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Abstract: The Italian garlic ecotype “Vessalico” possesses distinct characteristics compared to its
French parent cultivars Messidor and Messidrôme, used for sowing, as well as other ecotypes in
neighboring regions. However, due to the lack of a standardized seed supply method and cultivation
protocol among farmers in the Vessalico area, a need to identify garlic products that align with the
Vessalico ecotype arises. In this study, an NMR-based approach followed by multivariate analysis to
analyze the chemical composition of Vessalico garlic sourced from 17 different farms, along with its
two French parent cultivars, was employed. Self-organizing maps allowed to identify a homogeneous
subset of representative samples of the Vessalico ecotype. Through the OPLS-DA model, the most
discriminant metabolites based on values of VIP (Variable Influence on Projections) were selected.
Among them, S-allylcysteine emerged as a potential marker for distinguishing the Vessalico garlic
from the French parent cultivars by NMR screening. Additionally, to promote sustainable agricultural
practices, the potential of Vessalico garlic extracts and its main components as agrochemicals against
Xanthomonas campestris pv. campestris, responsible for black rot disease, was explored. The crude
extract exhibited a MIC of 125 µg/mL, and allicin demonstrated the highest activity among the tested
compounds (MIC value of 31.25 µg/mL).

Keywords: Vessalico garlic; multivariate data analysis; NMR metabolomics; self-organizing maps;
garlic; Xanthomonas campestris pv. campestris

1. Introduction

Garlic (Allium sativum L.) varieties, ecotype, and cultivars show a high degree of phe-
notypic plasticity, dependent on environmental conditions and agricultural practices [1–5].
Morphological diversity in garlic is manifested through variations in bulb size, shape,
color, and clove arrangement [6,7]. Along with its morphological features, the concentra-
tions of garlic bioactive compounds [8–11] can range significantly among different garlic
varieties [12–18], leading to differences in flavor intensity and medicinal properties [19,20].

The Vessalico garlic is cultivated in northwest Italy [21,22]. The cloves of two French
cultivars, Messidor and Messidrôme [23], are used every year by the Vessalico farmers
for sowing. Our previous study compared Vessalico garlic with the two parent cultivars,
and defined Vessalico garlic as an agricultural ecotype [22]. The conditions of growth,
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harvest, and post-harvest appeared to be more important than the original genotype for
the composition of garlic clove sulfur compounds [4,22,24]. Nevertheless, farmers in the
Vessalico area do not all rely on the same French producers of Messidor and Messidrôme,
and they do not all adopt the same agronomic practices regarding the cultivation, defense,
and harvest of the product. The aim of the present study was then to identify which
farms produce a garlic product different from the two French cultivars, and which can
therefore be designated as true “Vessalico garlic”. NMR metabolite profiling is currently
used for the unbiased assessment of changes in the presence and relative abundance of
small molecules in response to genetic and/or environmental factors [25,26]. In our study,
a harvesting campaign involving the main seventeen farms that produce Vessalico garlic,
located in the area of production of this ecotype, was performed, and NMR spectroscopy
combined with multivariate data analysis were used to characterize the Vessalico garlic
metabolites [27–29] and select a representative compound as a potential chemical marker
to identify the Vessalico garlic from the two French parent cultivars.

In recent years, the use of natural products in sustainable agriculture has gained
considerable attention to reduce reliance on synthetic inputs and promote environmentally
friendly farming practices [30,31]. Natural products offer a range of benefits for crop
production while minimizing adverse impacts on the ecosystem [32,33]. Xanthomonas
campestris pv. campestris (Pam.) Dowson (Xcc) is one of the most widespread members
of the Xanthomonas group of phytopathogens. This Gram-negative bacterium causes
a devastating plant disease known as black rot and it represents a serious problem in
agricultural production of Brassicaceae plants worldwide [34]. Black rot is a systemic
vascular disease and the seedborne infection may kill young plants in the seedbed [34–37].
At present, the existing methods for X. campestris control rely on the use of pathogen-free
seeds obtained following elimination of infection arising from seeds; however, no treatment
has proven to be entirely foolproof [38]. Previous studies have reported the use of plant
natural compounds, essential oils, and extracts active on X. campestris pv. campestris [39–42].
Garlic extract has been indicated as a valuable resource for organic agriculture owing to
its numerous benefits in pest and disease management, soil enrichment, and plant growth
promotion [43]. It has been used also for bactericidal and fungicidal activity [24,44,45].
Moreover, garlic extract is currently recognized as an active substance authorized for all
purposes for use in organic farming and included in European regulations [46–50]. Thereby,
to find new possibilities for the use of the garlic production waste and residues from the
sales of marketed bulbs, Vessalico garlic extract was investigated as a possible agrochemical
acting against X. campestris pv. Campestris.

2. Results

2.1. 1H-NMR Compound Identification

The 1H-NMR spectrum of a representative garlic accession (accession 12, Table S1,
Supplementary Materials) is reported in Figure 1, containing as insets the high field
and downfield regions (A, B, C, D). The spectral resonances were assigned based on
the Chenomx 600 MHz library (CL) and custom library (CCL). A combination of NMR
spectra (Figures S1–S4, Supplementary Materials), along with comparison with the pub-
lished data (Table S2, Supplementary Materials), were then used to confirm metabolite
identification. The spectrum showed signals belonging to carbohydrates, organic acids,
amino acids, organosulfur compounds, and other metabolites (Table S2, Supplementary
Materials). The high field region from 0.50 ppm to 3.50 ppm showed a signal arising
from aliphatic groups of amino acids (leucine, isoleucine, valine, threonine, alanine, ly-
sine, homoserine, glutamine, glutamate, aspartic acid, asparagine, arginine), organic acids
(acetic, pyruvic, succinic, and citric), and other metabolites (acetamide, succinylacetone,
riboflavin, choline). The singlets at δH 2.17 and 2.83 were selected as characteristic of S-
methyl-L-cysteine and methiin, respectively. The middle field region (δH 3.50–5.60) showed
a signal arising from the carbohydrates (fructose, xylose, α-glucose, and sucrose), some-
times strongly overlapping with the amino acid peaks (cystine, proline, glycine, methionine,
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serine, pyroglutamate), the organic acids derived from carbohydrates (gluconic and lactic
acid), and the methyl moiety of trigonelline. The signals, owing to the anomeric protons of
sugars, were clearly visible. The downfield region exhibited the weakest signals, arising
from fumaric acid, aromatic resonances of amino acids (phenylalanine), and heterocyclic
compounds (histidine, trigonelline). Allyl groups of organosulfur compounds (S-allyl-L-
cysteine, L-alliin, allicin) were also shown in this region. The following components have
been described as characteristic of garlic thermal processing: pyroglutamic acid, acetic acid,
and succinic acid, and their presence could be related to sample preparation [51].
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Figure 1. Representative 1H-NMR spectrum of the Vessalico garlic (accession 12, Table S1, Supplemen-
tary Materials) in CD3OD-KH2PO4 in D2O at pH 6.0, 600 MHz. The spectrum was scaled to internal
1 mM deuterated sodium 3-(trimethylsilyl)-1-propionic acid (TSP), assumed to resonate at 0.00 ppm.
The region δH 0.0–7.5 was expanded in (A), (B), (C) and (D), respectively. Identified resonances
are labeled according to Table S2 (Supplementary Materials): CCL1: S-methyl-L-cysteine, CCL2:
methiin, CCL3: S-allyl-L-cysteine, CCL4: L-alliin, CCL5: allicin, CL1: leucine, CL2: isoleucine, CL3:
valine, CL4: threonine, CL6: alanine, CL5: lysine, CL7: acetic acid, CL8: acetamide, CL9: homoserine,
CL10: glutamine, CL11: succinylacetone, CL12: glutamic acid, CL13: pyruvic acid, CL14: succinic
acid, CL15: riboflavin, CL16: citric acid, CL17: aspartic acid, CL18: asparagine, CL19: choline, CL20:
arginine, CL21: cystine, CL22: proline, CL23: glycine, CL24: gluconic acid, CL25: methionine, CL26:
serine, CL27: fructose; CL28: lactic acid, CL29: pyroglutamic acid, CL30: trigonelline, CL31: xylose,
CL32: α-glucose, CL33: sucrose, CL34: fumaric acid, CL35: histidine, CL36: phenylalanine.



Plants 2024, 13, 1170 4 of 21

2.2. Multivariate Data Analysis

The spectral data (Figure S5, Supplementary Materials) matrices of garlic accessions
produced by seventeen farms from the same geographical area (Vessalico, Valle Arroscia,
Imperia, Italy) as well as from the French cultivars of Messidrôme and Messidor were
considered. Exploratory multivariate analysis by Principal Component Analysis (PCA)
allowed to visualize the complex data structure in a few dimensions: the first four com-
ponents explained 91.9% of the data variance. The secondary metabolites were found to
be the variables with the maximum loadings. When considering the first two Principal
Components, the samples of Vessalico, Messidor, and Messidrôme appeared dispersed and
overlapped: three groups of significantly correlated variables were detected (Figure S6,
Supplementary Materials). However, the biplot on the second and fourth Principal Compo-
nents showed a better separation between Vessalico and French samples (Figure 2), with
Vessalico samples characterized, for example, by low content of methiin (CCL2) and high
content of S-methyl-L-cysteine (CCL1), S-allyl-L-cysteine (CCL3), and allicin (CCL5). Only
the Messidor samples appeared to be similar to the Vessalico accessions. A certain sepa-
ration among the different production locations and farms was also observed (Figure S7,
Supplementary Materials).
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Figure 2. Results of PCA. The biplot shows the scores of the 120 spectra and the loadings of the
41 variables (5 CCL and 36 CL metabolites, Chenomx 600 MHz library and custom library metabolites)
on Principal Components 2 and 4 (explaining 27.8% and 8.0% of the total variance, respectively):
• Vessalico; • Messidor; • Messidrôme. The ellipse represents the 95% confidence interval.

Data analysis by means of SOMs was then performed. The number of clusters was
assessed based on k-means algorithm joined to the Davies–Bouldin index (DBI) [52]. The
index allows to identify the most reliable number of clusters that corresponds to a minimum
value of DBI. SOMs related to CL and CCL metabolites reported two clusters (orange and
green) which included only Vessalico accessions. The dark blue cluster showed that
two French accession samples were mostly distributed toward the top part of the map.
Moreover, some Vessalico samples exhibited several replicates in the orange cluster (e.g.,
11, 12, 14), suggesting the possibility to find a homogeneous Vessalico product (Figure S8,
Supplementary Materials). The PC projection showed a certain separation of Vessalico
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samples from the French ones (Figure S9, Supplementary Materials). Methiin (CCL2)
and L-alliin (CCL4) were the most abundant organosulfur compounds, and gluconic acid
(CL24), methionine (CL25), serine (CL26), lactic acid (CL28), and pyroglutamic acid (CL29),
followed by fructose (CL27) and sucrose (CL33), were the prevalent compounds among the
other metabolites (Figure S10, Supplementary Materials).

Following these findings, the data analysis was repeated, with the CL and CCL metabo-
lites being considered separately, with the aim to better investigate the Vessalico ecotype. This
approach could provide more information in the search for a Vessalico biomarker.

SOMs results relative to the CL metabolites showed three clusters containing only Vessal-
ico garlic (pale yellow, yellow, green). No cluster was represented by only French accessions
(Figure S11, Supplementary Materials). Nevertheless, the PC projection showed no signi-
ficative distance of Vessalico accessions from the French ones (Figure S12, Supplementary
Materials). No significant differences among the relative content of CL compounds were
shown by the U-matrix, unless gluconic acid (CL24), methionine (CL25), serine (CL26), lactic
acid (CL28), and pyroglutamic acid (CL29), followed by fructose (CL27) and sucrose (CL33),
were the most representative in all the neurons. Trigonelline (CL30) was present in very low
amounts (Figure S13, Supplementary Materials). Based on these results, primary metabolites
appeared not to be crucial to select a farm producing a homogeneous “Vessalico garlic”.

SOMs related to CCL metabolites showed that the neurons were not specially char-
acterized by the relative high content of certain compounds. Among the seven clusters
reported as the best number of clusters (Figure 3A), the map clusterization results allowed
to define two clusters of the Vessalico ecotype. The blue and orange clusters (in the left
part of the map) were characterized by the sole presence of the selected ecotype with no
inclusion of any French samples. The yellow cluster was occupied by the French cultivars,
confirming their similarity. The top-right part of the map (green and dark green clusters)
was predominantly occupied by Vessalico accessions with three samples of Messidrôme
accession (19). Accession 18 (Messidor) was in the purple and light blue clusters on the right
part of the map. It exhibited great similarity with respect to various Vessalico accessions
(Figure 3B).
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The PC projection confirmed these observations, showing a clear separation between
Vessalico accessions and French cultivars (Figure 4A,B). The only Vessalico accession in-
cluded in the same cluster as French cultivars was the number 12 (Figure 3B). All the
replicates of this accessions were found in the orange cluster reported in Figure 4C, border-
ing only with samples from the Vessalico region, and no French accession. These results
allowed us to assume that the product of farm 12 was the only homogeneous product of
Vessalico garlic. Farm 14 was represented by five samples in the orange cluster with one
outlier. Farm 11 was characterized by three samples in the orange cluster and three in
the blue one. A relatively higher content of methiin (CCL2) and L-alliin (CCL4) could be
attributed to Vessalico accessions of the orange cluster, although no significant differences
were observed (Figures 4C and 5).
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metabolites) on map. (A) SOM output map with color code association. Similar colors have similar
characteristics; numbers correspond to hit numbers. The dimensions of the hexagons are related to
the distance between neurons (the greater the size, the greater the distance). (B) Principal component
projection of the map; (C) labelled SOM output map, for each neuron the corresponding accession
number (Table S1, Supplementary Materials) and number of replicates (in parentheses) are shown.

An Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) was applied
to a reduced data matrix containing only the typical Vessalico accessions, as obtained from
SOM analysis (accessions 11, 12, 14), together with the French accessions (accessions 18,
19, 20). This reduced two-class data matrix contained 18 spectra belonging to each of the
two categories (Vessalico and France). An OPLS-DA model with two components was
computed and validated, with R2(Y) = 0.859 and Q2(Y) = 0.764. This model allowed to
discriminate between the Vessalico ecotype and the French varieties (Figure 6), showing
high selectivity and specificity as confirmed by the misclassification matrix (94% of correct
classifications; 89% of correct predictions).

The OPLS-DA method was also used to select the most discriminant metabolites based
on values of VIP (Variable Influence on Projections) greater than 1. VIP variables for this
set of data are shown in Figure 7.
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ANOVA confirmed that all variables having VIP > 1 were significantly different
(p < 0.001) between the selected Vessalico garlic and French cultivars.

Finally, the model was implemented to predict the class of the remaining 84 samples
from Vessalico, not used for the computation of the model. Despite the small number of
samples in the training set with respect to the large number of test samples, the model
showed good performance, accepting 55% of the Vessalico samples.

2.3. S-Allyl-L-Cysteine Quantification

Among the most discriminant variables, sulfur compounds, which are mainly respon-
sible for the garlic aroma, were considered to find a simple way to distinguish between the
accession identified as representative of the Vessalico garlic (accession 12) and that identi-
fied as representative of the two French parent cultivars. S-allyl-L-cysteine was selected to
be quantified in the three extracts due to its stability compared to L-alliin and allicin, and
because it had an easily identifiable multiplet at 5.81 ppm (Figure 8). The quantification of
S-allyl-L-cysteine in the garlic extract was carried out through qNMR using a 1D-NOESY
sequence. Results showed that the S-allyl-L-cysteine content was 135.67 ± 2.18 µg/g in
fresh Vessalico garlic cloves, while it was present in negligible amounts in the parent
cultivars Messidor and Messidrôme.
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cysteine was used for the quantification.

2.4. Antibacterial Activity

The minimum bacterial concentrations (MICs) of the extract of accession 12 was
determined against two strains of Xanthomonas campestris pv. campestris by using the
diluting broth technique. Pure sulfur compounds (S-allyl-L-cysteine, S-methyl-L-cysteine,
L-alliin, allicin, and methiin) were also tested. Ampicillin and streptomycin sulphate were
included in the test as references for their activity on Gram-negative bacteria [53–58]. Allicin
proved to be the most active substance against both X. campestris pv. campestris strains, with
a MIC value of 31.25 µg/mL (Table 1). The crude extract was characterized by a MIC value
of 125 µg/mL, while S-allyl-L-cysteine, S-methyl-L-cysteine, L-alliin, and methiin showed
a MIC of 500 µg/mL against both strains. Ampicillin showed a MIC of 0.25 µg/mL against
strain 1 and a MIC value of 0.5 µg/mL against strain 2. Streptomycin sulphate showed a
value of MIC of 0.5 µg/mL against strain 1 and a MIC value of 1 µg/mL against strain 2.
The growth of X. campestris pv. campestris was visible in drug-free wells (control of growth)
and no growth was observed in wells containing non-inoculated sterile Mueller Hinton
Broth (MHB) medium as a blank control.

Table 1. Evaluation of the MICs of extract, pure compounds, and antibiotics against Xanthomonas
campestris pv. campestris.

Treatment

MIC

(µg/mL) µM

Strain 1 Strain 2 Strain 1 Strain 2

S-allyl-L-cysteine 500 500 3101.3 3101.3
S-methyl-L-cysteine 500 500 3698.77 3698.77

L-alliin 500 500 2821.35 2821.35
Methiin 500 500 3307.10 3307.10
Allicin 31.25 31.25 192.57 192.57

Crude extract 125 125 - -
Ampicillin 0.25 0.5 0.72 1.43

Streptomycin sulphate 0.5 1 0.34 0.69



Plants 2024, 13, 1170 10 of 21

3. Discussion

In this study, an NMR metabolite profiling technique was applied as a first approach
to identify which farm, among the main producers of garlic in the Vessalico area, produced
a product that could be referred to as true “Vessalico garlic” that differs and can be distin-
guished from the two French cultivars used for sowing. The main metabolites of garlic
include primary metabolites, such as amino acids and carbohydrates, as well as secondary
metabolites, such as organosulfur compounds, and more polar compounds of phenolic and
steroidal origin, often glycosylated [8,9,11,59]. Organosulfur compounds in intact garlic
cloves include about equal amounts of γ-glutamyl-peptides and S-alk(en)yl-L-cysteine
sulfoxides (ACSOs) [which include (+)-S-allyl-L-cysteine sulfoxide (L-alliin), (+)-S-(trans-
1-propenyl)-L-cysteine sulfoxide (isoalliin), (+)-S-methyl-L-cysteine sulfoxide (methiin),
and (1S,3R,5S)-3-carboxy-5-methyl-1,4-thiazane-1-oxide (cycloalliin)]. Intermediate com-
pounds in the biosynthesis of ACSOs from γ-glutamyl peptides are S-alk(en)yl-cysteines
such as (+)-S-allyl-L-cysteine (SAC), (+)-S-(trans-1-propenyl)-L-cysteine (SPC), and (+)-S-
methyl-L-cysteine (SMC). Alkyl alkanethiosulfinates such as S-allyl cysteine sulfoxide (allyl
2-propenethiosulfinate, allicin) and others are formed from the two main classes of sec-
ondary metabolites through enzyme reactions when the raw garlic is cut or crushed [4,9,60].
In our work, we selected five sulfur compounds that could be connected to the various
conditions in which garlic bulbs can be found after harvesting and storage [61,62]. Upon
crushing the garlic, Allicin abundance has been shown to amount to 60–90% of the total
thiosulfinates [11]. The relative content of S-alk(en)yl-L-cysteine sulfoxides (L-alliin and
methiin) in garlic is known to be affected by several genetic and environmental factors (e.g.,
climatic conditions, soil composition, irrigation, fertilization, harvest date, etc.) [63]. The
concentration of S-methyl-L-cysteine and S-allyl-L-cysteine is higher in aged garlic [64].

The preliminary findings obtained through explorative analysis by PCA did not
highlight a clear separation between the Vessalico garlic and the French varieties. The
results obtained by SOM on the profile of the only CL metabolites did not allow the
identification of a homogeneous Vessalico product by cluster distribution. However, SOMs
performed on the secondary metabolite data enabled the identification of a homogeneous
product belonging only to one cluster which was different from the parent cultivars: that
product was identified as true “Vessalico garlic”.

When the spectral data were submitted to supervised multivariate analysis by OPLS-
DA, a reliable class model was computed, allowing to highlight the high influence of the
variables able to discriminate between the Vessalico garlic and the parent French varieties.
According to VIP values, eight representative indicators were identified as characteristic
of the Vessalico garlic. The indicators included three sulfur compounds, amino acids,
and organic acids: S-allyl-L-cysteine (SAC), (±)-S-allyl-L-cysteine sulfoxide (L-alliin), allyl
2-propenethiosulfinate (allicin), methionine [65], serine [65], lactic acid (characteristic of
raw garlic [51]), gluconic acid [66,67], and pyroglutamic acid [51,68], produced by Mail-
lard reactions and characteristic of aged garlic or produced after thermal processing [51].
The largest VIP value was shown by (±)-S-allyl-L-cysteine sulfoxide (L-alliin), which is
generally considered to be a major factor in determining the quality of garlic [69]. The
harvest of garlic is conducted once a year. The garlic is then stored for up to 12 months
before being sold or consumed, and the content of sulfur compounds may vary consid-
erably depending on the period and method of storage [24,64]. L-alliin is a thermolabile
compound [70] because of its unstable sulfoxide bond. The literature data about changes
in the relative amount of L-alliin at different processing stages of cultivation and storage
are variable [24,69,71]. Nonetheless, it is described as one of the most degraded com-
pounds due to prolonged storage [62]. Allicin, one the most important biologically active
compounds found in crushed or homogenized garlic, is extremely unstable due to the
presence of a thiol group [72,73], and its half-life varies depending on the concentration and
temperature of the storage solvent [74]. S-allyl-L-cysteine is a very stable compound [75],
its content increasing during storage [62], as a result of the hydrolysis of γ-glutamyl-S-
allyl-L-cysteine (GSAC) by the γ-glutamyl transferase enzyme (γ-GTP, EC 2.3.2.2) [75],
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and unaffected during fermentation and packing steps, similarly to other organosulfur
compounds [62]. Thus, S-allyl-L-cysteine was selected as a representative metabolite. This
metabolite contributes heavily to the health benefits of garlic and it is well-documented
for its antioxidant, anti-apoptotic, anti-inflammatory, anti-obesity, cardioprotective, neu-
roprotective, and hepato-protective properties [76]. S-allyl-L-cysteine content in intact
garlic is in the range of 19.0–1736.3 µg/g (fresh weight) [75,77,78]. The concentration of
S-allyl-L-cysteine increases during storage at room temperature (950.0 µg/g) [62], and the
content in processed garlic, such as frozen and thawed garlic, pickled garlic, fermented
garlic extract, and black garlic is even higher, reaching values of 8021.2 µg/g [78–80]. In
the present study, the content of S-allyl-L-cysteine in the fresh cloves of the garlic accession
selected as representative of the Vessalico garlic was 135.67 ± 2.18 µg/g. Since the content
of this compound was almost undetectable in the French parent cultivars, S-allyl-L-cysteine
could be considered a possible chemical marker to distinguish the Vessalico ecotype from
the two French accessions.

Although NMR metabolite profiling is currently considered a reliable approach for
the assessment of presence and relative abundance of small molecules [27,29,81,82], genetic
information is, at present, the only method that provides a final validation with respect to
the description of plant ecotypes [83–86]. Further studies will be needed to explore genetic
information, thus providing a more comprehensive characterization of the Vessalico ecotype.

Agroecological pest management [87] is becoming increasingly important as part of a
sustainable agriculture vision that incorporates various approaches and areas [30]. The EU
bactericides are restricted to a few agents, and non-bactericidal antibiotics are no longer
approved [88,89]. In this scenario, the use of plant extracts as antimicrobials is becoming
more crucial [90]. Garlic and its bioactive components are well-known for their antimicro-
bial activity against phytopathogens [45,91], giving rise to the idea of a possible application
in biological and integrated pest management. Currently, there is no treatment for the
control of black rot caused by X. campestris. Consequently, the research of natural products
and plant extracts may identify new antimicrobial agents to control this bacterial disease.
X. campestris pv. campestris is the causal agent of black rot of brassicas and is currently
a significant problem affecting a large group of horticultural crops grown in the open
field. As previously mentioned, its primary spread occurs through the seed, but there are
currently no tanning agents available to address this type of problem. Furthermore, in the
field, it used to be contained with the use of copper [92] which is undergoing strong regula-
tion [93]. Previously, the use of copper was coupled with the use of dithiocarbamates [94],
whose usage is currently no longer allowed in the EU. Some brassicaceous species are
also included in the “baby leaf” category for which the use of synthetic products presents
strong limitations due to the application of very low residual limits. “Baby leaves” are also
one of the crops of choice in “vertical farming”, an emerging growing practice [95]. This
type of cultivation involves the exploitation of a confined environment where irrigation
water is continuously reused. The environment, therefore, is particularly conducive to
bacterial diseases and not very suitable for the application of copper-based compounds
often characterized by a marked phytotoxic effect. The present study investigated the
antimicrobial activity of garlic extract against X. campestris pv. campestris. Other plant
extracts have been tested against X. campestris pv. campestris, with MIC values ranging from
0.15 mg/mL to 1.25 mg/mL [96–98]. In this study, the MIC of garlic extracts against X.
campestris pv. campestris was 125 µg/mL, thus showing a good activity compared to other
extracts discussed in the literature. Allicin is recognized as the main compound responsible
for the antimicrobial activity of garlic [99–101], and its activity against X. campestris pv.
malvacearum [102] and X. campestris pv. campestris [45] (Zone of Inhibition Test) has been
explored. The MIC of allicin against X. campestris pv. campestris has been shown to be
lower than that of commercial copper-based products against X. campestris [103,104] and
lower than that of other natural products against X. campestris pv. vesicatoria (geraniol,
MIC = 250 µg/mL; thymol, MIC = 125 µg/mL; o-vanillin, MIC = 250 µg/mL) [105].
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4. Materials and Methods
4.1. General Experimental Procedures

Ultra-pure water and all organic solvents of analytical grade were purchased from
ROMIL-UpSTM (Waterbeach, Cambridge, UK). Deuterium oxide (D2O, 99.90% D), CD3OD
(99.95% D), and 3-(trimethylsilyl) propionic-2,2,3,3-d 4 acid sodium salt (TSP) were pur-
chased from the Sigma-Aldrich chemical company (Sigma-Aldrich, Milano, Italy). The
standard compounds chosen as representatives of their main class were S-allyl-L-cysteine, S-
methyl-L-cysteine, and (±)-L-alliin ≥ 90%, all of which were purchased from Merck KGaA
(Darmstadt, Germany), allicin, obtained from MedChemExpress (Monmouth Junction, NJ,
USA), and methiin, purchased from Abcam (Cambridge, UK).

4.2. Plant Material

Seventeen accessions of Allium sativum ecotypes (“Vessalico garlic”), grown under field
conditions in numerous farms located in six different areas of Valle Arroscia (Imperia, Italy),
along with three commercial accessions of the French cultivars Messidrôme and Messidor
(one of Messidrôme and two of Messidor, respectively, representing all commercial sources
from which farmers acquire their supply) were collected and authenticated based on
clove morphology (Table S1, Supplementary Materials). The identification of all the garlic
accessions was performed by Dr. Andrea Minuto [106,107]. The vouchers of all the
accessions were deposited at CERSAA (Albenga, Italy).

4.3. Sample Collection and Preparation

Harvesting took place in June 2023, when the garlic reached full ripeness, indicated by
the falling of the neck or the drying of leaves. The harvested garlic was then stored at cellar
temperature. The study was conducted during late autumn, replicating the conditions
in which commercial garlic is typically sold throughout the autumn and winter season.
A random selection of clove samples was conducted, and each individual undamaged
clove was meticulously peeled, frozen, and lyophilized in a freeze-dryer (Super Modulyo,
Edwards, UK) for 48 h. Three biological replicates for each accession were used, with a
total of 60 samples. All samples were sealed in plastic bags and stored dry in the dark until
analysis. The dried material (about 35 g per sample) was then ground.

The powder samples were prepared following the method reported by Tajidin et al. [108].
Briefly, 50 mg of each dried sample was extracted by vortexing (30 s) with 1.0 mL of
CD3OD (0.5 mL, 99.95%) and KH2PO4 (0.5 mL) buffer in D2O (pH 6.0) containing 0.1%
of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP) and then sonicated (30 min)
(Branson 2510E-MTH, Bransonic®, Milano, Italy) at room temperature. The clear deuterated
supernatant obtained after centrifuging (D3024 Microcentrifuge, Scilogex, Rocky Hill, CT,
USA) at 13 rpm for 10 min was transferred into NMR tubes. The extracts for the NMR quantifi-
cation and antimicrobial assays were prepared using 85 g of peeled and crushed cloves with
300 mL of CH3OH ≥ 99.9%/H2O 1:1 50:50 at 25 ◦C, then sonicated (VWR USC200TH, VWR
International, Leuven, Belgium) at a fixed frequency of 37 KHz for 30 min at room temperature.
The supernatant obtained was filtered and evaporated using a rotary evaporator. All the
procedures were carried out in a timely manner to avoid degradation of compounds [73,109].
The extract powders were then stored in a laboratory freezer (−20 ◦C).

4.4. NMR Spectroscopy and Processing

NMR data were acquired on a Bruker Ascend™ 600 NMR spectrometer (Bruker BioSpin
GmBH, Rheinstetten, Germany) equipped with a Bruker 5 mm TCI CryoProbe at 300 K,
operating at 600 MHz, with the temperature maintained at 27 ◦C, and H2O-d2 was used as an
internal lock. Each 1H NMR spectrum consisted of 64 scans, 2.05 s acquisition time, a relaxation
delay (RD) of 4 s, mixing time of 0.01 s, and a spectral width of 13.33 ppm (corresponding
to 8000 Hz). A pre-saturation sequence (NOESY-presat sequence, Bruker: noesygppr1d)
was used to suppress the residual signal of water [110–112]. A Chenomx 600 MHz custom
library (CCL) (Chenomx NMR Suite 8.6, Chenomx Inc., Edmonton, AB, 252 Canada) was
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set up by means of pure secondary metabolites obtained from commercial sources (Sigma-
Aldrich, Milano, Italy). The Chenomx Compound Builder tool was used. The CCL included
five standard compounds: S-methyl-L-cysteine (SMC) (CCL1), S-methyl-L-cysteine sulfoxide
(methiin) (CCL2), S-allyl-L-cysteine (SAC) (CCL3), (±)-S-allyl-L-cysteine sulfoxide (L-alliin)
(CCL4), and allyl 2-propenethiosulfinate (allicin) (CCL5). Additionally, 36 metabolites from
the Chenomx 600 MHz library, selected based on literature data [28,29,51,113,114], were used
(Table S2, Supplementary Materials). Each 1H NMR spectrum was acquired using the 1D. All
spectra were acquired in duplicates. The metabolites were identified based on the comparison
of their 1H NMR spectra to those of the reference compounds in both the custom and the
600 MHz version libraries (MSI level of identification according to Sumner et al.) [115].

4.5. NMR Data Analysis

NMR data were acquired on a Bruker. NMR spectra analysis and metabolite quan-
tification were then performed by using the online server NMRProcFlow (INRA UMR
1332 BFP, Bordeaux Metabolomics Facility, Villenave d’Ornon, France) [116] following the
method reported by Grimaldi et al. [117]. Briefly, corrections of phasing and baseline were
performed manually for all spectra using TOPSPIN version 3.2. All spectra were calibrated
by using the internal standard at 0 ppm. Spectral area integration was achieved by variable
sized bucketing using the online server NMRProcFlow. Buckets with a signal-to-noise ratio
above 3 were selected for further analysis. The residual solvent regions of water (δH 4.65–4.75)
were removed (Figure S5, Supplementary Materials). The data matrices generated by NM-
RProcFlow, one of five buckets (CCL compounds) and one of 36 buckets (CL compounds),
were then subjected to multivariate analysis. The metabolite identification was assessed by
comparison of their 1H NMR spectra to those of the Chenomx 600 MHz libraries.

4.6. Multivariate Data Analysis

Exploratory data analysis and an ANOVA were performed using the Systat software
for Windows Version 13 (Systat Software Inc., Chicago, IL, USA). A Principal Component
Analysis (PCA) was conducted on the spectral data after Pareto scaling.

Self-Organizing Maps (SOMs) were employed as an unsupervised model, utilizing
Matlab R2022a (MathWorks, Inc., Natick, MA, USA) and SOM Toolbox 2.1 [118]. SOMs
are characterized by their ability to organize and process information in a network-like
structure. To prepare the data for analysis, a series of pre-processing steps were undertaken.
First, the dataset underwent a log transformation, following the approach outlined by
van den Berg et al. [119]. This transformation was necessary to mitigate the dominance
of variables with higher ranges, as they could disproportionately influence the distances
within the map. Additionally, a variance-based normalization technique was applied to
ensure balanced representation of the variables. The SOM training process consisted of
two distinct phases: the rough phase and the refinement phase. In the rough phase, the
SOM was trained with a larger radius and learning rate, an approach which facilitated
a more extensive exploration of the data space. This phase also took into consideration
the influence of the most distant nodes, enabling a comprehensive representation of the
dataset. Following the rough phase, the refinement phase commenced, employing a
smaller radius and learning rate to fine-tune the SOM. This phase allowed for localized
adjustments, leading to convergence towards a final map representation. Upon completion
of the training process, the U-matrix was generated to visually depict the distances between
neighboring map units. The U-matrix facilitated cluster identification, with uniform areas
indicating distinct clusters and higher values highlighting cluster boundaries. In addition
to the U-matrix, other maps were generated to represent the component plan, focusing on
single compounds. Highly correlated variables exhibited similar map patterns, enabling
insights into the interrelationships among the variables. Hits, defined as the number
of times a map unit responded to inputs, were associated with specific units within the
map. Hits served as an indicator of the amount of input information collected by each
neuron, providing valuable information about the data distribution. The use of SOMs in
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this study established the framework for subsequent data analysis and interpretation. The
described steps ensured proper data pre-processing, effective training, and visualization of
the resulting SOM representation, setting the stage for a comprehensive understanding of
the underlying patterns within the dataset.

OPLS-DA [120] was used for discriminating the representative samples of the Vessalico
ecotype from the French cultivars, using a MATLAB toolbox called PLS_toolbox by Eigen-
vector. The OPLS-DA model was validated and used to predict the class of test samples (i.e.,
Vessalico accessions not used for computing the OPLS-DA model). The quality of the model
was evaluated in terms of R2 and Q2 and by means of misclassification matrices [121]. The
most characterizing metabolites were selected on the basis of the Variable Influence on
Projections (VIP values) of OPLS-DA.

4.7. S-Allyl-L-Cysteine Quantification

Among the characterizing metabolites, S-allyl-L-cysteine (CCL3) was selected as a
representative metabolite, owing to the presence of an isolated doublet at 5.81 ppm, and
then quantified in the Vessalico garlic (accession 12), Messidor, and Messidrôme extracts.
A calibration curve of SAC was made in a concentration range of 10–500 µg/mL. The
linearity of the instrumental response in the analyzed concentration range was confirmed,
as inferred by the following fitting curve parameters: y = 787,835, x − 6866.9, R2 = 0.9994.
The Limit of Detection (LOD) and the Limit of Quantification (LOQ) were determined
by serially diluting S-allyl-L-cysteine. The analysis was performed until the results of
signal-to-noise ratio (S/N) reached the values of 3:1 and 10:1. The obtained values of the
LOD and LOQ were 2.0 µg/mL and 8.0 µg/mL, respectively. All the data needed were
exported into a spreadsheet workbook using the “qHNMR” template.

4.8. Antibacterial Activity

Two strains of Xanthomonas campestris pv campestris obtained from the microbial collec-
tion of CeRSAA were employed in this study. The strains were previously isolated from
different symptomatic plant hosts (Brassica oleracea and Eruca vesicaria), identified by molec-
ular sequencing, and characterized according to the pathogenicity test (Koch postulates
confirmation) [122,123]. Sterile stock solutions in 80% dimethyl sulfoxide (DMSO) (Sigma
Aldrich, St. Louis, Missouri, USA) of the extract and pure compounds (S-allyl-L-cysteine, S-
methyl-L-cysteine, (±)-L-alliin, allicin, and methiin) (20 mg/mL) were prepared and stored
at −20 ◦C. Dilutions 1:10 of the six stock solutions were obtained using Mueller Hinton
Broth (Merck-Millipore, Burglinton, MA, USA). The concentration obtained (2000 µg/mL)
was, on two occasions, the highest test concentration, and 100 µL of each solution was
transferred in a well of the first column. Sterile stock solutions in 80% dimethyl sulfoxide
(DMSO) (Sigma Aldrich, St. Louis, MO, USA) of ampicillin (Sigma-Aldrich, Milano, Italy)
and streptomycin sulphate (VWR Life Science, Radnor, PA, USA) (0.64 mg/mL) were
prepared and stored at −20 ◦C. Dilutions 1:10 of the two antibiotics were obtained using
Mueller Hinton Broth. The concentration obtained (64 µg/mL) was, on two occasions,
the highest test concentration, and 100 µL of each solution was transferred in a well of
the first column. One-day-old bacteria cultures were diluted in Buffered Peptone Water
(VWR Life Science, Radnor, PA, USA) to obtain a bacterial suspension acclimated to 0.5 on
the McFarland scale. Microbial inoculums were then diluted to 1/150 in Mueller Hinton
Broth (Merck-Millipore, Burglinton, MA, USA) to obtain a final concentration of approxi-
mately 5 × 105 cells/mL. The MICs of extracts and pure compounds of S-allyl-L-cysteine,
S-methyl-L-cysteine, (±)-L-alliin, allicin, and methiin were determined by following the
microdilution procedure [124] reported by the Clinical and Laboratory Standards Insti-
tute [125] using Mueller Hinton Broth as the test medium. Briefly, 50 µL of inoculum
obtained as described above was added to equivalent volumes of various concentrations of
extracts and pure compounds of S-allyl-L-cysteine, S-methyl-L-cysteine, (±)-L-alliin, allicin,
and methiin, distributed across a 96-well microplate, and prepared from two-fold serial
dilutions ranging from 0.977 µg/mL to 1000 µg/mL. Simultaneously, the inoculum was
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added to equivalent volumes of ampicillin and streptomycin sulphate distributed across a
96-well microplate and prepared from two-fold serial dilutions ranging from 0.031 µg/mL
to 32 µg/mL. The activity of DMSO as a negative control was tested in the last row and it
ranged from 0.039 µL/m to 40 µL/mL. The last line contained five drug-free wells control
of growth, and three wells containing non-inoculated sterile Mueller Hinton Broth (MHB)
medium as a blank control. To avoid degradation of the compounds [73,109], all procedures
were executed in a timely manner, and the microplate and solutions were kept on ice during
all the working procedures until the following incubation step. After 24 h of incubation in
dark conditions at 35 ◦C, the lowest concentration of compounds preventing visible growth
was recorded as the MIC. All MICs were obtained in triplicates.

5. Conclusions

In conclusion, the comparative characterization of the Vessalico garlic, along with
the French cultivars Messidor and Messidrôme, offers a unique opportunity to explore
the intricate relationships between garlic ecotypes and their distinct regional adaptations.
The findings of this study hold significant implications for agricultural practices, culinary
traditions, and the preservation of cultural heritage, ultimately guiding future conservation
efforts and sustainable cultivation practices for these valuable garlic varieties. The NMR
metabolomic study, followed by multivariate data analysis, allowed to define the secondary
metabolites more related to the area and to the methods of cultivation and harvesting.
Moreover, accession 12 was identified as the only product of Vessalico different from the
two French parent cultivars. Among the secondary metabolites, S-allyl-L-cysteine could be
considered as the biomarker to identify the Vessalico garlic among the other French parent
cultivars. Future research to obtain genetic data, thereby offering a more comprehensive
characterization of the selected ecotype, will be performed.

Although the antimicrobial activity of garlic extracts and allicin is widely docu-
mented in the literature [45,126,127], no study on the evaluation of the MICs of pure
compounds of S-allyl-L-cysteine, S-methyl-L-cysteine, (±)-L-alliin, allicin, and methiin
against X. campestris pv. campestris through the dilution broth technique has been con-
ducted so far. The formation of allicin, the most active substance against X. campestris
pv. campestris, when alliinase cleaves alliin after the cell breaks, is the basis of its specific
role in plant defense mechanisms [128]. Given the impossibility of applying antibiotics
and synthetic products, as well as the progressive reduction of the legal limits allowed for
copper-based products and considering the low environmental impact of plant extracts
and pure compounds, the potential use of garlic extracts as well as allicin (in appropriate
formulations to avoid its degradation) in the control of infections caused by X. campestris
pv. campestris is currently of great interest and relevance. Our results suggest that garlic
extracts could be considered to control the bacterial disease caused by X. campestris pv.
campestris. Nonetheless, further studies in vivo on formulation and protection strategies
are needed for use in conventional and organic agriculture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13091170/s1, Figure S1: Representative 1H-NMR spectrum of
Vessalico garlic; Figure S2: Representative HSQC spectrum of Vessalico garlic; Figure S3: Representative
HMBC spectrum of Vessalico garlic; Figure S4: Representative COSY spectrum of Vessalico garlic;
Figure S5: 1H-NMR spectra of garlic accessions; Figure S6. Results of PCA. CL and CCL variables;
Figure S7: Results of PCA applied to garlic accessions from different locations and farms; Figure S8:
Results of SOMs. Map clusterization for CL and CCL variables; Figure S9: Results of SOMs. Graphical
representation of map for CL and CCL variables; Figure S10: Results of SOMs. U-matrix and maps
for each CL and CCL variables; Figure S11: Results of SOMs. Map clusterization for CL variables;
Figure S12: Results of SOMs. Graphical representation of map for CL variables; Figure S13: Results of
SOMs. U-matrix and maps for each CL variable; Table S1: List of garlic accessions used in the study;
Table S2: 1H NMR chemical shifts (δ) and coupling constants (Hz) of Chenomx 600 MHz library (CL)
and custom library (CCL) metabolites. (See Refs. [28,29,51,81,114,115,129–147]).
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