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Abstract: Autonomous drones offer immense potential in dynamic environments, but their navigation
systems often struggle with moving obstacles. This paper presents a novel approach for drone
trajectory planning in such scenarios, combining the Interactive Multiple Model (IMM) Kalman
filter with Proximal Policy Optimization (PPO) reinforcement learning (RL). The IMM Kalman filter
addresses state estimation challenges by modeling the potential motion patterns of moving objects.
This enables accurate prediction of future object positions, even in uncertain environments. The PPO
reinforcement learning algorithm then leverages these predictions to optimize the drone’s real-time
trajectory. Additionally, the capability of PPO to work with continuous action spaces makes it ideal
for the smooth control adjustments required for safe navigation. Our simulation results demonstrate
the effectiveness of this combined approach. The drone successfully navigates complex dynamic
environments, achieving collision avoidance and goal-oriented behavior. This work highlights the
potential of integrating advanced state estimation and reinforcement learning techniques to enhance
autonomous drone capabilities in unpredictable settings.

Keywords: autonomous drone navigation; dynamic environments; IMM Kalman filter; Proximal
Policy Optimization (PPO); reinforcement learning (RL); decision making

1. Introduction

Autonomous drones hold immense potential across various industries, with appli-
cations ranging from surveillance to delivery [1]. However, their effective operation in
dynamic environments poses significant challenges. Traditional path-planning methods, of-
ten designed for static settings, can become inadequate when objects and conditions change
unpredictably. Accurate state estimation of moving elements and adaptive path-planning
techniques are essential to tackle this.

State estimation involves determining objects’ positions and potentially other char-
acteristics (e.g., velocities) in the relevant environment. This information is crucial for
decision making of path planning but becomes complex when objects are in motion.

Traditionally, researchers have gravitated towards model-based control methods like
model predictive control (MPC), which capitalizes on known system dynamics and opti-
mization techniques for structured control. While MPC is proficient at leveraging precise
models for prediction and control, its effectiveness is hampered by the dual challenges
of requiring highly accurate models and undertaking computationally intensive online
trajectory optimization. In contrast, reinforcement learning (RL) excels at deriving complex
control policies directly from data, adapting to environmental changes and uncertainties
without needing explicit models.

Our approach combines RL’s adaptive learning capabilities with the Kalman filter’s
strength in estimating states in uncertain environments. We propose using a set of IMM
Kalman filters to estimate and predict the positions of target waypoints, in our context
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defined as the centers of gates. The Kalman filter supports real-time trajectory planning by
forecasting waypoint locations over variable time horizons. Subsequently, the Proximal
Policy Optimization (PPO) reinforcement learning (RL) algorithm uses the new enriched
observation space for optimal path planning in dynamic environments. RL enables drones
to learn through trial and error, maximizing rewards for desired behaviors like goal-
reaching and obstacle avoidance.

This hybrid methodology not only overcomes the limitations posed by reliance on
accurate models and computational bottlenecks but also enhances the agility of drones
by enabling more responsive and adaptive control strategies in real-time, unpredictable
scenarios. Additionally, in line with established robotics practices, our framework treats
navigation and perception as distinct problems. This decoupling offers several advantages.
Perception focuses on interpreting raw sensor data (such as images or lidar scans) to
identify objects and build an understanding of the environment. Conversely, navigation
leverages this perceived information to plan paths, control movement, and avoid obstacles.
By treating these as separate modules, we can develop specialized algorithms for each task.
This enhances modularity, allowing us to upgrade perception systems with better sensors
or algorithms without overhauling the navigation components. This facilitates isolated
testing and refinement of individual modules, leading to a more robust overall solution.

The schema reported in Figure 1 presents a novel approach for autonomous drone
navigation in dynamic environments. Our contribution includes successfully demon-
strating the Interactive Multiple Model (IMM) Kalman filter for accurate gate position
prediction over varying time horizons, enabling improved optimal path planning, success
rate, and convergence of the Proximal Policy Optimization (PPO) in a dynamic environ-
ment. Our results analysis validates the proposed framework, demonstrating the drone’s
ability to successfully navigate complex scenarios while achieving collision avoidance and
goal-oriented behavior.

Figure 1. Method Overview: (A) Agent Planning Algorithm: Our approach computes the actions
required by the agent, utilizing the observation space information. Learning is conducted in a
reinforcement learning framework using the Proximal Policy Optimization (PPO) algorithm, with
actions evaluated within the simulation environment. (B) Simulation Environment: Actions taken by
the agent generate trajectories, which are evaluated for validity and scored according to a reward
function based on inputs such as the agent’s position with respect to the dynamic gates of interest.
(C) Observation Space and Gate Estimation: The simulation environment also captures the state at
specific moments, enriching it with predictions from the IMM Kalman filter, which estimates the
future positions of the gates. This predictive capability informs decision making in step (A), guiding
the agent on the next actions to achieve the end goal of passing through all gates.

Related Works

Policy search is a crucial aspect of reinforcement learning, focusing on identifying the
optimal parametric policy that maximizes the expected return from sampled trajectories [2,3].
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This process is instrumental in effectively discovering how to generate actions to achieve
desired outcomes in various scenarios. Policy search methods diverge into two main
categories based on their approach to exploring stochastic trajectories: step-based and
episode-based methods [2,4].

Step-based methods introduce exploration noise at each control time step within the
action space, aiding in the stepwise generation of trajectories. These methods [5–9] are
especially prevalent in tasks requiring continuous control. They have been successfully
applied in diverse areas, such as enabling legged robots to learn agile motor skills [10] and
managing the control of a simulated race car to navigate at the edge of its friction limits [11].
The advantage of step-based algorithms lies in their ability to develop end-to-end black-box
control policies, facilitating a direct mapping from observations to control commands.

In contrast, episode-based policy search strategies [4,12–14] incorporate exploration
noise directly into the policy’s parameter space, but only at the start of each episode.
These methods excel in crafting movement primitives [15–18], which serve as succinct
parameterizations of a robot’s control policy. A notable example within this category is
the task-parameterized dynamic motor primitives (DMPs) [15], offering compact policy
frameworks that are highly adaptable. By fine-tuning the parameters of these models,
robots can rapidly acquire new skills and tackle complex control challenges across various
activities, including baseball [19], ball in the cup [20], and table tennis [21]. Episode-based
approaches are particularly practical in encapsulating complex skill representations that
would otherwise be challenging for human experts to model directly.

Proximal Policy Optimization (PPO) is primarily an episode-based policy search
method. PPO optimizes a policy by maximizing an objective function that compares the
new policy to an old policy, ensuring that the update is not too large, which helps maintain
stable training. While it operates over episodes, gathering experience over multiple steps
to update the policy, the distinctive aspect of PPO and similar policy optimization methods
is their focus on adjusting the policy parameters in a manner that improves performance
over entire episodes of interaction with the environment, rather than optimizing the policy
at every single time step based on immediate feedback.

Proximal Policy Optimization (PPO) algorithms, despite offering advantages in sta-
bility and ease of implementation, exhibit limitations related to the observation space.
PPO’s performance may degrade in real-world, non-static environments characterized by
significant shifts in the observation space. When faced with unanticipated observations,
the algorithm’s reliance on consistent state distributions between training and deployment
phases can lead to policy failures [22–24]. This sensitivity highlights the need for frequent
retraining or advanced observation strategies to enhance robustness in dynamic settings.

Our preferred strategy enhances the algorithm’s robustness through advanced ob-
servation strategies. This technique prepares the algorithm for a wide range of possible
observations, reducing the likelihood of encountering completely unfamiliar situations. By
integrating these advanced observation strategies, the goal is to develop a PPO algorithm
that maintains its performance advantages while being capable of handling the complexities
and unpredictability of real-world environments.

2. Methodology
2.1. Simulation Environment

Our research has led to the development of a unique simulation framework explicitly
tailored for drone path planning (Figure 1). The framework leverages the constructor
provided by OpenGym [25] to support the possibility of using this environment with
multiple reinforcement learning (RL) algorithms. This custom-designed environment,
built upon Python, offers a solution that significantly lowers computational demands
while perfectly fitting our specialized requirements. Unlike AirSim, which requires high-
performance system resources due to its computational intensity, our environment is
optimized for both efficiency and task relevance (Figure 2).
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Figure 2. Overview of the simulation environment and the movable gates. In the image, the gray
circle represents the object’s initial position, the black circle represents the final position, and the
dashed line depicts the path taken by the object’s center as it moves through three-dimensional space.

Our simulation environment is a three-dimensional drone navigation simulator intri-
cately designed from the ground up to allow for extensive customization [26]. It encap-
sulates a drone navigation game, where the primary objective is maneuvering through a
series of gates, thereby challenging the drone’s path-planning and navigation capabilities.
This environment is structured within a class that sets several critical parameters essential
for the simulation’s dynamics, including the drone’s starting position, the initial locations
of the gates, and the simulation space’s spatial dimensions, quantified by width, height,
and length (Table 1).

Table 1. Environment description. This table provides an overview of the environment’s dimensions
and significant areas.

Parameter Value

Maximum x Dimension [m] 10.0
Maximum y Dimension [m] 5.0
Maximum z Dimension [m] 3.0

Agent Spawn Area [m] (x, y, z) 1 (2.0, 5.0, 3.0)
End Episode Area [m] (x, y, z) 2 (9.5, 5.0, 3.0)

1 Area used to limit the agent spawn; 2 Area defining the successful end of an episode.

The framework introduces distinct scenarios [27], each designed within a continuous
state-action space, providing a variety of challenges that affect both the drone and the
gates’ behaviors. This tailored approach bridges the gap in existing simulation options and
enhances the precision and adaptability of drone path-planning algorithms by offering a
more realistic and flexible testing ground. It is possible to evaluate, for each time step, the
validity of the action taken by the agent to avoid shortcuts or non-realistic solutions to the
challenges we are interested in. An overview of how the simulation environment changes
state is reported in the section as part of Algorithm 1.

At the heart of our simulation’s flexibility and adaptability lies the precise definition
of the action space, which is crucial for implementing effective drone path-planning algo-
rithms. The action space, denoted as A, is formalized within the simulation framework
as follows:
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A =
{

a ∈ R3 | −1 ≤ ai ≤ 1, for i ∈ {x, y, z}
}

(1)

where a = (ax, ay, az) represents the vector of actions corresponding to the drone’s ve-
locity components along the x, y, and z axes, respectively. This continuous, bounded
three-dimensional action space enables the drone to execute a wide range of movements,
facilitating the exploration of diverse flight paths and maneuvers within the simulated
environment. Each action component ai is multiplied by the drone’s maximum transla-
tional speed per axis, transforming the sampled action into a realistic velocity value. This
multiplication not only allows for any continuous value of translational speed within the
specified limits but also allows further parameterization of the simulation. Furthermore,
the notation +1 and −1 within the action vector explicitly identifies the direction of the
movement along the respective axes, with +1 indicating movement in the positive direction
of the axis and −1 indicating movement in the negative direction. By allowing for the spec-
ification of speeds within a carefully defined range and incorporating directional control,
our environment ensures that the drone’s actions remain within realistic boundaries, thus
promoting the development of practical, efficient, and adaptable path-planning strategies.
Integrating such a mathematically and physically coherent action space within our simu-
lation framework enriches the realism of the drone navigation challenges. It significantly
enhances the applicability and effectiveness of the RL algorithms employed.

v = a⊙ vmax (2)

where:

• v represents the resulting velocity vector of the drone in R3;
• a = (ax, ay, az) is the action vector sampled from the action space A;
• ⊙ denotes the element-wise multiplication (Hadamard product);
• vmax = (vmax,x, vmax,y, vmax,z) is the vector of maximum translational speeds for each

axis;
• −1 ≤ ai ≤ 1 for i ∈ {x, y, z}, where +1 and−1 in a identify the direction of movement

along the respective axes, with +1 indicating movement in the positive direction of
the axis and −1 indicating movement in the negative direction.

Algorithm 1 Overview of the Algorithm that Operates the Environment

1: Input: r(s, a),S , Con f iguration = {}
2: Initial setting of the environment
3: while Not done with episodes do
4: Call Reset method
5: Randomly reset the coordinates of the gates: Ygates, Zgates
6: Initialize the observation space for the episode: s0 ∼ ρ(S)
7: Initialize the data collection for the episode: (s0, a0, r0)
8: Call Step method
9: while Not done with episode do

10: Collect of the observation space, action and reward: (si, ai, ri)
11: Check for collision or invalid actions
12: if Collisions or Terminate = True then Call Reset method
13: end if
14: Collect additional logs
15: end while
16: Update PPO Policy: ∆θ = arg maxθ E

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
17: end while
18: Output: Agent model and logs saved.
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Finally, the framework developed has two critical checks implemented to ensure
the drone (agent) navigates successfully within the simulation parameters: boundary
adherence and gate passage verification.

The first check, is_inside_boundaries, ensures the drone remains within the predefined
environmental limits. It evaluates if the drone’s current position, given by its x, y, and z
coordinates, does not exceed the environment’s maximum dimensions of the environment
assigned for a specific episode. This safeguard is essential for maintaining the simula-
tion’s integrity, preventing the drone from navigating outside the virtual space designed
for testing.

The second check, is_inside_gate, is designed to assess whether the drone successfully
navigates through a designated gate, a critical component of the navigation challenge.
This function identifies currently active gates and their positions. Gates are modeled as
cylinders, and the drone’s position relative to a gate’s axis and dimensions determines
whether it has successfully passed through. The function calculates the drone’s distance to
the gate’s axis and compares this with the gate’s radius to ascertain passage. Furthermore,
it considers the drone’s altitude in relation to the gate’s height and position, offering a
comprehensive check that accounts for the three-dimensional nature of the challenge.

Furthermore, it is important to note that the framework does not include a direct
check for flight mechanic feasibility, which is crucial for ensuring that the drone’s tra-
jectories are theoretically possible and practically executable. To address this, we have
introduced a trajectory analysis module. This module evaluates the smoothness of the
drone’s path [28]. It eliminates solutions that, despite being theoretically valid, would
not be feasible in a real-world scenario due to the drone’s physical limitations and flight
dynamics. This enhancement aims to bridge the gap between simulation and real-world
applicability, ensuring that the trajectories generated within our simulation are optimized
for computational efficiency and aligned with the drone’s flight capabilities.

Together, these functions form an essential part of the simulation environment, guiding
the simulation’s dynamics by ensuring that the drone operates within set boundaries and
successfully interacts with the gates as expected. Through these checks, the environment
offers a structured yet flexible platform for evaluating drone navigation algorithms under
realistic conditions.

2.2. Proximal Policy Optimization (PPO)

This section aims to demystify the core components of PPO, providing clear definitions
and explanations of its fundamental concepts and mathematical formulations. Moreover,
our research emphasizes the observation space’s significant yet often understated role
in shaping the performance of RL algorithms. Changes to the observation space can
profoundly impact the policy’s behavior, learning efficiency, and, ultimately, the agent’s
success in achieving its goals. By modifying the observation space, researchers can better
tailor the learning process to suit specific environments or tasks, opening new avenues
for optimizing and applying PPO in diverse domains. Thus, alongside clarifying the
algorithm’s terminology, this section highlights the influence of the observation space on
PPO’s functionality and the innovative potential within our work. This focus enriches
the reader’s comprehension of PPO and sets the stage for presenting our contributions to
advancing its application through observation space adjustments.

Proximal Policy Optimization (PPO) [22] represents a notable advancement in re-
inforcement learning, introducing a surrogate objective function that enables multiple
gradient steps using the same minibatch of experiences. This approach contrasts with
conventional on-policy strategies like Advantage Actor–Critic (A2C) [29], which require
discarding experience samples after a single optimization step. The surrogate objective
function of PPO assesses the new and old policies through a likelihood ratio, aiming to
maximize the expected return while ensuring policy updates remain within a predefined
trust region.
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A key feature of PPO is its clipped objective function, which is designed to regulate
the magnitude of policy updates. This mechanism prevents substantial changes after
each optimization step, promoting cautious and incremental updates. Such a strategy
mitigates the risk of performance degradation—a common issue in on-policy gradient
methods. Traditional policy gradient approaches are known for their sensitivity to minor
parameter space adjustments, which can significantly affect performance. This discrepancy
necessitates using small learning rates in policy gradient methods to manage high variance.
Clipped PPO addresses these challenges by constraining the objective function, ensuring
that policy modifications are within specific limits during training.

Furthermore, clipping can be extended to the value function, adopting a similar
principle: constraining changes in the parameter space to ensure that variations in Q-
values remain controlled and within a designated threshold. Consequently, this method
guarantees a stable evolution in the targeted metrics, irrespective of the smoothness of
changes in the parameter space.

The Proximal Policy Optimization (PPO) optimizes a policy function, πθ(a|s), parame-
terized by θ, which defines the probability of selecting action a given state s. The algorithm
aims to adjust θ to maximize expected returns from the environment, which are calculated
based on the rewards received for each action taken in a given state.

PPO introduces a novel approach to policy optimization by utilizing a clipped objective
function, ensuring smooth updates and preventing drastic policy changes. The updated
policy parameters, θnew, are obtained by optimizing the following objective function:

θnew = arg max
θ

LCLIP(θ), (3)

with LCLIP(θ) defined as

LCLIP(θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
. (4)

In this equation, rt(θ) =
πθ(at |st)

πθold
(at |st)

represents the probability ratio of the new to the old

policy for taking action at in state st. The term Ât is the advantage estimate at time t, and
ϵ is a small positive hyperparameter defining the clipping range. clip(rt(θ), 1− ϵ, 1 + ϵ):
This clipping function limits the value of rt(θ) to the range [1− ϵ, 1 + ϵ]. The parameter
ϵ is a hyperparameter that controls the degree to which the new policy can diverge from
the old policy. This clipping prevents overly large policy updates that could lead to
instability in the training process; finally, min(·, ·) is the minimum between the unclipped
and clipped objective. This ensures that the objective does not benefit from changes to the
probability ratio that would move it outside of the interval defined by [1− ϵ, 1 + ϵ], thereby
encouraging updates that improve the policy while maintaining a degree of similarity to
the old policy.

The advantage function, Ât = Qt − Vθ(st), is crucial for guiding the policy update
direction and magnitude. It calculates the relative benefit of taking action at in state st, with
Qt as the expected return and Vθ(st) as the expected return under the policy πθ for state
st. The advantage function is intrinsically linked to both reward and PPO optimization.
More specifically, the reward function expected return, Qt, is a function of the accumulated
rewards defined by the environment’s reward function. PPO also leverages Ât to update
the policy πθ . A positive Ât encourages the policy to increase the probability of at, while a
negative Ât discourages it.

The observation space plays a critical role in the formulation of PPO, as it influences the
calculation of πθ(a|s), Vθ(st), and consequently, Ât. Modifications to the observation space
can significantly impact the algorithm’s ability to accurately estimate these values, thereby
affecting the overall performance and effectiveness of the policy optimization process.
The observation space determines the information available to the agent, influencing
the scope of its decision making. The reward function then identifies what the agent
should strive for within that observable environment. Through continuous feedback, the
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agent learns to prioritize observations that lead to higher rewards, shaping its actions to
maximize long-term gains. In this specific work, the reward function uses the drone’s
newly acquired pose and the gate’s position to assess the value of the action taken. In this
work, IMM predictions form a crucial component of the observation space. The reward
function does not directly utilize the accuracy of IMM predictions in relation to the observed
gate position. Nevertheless, better alignment between the prediction and the true gate
location at the crossing time leads to a higher reward due to more actions being positively
evaluated. Moreover, accurate IMM predictions enable faster, smoother navigation toward
the gate, increasing the overall reward due to the temporal component of the reward
function. Additionally, improved IMM predictions help the drone maintain proximity
to the desired trajectory, further contributing to a higher reward. PPO can operate in
discrete and continuous action spaces, employing neural networks representing the policy
and value functions. These networks output probabilities for discrete action spaces or
parameters for probability distributions in continuous spaces.

To encourage exploration and mitigate premature convergence to suboptimal policies,
PPO incorporates an entropy bonus into its objective function:

L = LCLIP(θ) + c1LVF(θ)− c2S[πθ ](s), (5)

where LVF(θ) represents the value function loss, S[πθ ](s) the policy entropy for state s, and
c1 and c2 are coefficients for the value function loss and entropy bonus, respectively.

The training process, with the parameters reported in Table 2, in PPO alternates
between sampling data through environment interaction under the current policy and
optimizing the clipped objective function with respect to θ. This iterative process, involving
multiple minibatch update epochs, incrementally refines the policy parameters to achieve
better performance.

Table 2. PPO algorithm parameters used as part of the training of the agent.

Parameter Description Value

learning_rate Learning rate, can be a function 3× 10−4

n_steps Steps per environment per update 2048
batch_size Minibatch size 64
n_epochs Epochs when optimizing loss 10
gamma Discount factor 0.99

gae_lambda Trade-off bias/variance in GAE 0.95
clip_range Clipping parameter, can be a function 0.2

normalize_advantage Normalize advantage or not True
ent_coef Entropy coefficient 0.0
vf_coef Value function coefficient 0.5

max_grad_norm Max gradient norm for clipping 0.5
use_sde Use state-dependent exploration False

sde_sample_freq Sample frequency for gSDE noise matrix −1
stats_window_size Window size for rollout logging 100

2.3. Reward Function

The reward function plays a crucial role in guiding the learning process of the agent.
It essentially shapes the agent’s behavior by providing positive feedback for desirable
actions and negative feedback for undesirable ones. The reward function comprises several
components designed to encourage specific aspects of the agent’s behavior. A Gate Reward
is awarded when the agent successfully navigates through a gate, promoting goal-oriented
navigation. For encouraging efficient pathfinding, a Forward Movement Reward is given
when the agent moves forward towards the nearest gate, calculated via the dot product
of the movement vector and the gate vector. Completing the entire course is highly incen-
tivized with a Game Completion Reward. Conversely, the function imposes a Collision Penalty
for colliding with objects and a Time Penalty per time step, adjusted by the number of gates
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passed plus one, to discourage delays and inefficient paths. These components collectively
guide the agent towards achieving the task efficiently and effectively, underlining the
reward function’s importance in the PPO algorithm.

R = Ag · Gc + M · G f + C · Gcomp + T · Pc + Pt · Ng (6)

where:

• Gc = 25.0 is the reward for passing through an active gate.
• G f = 0.5 is the reward for moving towards the nearest gate in the forward direction.
• Gcomp = 100.0 is awarded upon completing the course, i.e., passing all gates.
• Pc = −100.0 is the penalty for colliding with obstacles.
• Pt = −0.65 is the time penalty applied at each time step, scaled by Ng, the count of

gates passed plus one.
• Ag indicates whether an active gate was passed (1 if true, 0 otherwise).
• M is the condition for forward movement reward (1 if the movement vector aligns with

the gate vector and the distance to the center of the gate is appropriate, 0 otherwise).
• T indicates whether the agent has collided (1 if true, 0 otherwise).
• C indicates whether all gates have been passed (1 if true, 0 otherwise).

This formulation strategically integrates incentives for goal-directed behavior and
penalties for inefficient or incorrect actions, guiding the agent’s learning in complex envi-
ronments (Figure 3).

Figure 3. Visualization of the reward function over time, showing non-linear penalty function,
reinforcing optimal path planning, and highlighting jumps from rewards per gate passed and
episode completion.

2.4. IMM Kalman and Representation of the Enriched Observation Space

In the context of reinforcement learning, specifically within Proximal Policy Opti-
mization (PPO), the composition of the observation space is critical for enabling the agent
to make informed decisions. This paper outlines a cohesive approach to integrating the
IMM Kalman filter predictions into the observation space of a PPO framework, thereby
enhancing the decision-making process. The Interactive Multiple Model (IMM) Kalman
filter represents an advancement in state estimation for systems exhibiting multiple dy-
namic behaviors. The following discussion assumes familiarity with the basic principles of
Kalman filtering, focusing on how the IMM Kalman was used to enrich the observation
space of the RL simulation. Its foundational aspects and mathematical underpinnings are
thoroughly documented in references [30–36].

We define the following components of the observation space in our PPO framework:

• Agent Pose (pagent): The coordinates and orientation of the agent for self-localization.
• Active Gate Pose (pgate): The position and orientation of the tracked gate, which the

agent aims to navigate through.
• Nearest Gate Distance (dgate): The spatial distance between the agent and the nearest

gate, guiding the agent towards its goal.
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• Average Agent Speed (vagent): Reflects the agent’s movement speed, crucial for
planning and trajectory estimation.

• Gate Velocity (vgate): Important for anticipating the motion of dynamic gates or targets.

The IMM Kalman filter enhances these observations by providing robust predictions
of future gate positions, even in the presence of noise and maneuvers. This allows the agent
to plan more effectively and achieve higher levels of navigation performance.

IMM efficiently combines the strengths of multiple Kalman filters, where each model
Mi that predicts the state x̂i(k) and covariance Pi(k) is tailored to a specific dynamic
behavior, thereby accommodating the non-linearities and mode switches that may occur in
complex systems. The IMM algorithm operates by computing a set of mode probabilities
that reflect the likelihood of each model being the correct representation of the system’s
current state. These probabilities are updated based on the observed data and the prediction
performance of each filter, resulting in a combined output that optimally predicts the gate’s
future position ˆ⃗pgate(t + ∆t).

M = {M1, M2, . . . , Mn} (7)

These models account for various motion dynamics, such as constant velocity and
acceleration. The critical components of the IMM Kalman filter include the mixing process,
model-specific filtering, and model probability update, encapsulated by the following steps:

1. Mixing Process: At the beginning of each time step, the state estimate and covariance
from the previous step are mixed across the models based on the model probabilities,
preparing a set of initial conditions for each filter.

2. Model-Specific Filtering: A Kalman filter prediction and update cycle is executed
using the mixed initial conditions for each model. This results in updated state
estimates and covariances for each model.

3. Model Probability Update: The likelihood of each observation given the model-
specific predictions is calculated; it is then used to update the probabilities of each
model being the correct representation of the system dynamics.

4. Combination: Finally, all models’ state estimates and covariances are combined
based on the updated model probabilities to produce the overall state estimate and
covariance.

In order to tailor the IMM Kalman filters to the problem, two distinct dynamic models
were employed. The first model prioritized stability by assuming a constant velocity motion
profile for the gate. Its state-space representation is as follows:

x(k + 1) = F1x(k) + w(k) (8)

where x(k) = [y, z, vy, vz]T , and w(k) represents the process noise so that the position
components of the state vector are updated with the following prediction equations:

y(k + 1) = y(k) + ∆t · vy(k) (9)

z(k + 1) = z(k) + ∆t · vz(k) (10)

The second model, designed for responsiveness, incorporated a constant acceleration
assumption:

x(k + 1) = F2x(k) + w(k) (11)

with x(k) = [y, z, vy, vz, ay, az]T , so that the prediction equations for the position compo-
nents in this model are
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y(k + 1) = y(k) + ∆t · vy(k) +
∆t2

2
· ay(k) (12)

z(k + 1) = z(k) + ∆t · vz(k) +
∆t2

2
· az(k) (13)

The IMM filter’s probabilistic framework switches between the two filter models (F1
and F2) based on the availability of relevant information. A transition probability matrix,
denoted by P, governs the likelihood of transitioning from one model to another at each time
step. This allows the filter to adapt to changing target dynamics. For instance, if the gate
exhibits a sudden change in velocity, the filter might transition from F1 (constant velocity)
to F2 (constant acceleration) to better capture this behavior. The transition probability
matrix between models is given below:

P =

[
p11 p12
p21 p22

]
(14)

where:

• pij represents the probability of transitioning from model Mi at time step k to model
Mj at time step k + 1.

• Common choices for the diagonal elements (p11 and p22) are values close to 1 (e.g., 0.9
or 0.95) to promote filter stability and persistence.

• The off-diagonal elements (p12 and p21) represent the probability of switching to the
other model. These values can be tuned based on the target’s expected frequency
of maneuvers.

More specifically, in the case of the use case presented in this manuscript, we design a
transition probability matrix with the following values:

P =

[
0.925 0.075
0.075 0.925

]
(15)

This configuration favors staying in the current model most of the time but allows for
switching to the other model when necessary, i.e., when the target changes direction. The
specific values chosen for the transition probabilities depend on your application and the
dynamics of the target you are tracking.

The methodology employed to enhance the observation space of the agent, reported
schematically as part of Algorithm 2, by the Interactive Multiple Model (IMM) Kalman
filter enables seamless adaptation to systems with multiple operational modes or when
the system dynamics are not precisely known in advance. This adaptability is crucial for
maintaining accuracy in operating environments that vary significantly. This behavior
is exemplified in Figure 4, which shows the observation of absolute error between the
simulated position of the simulated and the estimated position by the Kalman filter of
the center of the gate for a specific episode. Notably, the filter requires some observations
(approximately six) before it can predict the position of the relevant gate at the next crossing
time with an acceptable error margin of less than 5 percent. This initial inaccuracy is
attributed to a deliberately poor initialization of parameters intended to test the method’s
ability to adjust. Moreover, at each gate crossing, the target gate is dynamically relocated to
the next one, necessitating a reset in the filter. This reset forces the filter to adapt to the new
dynamics, demonstrating its ability to adjust to changing conditions swiftly.
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Algorithm 2 IMM Kalman Filter Integration for Gate Position Prediction

1: Input: Current observation space including agent’s pose p⃗agent, active gate’s pose p⃗gate,
nearest gate distance dnearest, agent’s average speed vagent, and gate’s velocity vgate.

2: Output: Updated observation space with predicted future gate pose p⃗gate,t.
3: procedure ESTIMATETIMETOGATE(dnearest, vagent)
4: tto gate ← dnearest

vagent

5: return round(tto gate)
6: end procedure
7: procedure IMMKALMANFILTERPREDICTION
8: Initialize model probabilities, transition probabilities, and model set
9: for Each model in the IMM set do

10: Predict the gate’s position using the Kalman filter prediction step
11: Calculate the likelihood of the observation given the predicted state
12: end for
13: Update model probabilities based on observations
14: Combine model predictions based on updated probabilities
15: return combined prediction and estimation of the gate position at crossing time as

p⃗gate,tcrossing

16: end procedure
17: procedure UPDATEOBSERVATIONSPACE
18: tto gate ← ESTIMATETIMETOGATE(dnearest, vagent)
19: p⃗gate,t
20: p⃗gate,tcrossing ← IMMKALMANFILTERPREDICTION

21: end procedure
22: UPDATEOBSERVATIONSPACE

Figure 4. Absolute observed error between the predicted and simulated gate’s center position at
the crossing time for a given episode is detailed. An increase in error is noted when the IMM filter
transitions to target the next gate. However, this error quickly reduces to below 5 percent, indicating
rapid adjustment and improved prediction accuracy post-transition.

The ability to quickly adjust to new operational modes and unpredicted changes in
system dynamics is key to achieving high levels of autonomy. It ensures that the system
remains resilient in the face of uncertainty, minimizing the impact of errors and enhancing
its overall performance. By effectively dealing with dynamic changes and uncertainties, the
IMM Kalman filter significantly contributes to the robustness and reliability of autonomous
systems, enabling them to operate efficiently in complex and ever-changing environments.

To formalize the implementation, let the enhanced observation vector at time step
(t) be represented as p⃗gate(t + ∆t), or p⃗gate,t in short, which includes the components
presented in the beginning of the paragraph along with the IMM Kalman filter predictions:
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s(t) =
[

p⃗agent, p⃗gate, dnearest, vagent, vgate, ˆ⃗pgate(t + ∆t)
]T

(16)

By incorporating IMM Kalman filter predictions into the PPO observation space, we
significantly enhance the agent’s ability to anticipate future environmental states, facilitat-
ing more effective decision making and planning. This integrated approach underscores the
importance of sophisticated state estimation techniques in developing intelligent, adaptable
reinforcement learning agents.

Finally, within this work we use the term pose specifically to refer to the spatial
coordinates and orientation of both the drone and the gates. Algorithm 2 operates under
the assumption that the drone knows the current position of the closest gate at each time
step. While we do not explicitly model target occlusion, the Kalman filter’s inherent
robustness allows it to manage short-term occlusions by treating them as potential outliers.

3. Experiments and Results

In our research, we design our experiments to assess the proposed framework’s
validity. We employ three main criteria to evaluate the performance of the PPO, elaborated
as follows:

1. Cumulative Reward: This metric measures the agent’s performance in its assigned
task, where superior scores indicate optimized actions towards fulfilling the objective.
This metric was beneficial during the tuning phase of the PPO algorithm when
comparing two different parametrizations of the same model. It cannot be used to
categorize the performances across episodes.

Rtotal =
T

∑
t=1

rt (17)

where:

• Rtotal represents the total cumulative reward obtained by the agent throughout
an episode.

• t is the time step within the episode, ranging from 1 to T.
• T denotes the terminal time step of the episode at which the episode ends.
• rt is the reward received at time step t, reflecting the immediate benefit of the

action taken by the agent at that step.

2. Average Reward per Action: Measures the quality of decisions, with higher values
indicating superior decision making, leading to higher rewards for each action.

Average Reward per Action =
Total Reward in an Episode
Total Actions in an Episode

(18)

3. Success Rate: Represents the ratio of episodes where the agent accomplishes its
objective, indicating the reliability of a model trained. This metric is also used to
analyze the test environments.

Success Rate =
Number of Successful Episodes

Total Episodes
(19)

Given the metrics described above, we guide the development and assessment of
the framework by dividing the results according to the performances in the two matrices:
success rate and average reward per action.

• High average reward and high success rate indicate optimal algorithm performance.
• Low average reward but high success rate suggest frequent goal accomplishment with

room for proficiency improvement.
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• High average reward but low success rate implies proficient actions but less frequent
goal accomplishment.

• Low average reward and low success rate indicate subpar algorithm performance.

These metrics comprehensively evaluate the effectiveness and efficiency of reinforce-
ment learning algorithms under study. Additionally, the matrices average reward per action
and success rate can be calculated to compare the framework presented with other ap-
proaches objectively. The results of the metrics described above and the nominal conditions
used are reported in Table 3.

Table 3. Nominal simulation parameters and results over the metrics defined above.

Parameter Value

Agent’s Max Translation Speed [x, y, z] (cm/s) [15.0, 10.0, 10.0]
Gates Speed (cm/s) 3.0

Success Rate (%) 87± 3.1
Average Reward per Action 11.60± 2.60

3.1. Flying Through Dynamic Gates

Facing the daunting challenges of generating realistic simulation environments for
autonomous navigation and defining training strategies for high-speed obstacle avoidance
and precision navigation through narrow gates, our study embarked on an innovative
approach. We crafted custom environments within a simulation framework, populating
them with gates moving according to various simulated patterns. At the core of our solution
is the sophisticated trajectory planning generated by the agent, coupled with the adaptive
observation space produced by the IMM Kalman filter. Our policies underwent rigorous
evaluation, demonstrating remarkable adaptability and robustness across unseen simulated
environments, thereby addressing the initial challenges and propelling our methodology
beyond existing paradigms for autonomous drone navigation.

The strategic creation of custom environments within the OpenAI Gym framework
facilitated rapid iterations of training and evaluation, which is critical for swift improve-
ments in reward systems and observation space definition. The training process, executed
over 300,000 steps—equivalent to approximately 6000 training episodes (Figure 5)—pro-
duced a model capable of generating actions that effectively respond to environmental
challenges. Following the training, we designed a rigorous testing protocol to assess policy
performance under various conditions, ensuring effectiveness beyond controlled simula-
tion settings. The test environments, fixed configurations distinct from the training phase,
(Figure 6) challenged the agent with unforeseen obstacles and scenarios, verifying the poli-
cies’ generalizability and ability to apply learned strategies in new contexts. The policies’
successful navigation and obstacle avoidance demonstrate their efficacy, validating the
training and development process and highlighting their significant potential for practical
autonomous navigation tasks.

As part of our testing protocol, we evaluated the agent’s trajectory across various
training episodes for a given model candidate. This analysis provided insights into pro-
gressive performance optimization, particularly in navigating through gates at increasing
speeds. With each additional training step, the trajectory became more refined, improving
both precision and velocity. Initially, the agent’s movements were tentative and indirect,
reflecting a cautious approach to navigating through gates. However, training progression
saw a marked shift towards efficiency and speed, with the agent adopting more direct
paths and demonstrating a clear increase in confidence. This evolution highlights the
effectiveness of our training regimen, not just in enabling the agent to learn and adapt over
time but also in optimizing its path for faster completion times, incentivized by the reward
function. The visualized trajectories in Figure 7 illustrate the agent’s development from a
cautious navigator to a proficient and swift operator, underscoring the value of continuous
learning and adaptation in achieving optimal performance.
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Figure 5. To evaluate learning efficiency and stability over numerous training steps, this figure reports
episode reward and episode length. Raw data (dots), rolling average (solid line, window of 10), and
standard deviation (shaded areas, blue and red for two series) provide detailed insights into trends
and variations in performance.

Figure 6. Three-dimensional trajectories of the drone’s navigation through the gates, with a color
gradient representing the throttle’s magnitude on the x-axis. This visual representation elucidates
the complex interplay between the drone’s velocity and its successful passage through the gates,
thus highlighting the simulation environment’s role in advancing navigational tactics. Altogether,
these visualizations provide a comprehensive overview of the drone’s behavioral dynamics and the
effectiveness of the path-planning algorithms within our custom-designed simulation framework.
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Figure 7. Visualization of the agent’s trajectory for different training steps, showing progressively
optimized and faster performance in flying through the gates with more training steps.

Furthermore, we provided a detailed view of the drone’s control strategy as it nav-
igated through episodes by investigating the action values across the episode steps for
the X (blue), Y (green), and Z (red) axes. These plots are crucial for understanding the
drone’s control dynamics, illustrating the strategic adjustments made for successful nav-
igation. A refinement in control strategy, as evidenced by fewer extremes in the action
values, suggests optimized efficiency and safety. By examining the changes in action values
across training episodes, we identified areas for further optimization and refinement. As
depicted in Figure 8, these action plots offer a window into the drone’s decision-making
process, providing a visual interpretation of its capability to execute complex trajectories
with increasing confidence and precision.

Figure 8. ‘Action plots over the episode’, which illustrates the normalized action values across the
episode steps for the X (blue), Y (green), and Z (red) axes, offering insights into the control strategy of
the drone’s trajectory during navigation. The values reported here are normalized between 1 and −1,
with 1 indicating movement in the positive direction of the axis and −1 indicating movement in the
negative direction.

3.2. Effect of the Drone and Gate Speed

The accompanying heatmap illustrates the intricate relationship between the observa-
tion space and the autonomous drone navigation system’s performance (Figure 9). This
visualization underscores the observation space’s pivotal role in facilitating the drone’s
adaptability and decision-making precision, especially under varying speed conditions for
both the drone and the gates. By examining the heatmap, we can observe how different
combinations of speed multipliers, represented along the x-axis for the drone and the y-axis
for the gates, impact the system’s success rates, with the darker green shades symbolizing
higher efficacy in navigation. Notably, success rates and their respective standard devia-
tions within each cell provide a nuanced understanding of the system’s robustness. Higher
speed multipliers correspond to a diverse range of success outcomes, highlighting the sys-
tem’s ability to maintain high performance across a spectrum of dynamic conditions. This
demonstrates the critical importance of a well-structured observation space in enhancing
the drone’s capability to navigate through moving gates. The heatmap, therefore, not only
illustrates the direct impact of speed variations on performance but also reinforces the
value of a comprehensive observation space in ensuring the adaptability and resilience of
autonomous navigation systems.
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Figure 9. This heatmap illustrates the impact of varying speed multipliers (to be applied to the
nominal condition) for the drone and gates on the success rate of an autonomous drone navigation
system. Each cell represents the success rate (as the main value) and its standard deviation (as
the small value with the ± sign), given a specific combination of gate and drone speed multipliers.
The drone’s speed multiplier is indicated along the x-axis, while the gate’s speed multiplier is on
the y-axis. Darker green shades signify higher success rates, indicating better performance under
those speed conditions. As the multipliers increase, indicating faster speeds, the success rates vary,
revealing how speed changes affect the drone’s ability to navigate through moving gates successfully.

4. Discussion and Conclusions

This study has presented a novel approach to autonomous drone navigation in dy-
namic environments, combining the strengths of Proximal Policy Optimization (PPO) with
the Interactive Multiple Model (IMM) Kalman filter for enhanced state estimation and
adaptive path planning. Our methodology demonstrates significant advancements in au-
tonomous drones, specifically in navigating through dynamically moving gates with high
precision and efficiency. The integration of IMM Kalman filters has proven particularly
effective in predicting gate positions, enabling the drone to make informed decisions well in
advance of approaching an obstacle. With its robust performance in complex environments,
the PPO algorithm has been optimized through our unique reward function and adaptive
observation space, showcasing the potential for real-world applications where dynamic
obstacle avoidance is critical.

Our approach distinguishes itself from existing methods by addressing the limitations
of traditional model-based control techniques and static path-planning algorithms. Unlike
model predictive control (MPC), which relies heavily on accurate models and suffers from
computational intensity, our RL-based framework adapts to environmental changes without
requiring explicit dynamics modeling. This adaptability offers a significant advantage in
scenarios where prior knowledge of the environment is limited or conditions can change
unpredictably. By enriching the observation space with predicted future states, our drones
can anticipate changes and adjust their path accordingly, a particularly beneficial feature
in dynamic environments. Our experiments’ results underline our proposed framework’s
effectiveness in enhancing autonomous drones’ agility and decision-making capabilities.
By successfully navigating through moving gates with high success rates and optimized
paths, we have demonstrated the practicality of our approach in scenarios similar to
real-world applications, such as search and rescue operations, surveillance, and delivery
services in urban environments. Looking forward, testing our framework in real-world
environments will be essential to validate its applicability outside simulation settings,
where we envision incorporating cameras for frame-by-frame gate detection or the use



Aerospace 2024, 11, 395 18 of 19

of external tracking systems, depending on the specific application scenario. Rigorous
testing in real-world environments with dynamic obstacles is crucial, emphasizing edge-
case analysis and uncertainty quantification to establish trust in decision making. Failure
mode analysis will ensure system resilience, especially in the context of perception of the
environment. Additionally, it is imperative to work within airspace regulations and focus
on explainability to bolster transparency for users and regulatory bodies.

In conclusion, this study provides a compelling framework for the hybrid PPO and
IMM Kalman filter approach. Our methodology overcomes traditional control methods’
computational and modeling challenges and opens new possibilities for deploying au-
tonomous drones in dynamically changing environments. The advancements demonstrated
in this work hold significant potential for a wide range of applications, marking a step
forward in the quest for fully autonomous, highly adaptive unmanned aerial vehicles.
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