grow in soils rich with metals, such as ultra-
mafic soils. These soils are generally infertile and edaphically stressful for the growth and
survival of most plant species. However, ultramafic species have evolved adaptations to tol-
erate these stressful conditions [9], such as some species belonging to the Buddlejaceae genus
(Scrophulariaceae). Buddleja asiatica was reported to be a lead hyperaccumulator [10,11],
while B. paniculata and B. scordioides were reported to be lead accumulators [11,12]. Al-
though Buddleja cordata Humb. Bonpl. and Kunth is distributed in a wide range of habitats
in Mexico, including habitats with infertile soils [13,14], the most recent study to determine
its hyperaccumulation potential was published by Navarrete et al. [14]. In that work, the
ultramafic vegetation of central and southern Mexico was assessed to identify Ni hyper-
accumulator species. Although B. cordata presented low Ni accumulation (10 mg kg−1),
Ca, Co, Fe, Mg, Mn, and Zn were accumulated at concentrations of 6889, 1.2, 1788, 4481,
22, and 13.6 mg kg−1, respectively, in the plant’s leaves when grown in an ultramafic
soil characterized by high Mg, Fe, Cr, Co, and Ni concentrations and Ca macronutrient
deficiencies [14]. Leaf litter samples of B. cordata grown near Mexico City, which is highly
polluted, indicated an increased mobilization of some HMs in the soil (essential metal
nutrients Cu, Fe, Mn, and Zn and nonessential metal nutrients Al, Cd, and Pb) based on
hydrosoluble phenolic substances [15]; the authors argued that these compounds might act
as chelators.

Research on hyperaccumulators has increased worldwide because such species rep-
resent an environmentally friendly and inexpensive way to restore HM-polluted soils
through phytoremediation [2,16,17]. Moreover, plant cell cultures are a useful tool used
to investigate plant responses to metal pollution. These cultures allow one to control
environmental and nutritional conditions, enabling researchers to estimate the intrinsic
phytoremediation potential of plants. In addition, the use of plant cultures reduces the time
required for experiments because they rely on continuously propagated vegetal material
rather than whole plants [18].

In previous work with B. cordata, we established a cell culture producer of phenolic
compounds such as phenolic acids (hydroxycinnamic acids), linarin (flavonoid), and ver-
bascoside (phenylpropanoid glycoside) [19]. This culture was characterized by its growth
and phenolic compound concentration since these phenolic compounds are related to the
use of this species in Mexican traditional medicine; its medicinal uses are related to wounds
or skin ailments, rheumatism, liver disorders, headaches, gastrointestinal infections, muscle
cramps, nasal hemorrhages, and diuretic and kidney treatments, of which their therapeutic
effects have been mainly attributed to phenolic compounds [19]. Thus, this type of cell
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culture can be used to investigate the ability of B. cordata to tolerate HMs. The present study
aimed to determine the effects of different concentrations of Cu, Fe, Mn, and Zn on growth,
HM accumulation, and phenolic compound accumulation to study the HM tolerance of the
B. cordata cell suspension culture.

2. Results
2.1. Tolerance and Accumulation of HMs in a B. cordata Cell Suspension Culture Grown in a
Culture Medium Enriched with Cu, Fe, Mn, and Zn

After HM exposure, the B. cordata cell suspension culture showed significant changes
in its growth parameters (cell viability and growth index), and its environment (pH, and
total sugar content of the culture medium) caused by the type of HM and its concentration.
The highest concentration tested for each HM (0.25 mM Cu, 1.5 mM Fe, 3.0 mM Mn,
and 2.0 mM Zn) had the strongest effect on the growth parameters and yielded the most
significant growth inhibition (with growth indexes of 0.21, 0.44, 0.34, and 0.24, respectively);
the lowest cell viability percentages (20.5, 12.86, 10.34, and 12.2, respectively); the lowest pH
values (4.22, 4.43, 4.11, and 4.34, respectively); and the highest total sugar contents (28.13,
27.56, 27.88, and 28.31 g L−1, respectively) in the culture medium (Table 1). In the remaining
HM treatments, the cells were able to grow, presenting growth index values > 3.29. Notably,
the growth index values in several HM treatments (0.03–0.10 mM Cu, 0.25–0.5 mM Fe,
0.5–2.0 mM Mn, and 0.5–1.25 mM Zn) were not significantly different from those in the
control (growth index of 6.46). In addition, the cell viability, total sugar content, and pH
values in these treatments were slightly or not different from those in the control (81.33%,
5.57 g L−1, and 6.38, respectively; Table 1).

All these results show that the B. cordata cell suspension culture was unable to tolerate
the highest HM concentrations tested, inhibiting growth and leading to death, acidification,
and the nonconsumption of sucrose in the culture medium. Indeed, growth tolerance
index values lower than 0.1 were observed (0.03, 0.07, 0.05, and 0.04 for 0.25 mM Cu,
1.5 mM Fe, 3.0 mM Mn, and 2.0 mM Zn, respectively; Figure 1a–d). Therefore, HM
accumulation in the B. cordata cell suspension culture was not determined at the highest
HM concentrations tested. However, the B. cordata cell suspension culture tolerated the
remaining HM concentrations tested and grew despite the presence of HMs at considerably
higher concentrations (600- to 2000-fold greater for Cu, 5- to 20-fold greater for Fe, 10-
to 40-fold greater for Mn, and 33.3- to 100-fold greater for Zn) than those in the control
treatment (0.00005 mM Cu, 0.05 mM Fe, 0.05 mM Mn, and 0.015 mM Zn). For all other tested
HM concentrations, the growth tolerance index values were higher than 0.51 (Figure 1a–d).

Exposing the B. cordata cell suspension culture to the four HMs provoked a significant
increase in HM accumulation (Figure 2a–d). For Cu, Fe, and Zn, HM accumulation was
directly influenced by the HM concentration (Figure 2a,b,d). The highest accumulation val-
ues for each HM were 1160 mg Cu kg−1, 6845 mg Fe kg−1, 3770 mg Mn kg−1, and 6581 mg
Zn kg−1 at 0.1 mM Cu, 1 mM Fe, 2 mM Mn, and 1.5 mM Zn, respectively (Figure 2a–d).
In addition, the ability of the B. cordata cell suspension culture to take up HMs from the
culture medium, expressed as the bioaccumulation factor, significantly decreased under Cu,
Mn, and Zn exposure and was inversely influenced by the HM concentration. However,
we observed opposite effects under Fe exposure (Figure 2a–d).

2.2. Total Phenolic and Verbascoside Content Changes in the B. cordata Cell Suspension Culture
Grown in a Culture Medium Enriched with Cu, Fe, Mn, and Zn

The exposure time of the B. cordata cell suspension culture to the four HMs yielded
significant changes in phenolic compound accumulation. In general terms, HM exposure
over 18 days of culture decreased the total phenolic and verbascoside contents, which
were inversely affected by the HM level, compared with the control; however, the opposite
occurred at 1.0 mM Mn (Figure 3a–d). Total phenolic and verbascoside content values were
found to be the lowest under the highest tested metal concentrations, with values as low as
zero (Figure 3a,b). In contrast, treating the B. cordata cell suspension culture with 1.0 mM
Mn yielded the highest accumulation of phenolic compounds, with higher values observed
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for the total phenolic (248 mg gallic acid equivalent g−1 [mg GAE g−1]) and verbascoside
(224 mg g−1) contents compared to the control treatment (152 mg GAE g−1 and 137 mg g−1,
respectively) (Figure 3a,b). After 1 day of HM exposure, the values of the total phenolic
and verbascoside were higher than those of the control, which was an effect that depended
on each HM and its concentration (Figure 3e–h).

Table 1. Effects of Cu, Fe, Mn, and Zn enrichment on the growth and culture medium of the B. cordata
cell suspension grown for 18 days.

Growth Culture MediumHeavy Metal Treatment (mM) Cell Viability (%) Growth Index pH Total Sugar Content (g L−1)
Copper

Control (0.00005) 81.33 ± 1.58 a 6.46 ± 0.88 a 6.38 ± 0.05 b 5.57 ± 0.40 b

0.03 77.00 ± 3.54 a 6.43 ± 0.27 a 6.44 ± 0.05 b 5.21 ± 0.72 b

0.06 73.25 ± 0.65 b 6.11 ± 0.58 a 6.66 ± 0.02 a 4.34 ± 0.61 b

0.10 72.40 ± 1.15 b 6.23 ± 0.15 a 6.63 ± 0.10 a 4.44 ± 0.54 b

0.25 20.50 ± 0.78 c 0.21 ± 0.01 b 4.22 ± 0.03 c 28.13 ± 1.11 a

Iron
Control (0.05) 81.33 ± 1.58 a 6.46 ± 0.88 a 6.38 ± 0.05 a,b 5.57 ± 0.40 c

0.25 75.97 ± 2.10 b 5.97 ± 0.24 a 6.64 ± 0.05 a 3.91 ± 0.15 c

0.50 71.94 ± 1.82 b 5.77 ± 0.18 a 6.55 ± 0.10 a 5.94 ± 0.02 c

1.00 66.99 ± 0.84 c 3.29 ± 0.14 b 5.69 ± 0.01 c 16.22 ± 2.01 b

1.50 12.86 ± 1.26 c 0.44 ± 0.02 c 4.43 ± 0.01 d 27.56 ± 0.40 a

Manganese
Control (0.05) 81.33 ± 1.58 a 6.46 ± 0.88 a 6.38 ± 0.05 a 5.57 ± 0.40 b

0.50 78.41 ± 1.85 a 6.48 ± 0.19 a 6.49 ± 0.04 a 1.71 ± 0.22 c

1.00 67.71 ± 2.53 b 6.38 ± 0.09 a 6.42 ± 0.09 a 1.58 ± 0.29 c

2.00 66.75 ± 2.25 b 6.17 ± 0.01 a 6.26 ± 0.04 b 1.38 ± 0.33 c

3.00 10.34 ± 0.25 c 0.34 ± 0.04 b 4.11 ± 0.04 b 27.88 ± 1.26 a

Zinc
Control (0.015) 81.33 ± 1.58 a 6.46 ± 0.88 a 6.38 ± 0.05 a 5.57 ± 0.40 d

0.50 72.32 ± 2.44 b 6.22 ± 0.35 a 6.37 ± 0.06 a 4.34 ± 0.46 d

1.00 70.77 ± 1.83 b 5.99 ± 0.13 a,b 5.84 ± 0.06 b 13.04 ± 1.79 c

1.25 54.56 ± 0.41 c 5.46 ± 0.41 a,b 5.22 ± 0.03 c 17.70 ± 0.80 b

1.50 26.06 ± 1.40 d 4.36 ± 0.24 b 4.98 ± 0.04 d 24.35 ± 1.66 a

2.00 12.20 ± 2.54 e 0.24 ± 0.02 c 4.34 ± 0.02 e 28.31 ± 2.48 a

Data show the mean ± standard deviation (SD). For each heavy metal, the same lowercase letter after the
mean ± SD value within a column indicates no significant difference at the 5% significance level. For each heavy
metal, all the results are highlighted with a specific color: orange color was used for copper, green color was used
for iron, pink color was used for manganese, and blue color was used for zinc.
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tolerance index of the B. cordata cell suspension culture grown for 18 days in the culture medium
enriched with heavy metals. All results are shown as the mean ± SD. The same lowercase letter
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Figure 2. Heavy metal accumulation and bioaccumulation factors of Cu, Fe, Mn, and Zn in the
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mean ± SD. The same lowercase letter indicates no significant difference at a 5% significance level
for a particular response variable.
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Figure 3. Phenolic compound accumulation (total phenolic and verbascoside contents) in the
B. cordata cell suspension culture grown for 18 and 1 day(s) in a culture medium enriched with
heavy metals at different concentrations. At 18 and 1 day(s): (a,e) 0.03 to 0.25 mM Cu; (b,f) 0.25 to
1.5 mM Fe; (c,g) 0.5 to 3.0 mM Mn; and (d,h) 0.5 to 2.0 mM Zn. The concentrations of heavy metals in
the control treatment were 0.00005 mM Cu, 0.05 mM Fe, 0.05 mM Mn, and 0.015 mM Zn. All results
are shown as the mean ± SD. The same lowercase letter indicates no significant difference at a 5%
significance level for a particular response variable.
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3. Discussion

Some HMs such as Cu, Fe, Mn, and Zn are essential nutrients for plants. These metals
play vital functions in plant metabolism, e.g., serving as integral components in several
enzymes that participate in redox reactions and nucleic acid metabolism [3]. These metals
are normally found in plants at low concentrations (6, 100, 50, and 20 mg kg−1 for Cu,
Fe, Mn, and Zn, respectively) [20]. Consequently, HMs are required in low amounts, and
exposure to high concentrations can result in toxicity [3]. However, Cu and Fe hyperac-
cumulator species can harbor at least 1000 mg kg−1 of these metals, while Mn and Zn
hyperaccumulators can contain 10,000 mg kg−1 [6], without showing toxicity.

The results of this work suggest that B. cordata cells have tolerance traits that allow
them to accumulate Cu, Fe, Mn, and Zn and thus resist toxicity and grow despite the HM
concentrations being higher than those in the control. This tolerance was indicated by the
high growth index, growth tolerance index, and cell viability values, as well as the low total
sugar content values in the residual medium. Together, these results indicate a high con-
sumption of the sugar substrate required for growth. At the cellular level, plants can feature
a range of detoxification mechanisms that activate to prevent the accumulation of toxic HM
concentrations within the cell, such as the involvement of the plasma membrane in reducing
the uptake of HM; chelation in the cytosol by ligands, resulting in complex formation; or the
transport of HM/HM complexes to vacuoles [21]. In this study, the plasma membranes of
the B. cordata cells, as a detoxification mechanism, may have reduced the uptake of Cu and
Mn since HM accumulation greatly increased under the first concentration tested, followed
by a slight increase that plateaued as the concentration increased. However, for Fe and Zn,
the HM accumulation increased as the HM concentration increased. In this case, the plasma
membranes of the B. cordata cells likely did not reduce uptake, and HM chelation may
have occurred. HM conjugates can be formed with amino acids, vitamins, organic acids,
glutathione, phytochelatins (PCs), and metallothioneins [4,5,7,22,23]. Indeed, Cu and Zn
have shown to induce the formation of PC complexes [24,25]. The enzyme responsible for
PC synthesis is a constitutive cytoplasmic enzyme activated through exposure to several
HMs, such as Zn. This enzyme has been reported to be essential in detoxifying large
amounts of Zn by promoting its accumulation [26]. B. cordata cells may also form HM
complexes that allow the cells to accumulate HMs.

Furthermore, the antioxidant mechanisms of B. cordata cells may allow the cells to
accumulate HMs and grow. A common consequence of HM poisoning is the enhanced
production of reactive oxygen species (ROS) that expose cells to oxidative stress, leading
to RNA and DNA synthesis errors, enzyme activity inhibition, lipid peroxidation, and
the blocking and displacement of essential functional groups in biomolecules [5,27]. The
tolerance of hyperaccumulator species involves enhanced antioxidant (enzymatic and
nonenzymatic) defense mechanisms to counteract this oxidative stress [5,28]. Notably,
the antioxidant enzymatic mechanisms of plants are considered an important defense
against the oxidative stress induced by HMs [3]. The primary enzymes implicated in
ROS scavenging are superoxide dismutase, catalase, and peroxidase. Superoxide dismu-
tase is the first line of defense against reactive oxygen species, followed by catalase and
peroxidase [29]. However, after a prolonged period of HM exposure, under the highest
tested concentrations of each HM, the antioxidant mechanism of the B. cordata cells was
likely unable to counteract the oxidative stress provoked by each HM, thereby damaging
the integrity of the cells and leading to a low growth index, growth tolerance index, and
cell viability values, as well as high total sugar contents. The integrity of the cells may
have been affected by the peroxidation of lipids from the plasma membrane [27], which
provoked the release of organic acids including phenolic acids. These conditions resulted
in the lowest pH values in the culture medium. Moreover, phenolic compounds, including
verbascoside, likely contributed to the nonenzymatic antioxidant mechanisms in B. cordata
cells, which counteracted the adverse effects of high HM concentrations, as phenolic com-
pound accumulation significantly increased after 1 day of HM exposure. An antioxidant
(nonenzymatic) system consisting of metabolites with low molecular weights, such as
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flavonoids, phenolic acids, and phenylpropanoids, has been recognized to be effective in
directly scavenging the reactive oxygen species produced by the presence of HMs [30].
Likewise, the phenolic compounds produced by B. cordata cells likely contributed to the
transport of Fe since the HM accumulation and bioaccumulation factors both increased as
the Fe concentration increased. Some plants have been reported to release organic anions,
such as phenolic compounds, to increase HM solubility by forming chelates [31,32]. This
phenomenon has been shown to improve Fe transport [31,32] and confer an additional
ability to tolerate and grow under highly toxic metal concentrations in hyperaccumula-
tor species [4,33]. Different experimental models have demonstrated that verbascoside
exerts antioxidant activity by scavenging free radicals or chelating the HMs (Cu2+, Fe2+,
and Fe3+) that mediate oxidation [34,35]. This compound contributes to protecting plants
from the DNA damage from hydroxyl radicals induced by Fe2+ and Fe3+ since it can form
complexes with HMs (formation constants of 1021.03 and 1031.94 M−2 for Fe2+ and Fe3+,
respectively) [34].

The results of this work could serve as a useful approach for continuing research
on B. cordata as a species with tolerance traits that could be useful for phytoremediation
purposes. Indeed, in vitro cultures of several plant species were demonstrated to be use-
ful tools for researching topics in phytoremediation. A tolerant callus of Brassica spp.,
taxonomically similar to Brassica juncea and a hyperaccumulator crop used for phytore-
mediation in polluted soil, has shown a high HM content in cells, with 3.83 mg Zn kg−1

and 2.91 mg Mn kg−1 under 0.24 mM Zn and 0.8 mM Mn, respectively [36]. The callus
presented reductions of 33 and 30%, respectively, in fresh weight compared with that in
the control [36]. The growth of Sesbania drummondii cell cultures (a species used in phytore-
mediation) was negligible at 500 mg Cu L−1 (~7.87 mM). However, under 100 mg Cu L−1

(~1.58 mM), the cells were able to grow and accumulate 3000 mg Cu kg−1 [31]. In both stud-
ies, the activity of antioxidant enzymes was a feature associated with metal tolerance [36,37].
Treating callus cultures of Acer pseudoplatanus (a tree that grows in soils polluted with met-
als) obtained from several populations with 0.08 mM Cu or 1.91 mM Zn yielded different
levels of HM accumulation (100–400 mg Cu kg−1 and 6000–10,000 mg Zn kg−1) [38]. A cell
suspension culture of Thlaspi caerulescens (a Zn/Cd hyperaccumulator species) exhibited no
changes in growth after 10 days of treatment with Zn concentrations from 30 to 1500 µM,
while the HM accumulation increased from 30 to 200 µmol g−1 (equivalent to 1962 to
13,080 mg Zn kg−1) [39]. Treating in vitro root cultures of Scirpus americanus with 1.8 mg
Mn L−1 (~0.033 mM) did not affect growth and yielded 5000 mg Mn kg−1. This organism
was found to be a Mn accumulator [40]. Tolerant somaclones developed from the calli of
some indica rice varieties grew at 50–400 ppm Fe (~0.89–7.15 mM). Callus growth decreased
under higher Fe concentrations until complete necrosis occurred at 400 ppm [41]. Studies
have also been performed on HMs that are not essential nutrients for plants. For example,
Bernabé-Antonio et al. [42] demonstrated high accumulations of Cr and Pb contents in
a cell culture of Jatropha curcas. This species was shown to have significant potential for
HM phytoremediation [42]. Thus, according to the results for the B. cordata cells in the
present study and in the context of previous publications, B. cordata may possess outstand-
ing tolerance mechanisms that could be useful for phytoremediation. This ability might
be related to the membership of B. cordata in the Buddlejaceae genus [10–12]. In addition,
several hyperaccumulator species grow in soils rich with metals, such as ultramafic soils [9],
in which B. cordata also grows [14].

Plant metal tolerance is typically specific to particular metals [38], and the results
found in this work show that B. cordata may be tolerant to several metals. Bacopa monnieri
showed high tolerance to Mn > Cr > Cu > Cd > Pb, as no visible phytotoxic symptoms were
observed after two months of HM exposure (0.003–0.160 mM for each HM) [43]. In vitro
seedlings of Prosopis laevigata showed a strong ability to tolerate and accumulate Cr, Cd, Pb,
and Ni [44,45]. The tolerance capabilities of the B. cordata cell culture against must be tested
different HM ions from those tested in this work, including those of nonessential HMs,
since the transport of metal ions occurs regardless of whether or not they are essential [23].
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Several plant species can grow in metalliferous soils, and these rare species have valuable
potential for phytoextraction [1]. Thus, this work contributes to exploring the potential
of B. cordata for further research on phytoremediation. Moreover, the results of this work
highlight the care that must be taken when B. cordata is used for medicinal purposes because
the plant may have accumulated high amounts of HMs (essential or nonessential metal
nutrients) and may thus represent a serious risk to human health. Higher amounts of some
HMs than those required to maintain good health can be toxic or dangerous [46]. Therefore,
avoiding exposure to high HM concentrations is a protective measure necessary to support
human wellbeing [46]. In addition, the high amounts of the four HMs accumulated by
the B. cordata cells and their impacts on phenolic compound accumulation after 1 day or
18 days of HM exposure could have both ecological and biotechnological implications.
Ecological studies should be undertaken to determine the evolutionary value of high HM
accumulation as an advantage over pathogens or herbivores. It was previously hypoth-
esized that hyperaccumulation provides a defense against pathogens or herbivores [47].
Cell suspension cultures of plants represent a biotechnological tool for producing bioactive
secondary metabolites, and elicitation can be used to increase the production of secondary
metabolites [19]. Elicitation is a strategy used to promote the increased biosynthesis and ac-
cumulation of secondary metabolites, through activating the defense system against biotic
or abiotic stress [24]. In this work, we demonstrated that phenolic compound accumulation
was significantly increased after 1 day of HM exposure compared with that in the control,
so future research should be carried out to identify the specific secondary metabolites, in
addition to verbascoside, with increased accumulation. Metals act as signal molecules or
abiotic elicitors that stimulate the production of secondary metabolites such as alkaloids,
terpenoids, and phenolic compounds as a defense response to stressful stimuli [20,24,48,49].
Treating Panax ginseng root cultures with 5–50 µM Cu affected the ginsenoside metabolite
content; ginsenoside content was stimulated from 5–25 µM Cu, but under 50 µM Cu, it
was decreased [50]. The maximum increase in flavonoid production in Trifolium pratense
suspension cultures occurred after 7 days of copper application (0.1 mM) [51]. Producing
high yields of bioactive secondary metabolites through in vitro plant cultures is highly
desirable, with several potential strategies including elicitation and optimizing the culture
medium [52].

4. Materials and Methods
4.1. Cell Suspension Culture

In a previous study using a B. cordata cell suspension culture, the outstanding growth
parameters were a maximum biomass of 12.9 g L−1 and growth index of 8.14 after 14 days
of culturing, cell viability > 80% during the exponential phase of growth, and total substrate
consumption at 30 days of culturing (measured through total sugar content). The verbasco-
side content was associated with growth and reached its maximum level (116.36 mg g−1

dry weight (DW), equivalent to 1.44 g L−1 for verbascoside) during the stationary phase
at 16–22 days of culturing [19]. Based on the growth profile of the culture, this work was
carried out over 18 days of HM exposure to estimate the effects on growth and phenolic
accumulation.

An in vitro cell culture of B. cordata was donated to the Universidad Autonoma
Metropolitana-Iztapalapa Campus (UAM-I), México D.F., México, as a suspension cul-
ture and proliferated according to Estrada-Zúñiga et al. [19]. Briefly, the basal culture
medium (BCM) consisted of half-strength Murashige and Skoog medium [53] with 3%
weight/volume (w/v) sucrose, 0.45 µM 2,4-dichlorophenoxyacetic acid, 2.32 µM kinetin,
100 mg L−1 citric acid, and 150 mg L−1 ascorbic acid. Cell suspension cultures were subcul-
tured ten times to proliferate their biomass [19], which was required for the HM bioassays.
The cell suspension cultures under proliferation were incubated in a gyratory shaker at
110 rpm with a photoperiod of 16 h light (30 µmol m−2 s−1) at 26 ± 2 ◦C.
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4.2. HM Bioassays

The HM bioassays involved growing B. cordata cells in BCM enriched with Cu, Fe, Mn,
and Zn. The biomass from the last subculture was used to inoculate 125 mL Erlenmeyer
flasks (1.5 g of fresh weight per flask) containing 25 mL of the culture medium. This
process involved the addition of the HMs for the enrichment of culture medium until
achieving the following concentrations: 0.03, 0.06, 0.1, and 0.25 mM Cu; 0.25, 0.50, 1.0, and
1.5 mM Fe; 0.5, 1.0, 2.0, and 3.0 mM Mn; and 0.5, 1.0, 1.25, 1.5, and 2.0 mM Zn. The BCM
contained these HMs at micromolar concentrations (0.05 µM Cu, 50 µM Fe, 50 µM Mn,
and 15 µM Zn). Additionally, we carried out a preliminary experiment to establish the
maximum concentration tested for each HM based on the concentration that caused growth
inhibition. Stock solutions (20 mg mL−1) of CuSO4·5H2O, FeSO4·7H2O, ZnSO4·7H2O,
and MnSO4·H2O (Baker Analyzed, Phillipsburg, NJ, USA) were used as sources of the
HMs. Corresponding aliquots of each stock solution were added to the BCM. The control
treatments were as follows: (i) BCM and (ii) BCM with SO4

2− at the same concentrations
used in the HM treatments (BCM-SO4), with a (NH4)2SO4 stock solution (20 mg mL−1)
used as the source of SO4

2−. This control was used because sulfur is an essential nutrient
for plants, and its enrichment in the culture medium was hypothesized to have effects on B.
cordata cells. However, when the response variables were determined for the B. cordata cells
in both control treatments (BCM and BCM with SO4

2−), the results were not significantly
different. Thus, these treatments are both referred to as the control treatment in the present
study, and data from these treatments were pooled. Deionized water was used to prepare
stock solutions of HM salts and the medium. When all components of the medium were
added, the pH was adjusted to 5.8 with NaOH 0.1 M, and the samples were autoclaved at
121 ◦C for 18 min. Each treatment consisted of two Erlenmeyer flasks with three replicates
(n = 6).

Once biomass was inoculated in the 125 mL Erlenmeyer flasks containing 25 mL of
sterile medium enriched with the HM, the resulting cultures were incubated in the same
conditions described above for proliferation purposes. After 18 days of culturing, several
response variables were measured to estimate the tolerance of cells exposed to HMs. For
this purpose, biomass from the HM bioassays was harvested via vacuum filtration while
washing with 100 mM EDTA, dried in an oven at 60 ◦C, and weighed. The residual medium
was used to determine the pH value and total sugar content of the biomass. Cell viability,
total sugar content, and growth index measurements were carried out as described by
Estrada-Zúñiga et al. [19]. Different system responses in plant cell suspension cultures
(e.g., growth) can be used to study whether the plant cells are subjected to factors that
cause stress [54]. Additionally, the tolerance of the cells was calculated based on the growth
tolerance index using Equation (1) according to Rout et al. [36], with some modifications:

Growth tolerance index =
Growth index of cells grown in culture medium with HM

Growth index of cells grown in culture medium without HM
(1)

The growth index was estimated based on the DW as follows:

Growth index =
Final biomass (mg DW)− initial biomass (mg DW)

initial biomass (mg DW)
. (2)

4.3. Determination of the HM Content in Cells

After 18 days of culturing, cells (100 mg DW) harvested from the HM-exposure
treatments were powdered and digested with 5 mL of concentrated HNO3 in a microwave
oven (CEM Mars5, CEM Corporation, Charlotte, NC, USA). Then, the volume of each
digested sample was adjusted to 10 mL with deionized water, and the samples were
retained in high-density polyethylene flasks. An atomic absorption spectrometer (Varian
Spectra AA-220 FS, Varian, Belrose, Australia) was used to analyze the HM content in
the cells from the digested samples. Calibration curves (0.5 to 1.5 mg mL−1 for Cu; 0.5
to 2.5 mg mL−1 for Fe; 0.5 to 3.5 mg mL−1 for Mn or Zn) were generated using HM
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standards corresponding to the analyzed HM (Baker Analyzed, Phillipsburg, NJ, USA).
The results were expressed as mg of HM per kg of DW biomass (mg HM kg−1). A solution
of 0.1 N HNO3 was used to wash the glassware and equipment before use. Additionally,
the bioaccumulation factor (determined only for treatments showing a growth index > 1)
was estimated according to Bernabé-Antonio et al. [55], as follows:

Bioaccumulation factor =
HM content in cells grown in culture medium enriched with HM (mg HM/kg)

HM content in culture medium (mg/L)
(3)

4.4. Effect of HM on the Accumulation of Phenolic Compounds

The dry biomass from the HM exposure treatments of 18 days (60 mg DW) was
extracted for 60 min with boiling MeOH (30 mL). All results were expressed on a per g
basis of DW biomass. The total phenolic content was determined according to Vazquez-
Marquez et al. [56]. The corresponding results were expressed as mg GAE g−1. All
reagents were acquired from Sigma–Aldrich Co., Ltd., St. Louis and Burlington, MA,
USA. The verbascoside content was determined with an Agilent Technologies 1100 series
high-performance liquid chromatography system using a G1311A Quatpump (Alltech Co.,
Ltd., Nicholasville, KY, USA) equipped with an Econosil C18 column (4.6 mm × 250 mm,
5µ; Alltech Co., Ltd., Nicholasville, KY, USA) and a G1315B diode array detector (Alltech
Co., Ltd., Nicholasville, KY, USA). The operating conditions of this system included a
mobile phase of 2.0% (v/v) acetic acid solution (solvent A) and acetonitrile (solvent B),
an injection volume of 20 µL, a flow rate of 1.0 mL min−1, and a detection wavelength
of 330 nm. The system was run with a gradient program as follows: 10 min, 90% to 75%
A, and 15 min, 75% to 60% A. Agilent 1100 Chemstation chromatography software (Rev.
A.08.03; Agilent Technologies, Santa Clara, CA, USA) was used to acquire data from the
detector. A calibration curve (80–240 µg mL−1) was created using the verbascoside standard
(Extrasynthese, Genay, L, France). The results were expressed as mg of verbascoside per
g of DW biomass (mg g−1). Peak areas at the corresponding standard retention times
were used for detecting, identifying, and quantifying verbascoside in the samples. Each
sample was injected twice (n = 2). In addition, cells were also grown for 1 day in a medium
enriched with Cu, Fe, Mn, and Zn treatments to determine the effect of the HMs on
phenolic compound accumulation. Thus, the same procedure described in this section was
carried out.

4.5. Statistical Analysis

The results for the response variables (growth index, growth tolerance index, cell
viability, total sugar content, pH, HM accumulation, bioaccumulation factor, total phenolic
content, and verbascoside content) were analyzed using one-way ANOVA, followed by
the Tukey–Kramer post hoc test for multiple comparisons. NCSS version 12 software (East
Kaysville, UT, USA) was used for all statistical analyses. A p value of less than 0.05 was
uniformly considered to indicate significant differences.

5. Conclusions

The B. cordata cell suspension culture presented strong HM tolerance traits that allowed
the cells to grow and accumulate high amounts of Cu, Fe, Mn, and Zn (1160 mg Cu kg−1,
6845 mg Fe kg−1, 3770 mg Mn kg−1, and 6581 mg Zn kg−1). This species may have hyperac-
cumulator potential for HMs as follows, from least to most significant: Mn < Zn < Cu < Fe.
This potential should be evaluated in future research with whole B. cordata plants. In
addition, future research should determine the ecological impact of a possible decrease in
the accumulation of phenolic compounds in whole plants growing in heavy-metal-polluted
soils. B. cordata cell suspension cultures exposed to HMs for 1 day may represent a useful
biotechnological tool for enhancing the accumulation of bioactive phenolic compounds in
this species.
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