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Abstract: The incorporation of distributed generation with photovoltaic systems entails a drawback
associated with intermittency in the generation capacity due to variations in the solar resource. In
general, this aspect limits the level of penetration that this resource can have without producing an
appreciable impact on the quality of the electrical supply. With the intention of reducing its inter-
mittency, this paper presents the characterization of a methodology for maximizing grid-connected
PV system operation under low-solar-radiation conditions. A new concept of a hybrid system based
on a constant current source and capable of integrating different sources into a conventional grid-
connected PV system is presented. Results of an experimental characterization of a low-voltage
grid–PV system connection with a DC/DC converter for constant-current source application are
shown in zero and non-zero radiation conditions. The results obtained demonstrate that the proposed
integration method works efficiently without causing appreciable effects on the parameters that
define the quality of the electrical supply. In this way, it is possible to efficiently incorporate another
source of energy, taking advantage of the characteristics of the GCPVS without further interventions
in the system. It is expected that this topology could help to integrate other generation and/or
storage technologies into already existing PV systems, opening a wide field of research in the PV
systems area.

Keywords: distributed generation; grid integration; hybrid system

1. Introduction

Grid-connected PV system (GCPVS) capacity, including both large utility-scale and
small distributed systems, accounts for two-thirds of this year’s projected increase in global
renewable capacity [1]. Nevertheless, a limitation in PV grid penetration appears because
of this power generation profile that follows irradiation along the day.

Many works focus on this topic. Ref. [2] showed a comprehensive literature review
on associated problems when the intermittent PV is connected, highlighting the voltage
and frequency fluctuations; Ref. [3] studied voltage variations in low-voltage distribution
networks due to rapid changes in photovoltaic power generation; Ref. [4] focuses on the
significance of peak demand reduction in optimizing grid-connected PV battery systems,
aiming to achieve a flatter profile; and ref. [5] studied the difficulty in achieving frequency
stability of PV systems.

To avoid these inconveniences, many solutions have been proposed: Ref. [6] presents
a comparison of several current grid codes for integrating PV systems and explores future
grid code amendments for maintaining power system secure operation; in [7–9], they
investigate the interaction between PV and other generation systems connected in an
output-common DC point. Also, they study models and test different DC-DC topologies;
Ref. [10] talks about the modeling and simulation of a hybrid grid-connected system,
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including renewable and storage sources. They propose eliminating the PV converter and
designing a grid-connected hybrid system, and ref. [11] proposes a voltage regulation
methodology based on active-reactive power management through PV inverters. Ref. [12]
finds that grid-forming control inverters may improve the frequency profile and terminal
voltage during disturbances, and refs. [13,14] propose to reduce the uncertainty of variable
renewable production with the forecast of solar energy. From an electrical power system
point of view, these solutions are generally used in large power systems, on a macro scale,
without considering distributed generation power at the residential–commercial user level.

Additionally, low power GCPVS without storage operates only when solar radiation
hits the PV module surface, and the rest of the time both modules and inverters rest.
Compared to another generation technology, in terms of utilization, PV seems to be an
under-used technology.

Regarding these issues, this paper presents an experimental characterization of a
methodology that maximizes grid-tied PV system operation under low-solar-radiation
conditions. These new techniques could help mitigate intermittency, contribute to self-
consumption [15], deploy distributed hybrid generation systems, and incorporate storage
technologies over existing PV systems in an easy way, taking advantage of the electrical PV
module characteristics.

From a topological point of view, different solutions have been addressed for this
matter [16,17], including the incorporation of multiple maximum power-point tracking
(MPPT) systems. These subsystems based on DC/DC converters generate a common
DC bus that feeds a power inverter stage. In general, in commercial inverters, this stage
is integrated at the factory. The proposed method allows its integration into existing
conventional GCPVSs with minimal intervention on the system through a parallel electrical
interconnection. Likewise, the proposed method can be extended to other photovoltaic
applications through the implementation of suitably designed current control schemes, for
example, in large photovoltaic systems used for water pumping where intermittency in
generation capacity can cause inconveniences in operation. They are also useful when it is
necessary to dynamically increase generation and or storage capacity in mini-grids that
incorporate conventional photovoltaic generation.

2. Principle of Operation

Standard grid-connected PV systems are composed of a PV array, grid-tied inverter,
and grid, as shown in Figure 1. For efficient operation, the GCPVS must inject the all-
electric energy available in PV array terminals. That depends directly on the irradiance and
temperature condition to which it is exposed.
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Figure 1. Grid-connected PV system block diagram.

A simple and accepted way to explain the PV array operation principle is through
the electrical-cell-equivalent-based, five-parameter mathematical model, presented in
Figure 2 [15,18]. The constant-current source (IPV) represents photo-generated current
and appears only in the presence of solar irradiation. The series resistor (RS) represents the
cell’s contact and internal resistance, and the parallel resistor (RP) has its origin in the cell’s
imperfections [19–21]. A PV array can be represented as an electrical series and parallel
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interconnection of cells whose equivalent model can be represented by the interconnection
of circuits like that presented in Figure 2.
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Figure 2. Electrical equivalent circuit for five-parameter mathematical model.

The value of the IPV depends mainly on the incident irradiance and is equal to zero in
dark conditions (no irradiation exposure).

Connecting an external constant-current source to a dark PV cell, as shown in Figure 3,
may produce similar behavior to that which it has under normal operating conditions
with the incidence of irradiance. The principal difference will lie in its relative location
concerning the series resistance.
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These phenomena repeat if a constant-current source is connected to a dark PV ar-
ray with the consequent variation in array open-circuit voltage (caused by the voltage
developed in RS).

If the PV array is a part of a GCPVS, this will cause the inverter to connect to the
grid and inject energy coming from the constant-current source. Figure 4 shows the
GCPVS diagram with a constant-current source. An isolated grid source could be another
generation and/or storage technology.
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Figure 4. System connection diagram with a constant-current source.

Another way to represent this concept is through dark and illuminated PV array
current vs. voltage (I-V) curve analysis, as it is shown in Figure 5. In dark conditions, the
I-V curve is similar to a conventional silicon diode array curve [22]. With irradiation, the
curve displaces to the fourth quadrant due to photo-generated current (IPV). If an external
constant-current source (IS) emulates photo-generated current, the I-V curve displacement
occurs, and the PV array has the same behavior as that for irradiated conditions.
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Figure 5. PV array current–voltage characteristics: (a) dark condition; (b) irradiated condition.

In this way, three possible scenarios could be presented:

(1) Only solar radiation produces photo-generated current (IP ̸= 0) on the PV array (the
same case presented in Figure 5b).

(2) Solar radiation produces photo-generated current (IPV ̸= 0) and the secondary genera-
tor injects constant current to the array too (IS ̸= 0). The new PV array short-circuit
current (ISC) is equal to the sum of IPV and IS (Figure 6a).

(3) No solar radiation over the PV array (IPV = 0), with only the secondary generator
injecting the constant current, IS ̸= 0 (Figure 6b).
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The main novelty of the proposed method is that the secondary generation source
can be incorporated in parallel to an operational conventional GCPVS through an efficient
V/I converter, without the need to add additional stages between the PV generator and
the inverter. This interconnection stage, which can be implemented through an AC/DC
converter in cascade with a DC/DC converter, must have the ability to control the injected
current so as not to exceed the design limits of the GCPVS. On the other hand, through
external energization of the photovoltaic generator, it is possible to take advantage of the
characteristics of the inverter to inject energy from another generation and/or storage
source into the grid. This hybridization mechanism makes it possible to take advantage of
periods of non-operation of the system and complement generation in the face of variations
in the solar resource, allowing action on the intermittency inherent in the GCPVS. In this
way, it is possible to improve the impact produced by the insertion of energy in the GCPVS
on the quality of the electrical service in distribution systems.

The next section presents a DC/DC converter current control-based development
used in an experimental setup for connecting a PV inverter to a grid with and without
radiation over the PV module surface, together with an external power source (an isolated
conventional grid was used).
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3. Tension-to-Current Source DC/DC Converter Development

A 450 W buck tension-to-current source DC/DC converter was designed and im-
plemented with 300 V (±20%) and 2 A maximum input voltage and current capabilities.
Figure 7 presents a block diagram for the selected topology. The converter was based on IC
TL494 [23,24], with a 33 kHz commutation frequency. The input and output filters were
designed following [25].
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Figure 7. DC/DC converter block diagram.

In Figure 7, a 0.1 Ω resistor (Rs) provides a voltage as a proportion of load current
for the TL494 feedback parameter. With this modification, the converter provides output
constant current over a 180–230 V output voltage range. A P-channel mosfet (Q1) was used
in the power switch stage driven by the driver IR2110 and the TL494 output.

Table 1 summarizes the converter capabilities and the repository (https://doi.org/10
.5281/zenodo.6799976) shows the schematic design of the DC/DC converter. To provide
AC input capabilities to the converter, an AC/DC rectifier bridge-filter-based converter
with a soft-start circuit was provided.

Table 1. Converter capabilities.

Parameter Value

Vo 180–230 V
Vi 300 V ± 20%
Io 2.5 A
Ii 2 A

Fsw 33 kHz
Vripple 0.1% Vo
Iripple 6% Io

4. Experimental Setup

The integration technique presented before was experimentally characterized in three
ways. First, a DC/DC conversion efficiency curve was acquired for different charge
conditions (different values of IS). Second, global efficiency was evaluated considering
absorbed energy at the DC/DC converter input vs. the active energy delivered to the AC
grid with a PV inverter in a GCPVS (SIRIO 1500 W inverter) for two scenarios, with and
without solar irradiance at the PV generator (illuminated and dark conditions). Third,
the quality of the energy delivered to the grid was characterized with and without the
DC/DC converter connection. Also, to take reference of the experimental results, the Sirio
1500 conversion efficiency was evaluated at GCPVS normal operation on a sunny day.
Figure 8 shows schematics for the experimental setups.

https://doi.org/10.5281/zenodo.6799976
https://doi.org/10.5281/zenodo.6799976
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In all cases, the inverter was connected to a series arrangement of 240 Wp PV modules
(Sunmodule SW240 Poly), and the adjusted conversion efficiency function [26] was obtained
and compared.

Both the DC/DC converter and the inverter for grid connection were developed, and
the system, with them operating together, was experimentally characterized based on the
efficiencies involved in different operating conditions. The experimental methodology
proposed for this is similar to that presented by [27–29].

4.1. AC and DC Measurement

For AC measurements, power analyzers were used with 3 s integration time, linear av-
eraging, and a 5.5 kHz cut-off frequency low-pass filter. DC measurements were performed
with high-accuracy voltmeters and ammeters. A class 0.5 shunt was used to measure AC
and DC current. Table 2 synthesizes the instrument’s accuracy.

Table 2. Instrument accuracy.

Instruments

Power Analyzer—Yokogawa WT500
Power accuracy 0.1% reading + 0.1% range

Frequency accuracy 0.1 mHz
Agilent 34410A based Class A Power Analyzer [30]

Power accuracy 0.87%
Frequency accuracy 2.5 mHz

FLUKE 289 and 0.5 class shunt
Voltage accuracy—500 VDC 0.03% + 2

Voltage accuracy—500 mVDC 0.025% + 2
Shunt Resistor—5A/150 mV 0.15 mΩ

To determine the uncertainties associated with the measured magnitudes, the instru-
mental accuracies presented in Table 2 were used. Below, and in Sections 4.2–4.4, the
equations used to determine efficiencies and the corresponding error analysis for each case
are described.

Measured average power can be calculated as follows:

Pavg =
1
T

∫
Piti =

1
T ∑ Ei (1)
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where Pavg is average power, Pi is active power measured at instant of time i, ti is integration
time (3 s), T is measurement period (10 min), and Ei is energy measured at instant of time i.

Error in time, defined in the instrumentation by zero-crossing time, is related to
frequency accuracy or period error:

∆t =
1
f 2
i

∆ f (2)

where ∆t is time error, fi is measured frequency, and ∆ f is frequency accuracy.
In this way, the error in power measurement can be expressed as:

∆Pavg =

∣∣∣∣∑ Ei
T2 ∆Tinst

∣∣∣∣+ |∆Pinst|+
∣∣∣∣∆tinst∑ Pi

T

∣∣∣∣ (3)

where ∆Pavg is average power error, ∆Tinst is period error, ∆Pinst is active power error, and
∆tinst is integration time error.

4.2. Inverter Characterization

The experimental setup was the same as shown in Figure 8b, without the DC/DC con-
verter connection. Input, output power, and output power factor were acquired using two
Fluke 289 multimeters at the inverter DC input and the Yokogawa WT500 at the inverter
AC output. The inverter was connected to a series arrangement of seven 240 Wp PV mod-
ules that were exposed to real sun during a sunny day (Corrientes, Argentina, 10 October
2022 from 5:50 to 14:25 h). To achieve the conversion efficiency curve, a measurement was
taken every five minutes.

Conversion efficiency was calculated with Equations (4) and (5).

ηinv =
PAC−Inv
PDC−Inv

(4)

∆ηinv =

∣∣∣∣ 1
PDC−Inv

∣∣∣∣∆PAC−Inv +

∣∣∣∣ PAC−Inv

PDC−Inv
2

∣∣∣∣∆PDC−Inv (5)

where ηinv is inverter efficiency, PAC−Inv is inverter output power, PDC−inv is inverter input
power, ∆ηinv is inverter efficiency error, ∆PAC−Inv is inverter output power error, and
∆PDC−Inv is inverter input power error.

4.3. DC/DC Converter Efficiency

For DC/DC converter efficiency evaluation, two experimental scenarios were pro-
vided. In the first place, six 240 Wp PV modules were connected in series at the Sirio
1500 input, and in the second place, seven PV modules were connected in order to provide
different maximum power-point voltage values during tests. Figure 8a shows the experi-
mental setup adopted. As was explained before in the text, the DC/DC converter has an
AC/DC converter stage (soft-start circuit–rectifier bridge–capacitive filter) that is helpful
when connecting the AC sources. In this study, an AC source was used at the developed
converter input (isolated grid) to evaluate overall efficiency. In this sense, the Yokogawa
WT500 was connected at the converter’s input and two Fluke 289s were connected at the
converter output. During the tests, the PV modules remained in the dark, and the energy
provided by the converter was delivered to the grid by the Sirio inverter. The converter
efficiency was calculated using the following:

ηS =
PDC−S
PAC−S

(6)

∆ηSource =

∣∣∣∣ 1
PAC−S

∣∣∣∣∆PDC−S +

∣∣∣∣ PDC−S

PAC−S
2

∣∣∣∣∆PAC−S (7)
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where ηS is converter efficiency, PAC−S is converter input power, PDC−S is converter output
power, ∆ηS is converter efficiency error, ∆PAC−S is converter input power error, and
∆PDC−S is converter output power error.

4.4. Global Efficiency at Dark and Illuminated Conditions

The experimental setup was the same as shown in Figure 8; two power analyzers were
required to characterize the developed converter input power and the Sirio 1500 output
power (the electrical signals are in AC at these points). Also, to acquire the DC power
delivered and/or received by the PV generator, two Fluke 289s were connected. One of
them measures the current delivered/received by the PV modules and the other measures
the PV voltage at the Sirio 1500 input.

First, a dark PV module condition test was performed for different DC/DC current
values. In this condition, the power provided by the converter flows to the PV modules
and the Sirio 1500 input. For the second test, the PV modules were exposed to the sun and,
in this case, power flows from the PV modules and the developed converter to the Sirio
1500 input. This test was performed for different currents (from the DC/DC converter) and
irradiance values. Irradiance was acquired with a Kipp and Zonen Pyranometer CMP10.
In all the cases, power values were calculated using (1).

Global efficiency and errors were calculated for the two PV module conditions:
Equations (8) and (9) for dark conditions and Equations (10) and (11) for illuminated
conditions.

ηGlobal =
PAC−Inv
PAC−S

(8)

∆ηGlobal =

∣∣∣∣ 1
PAC−S

∣∣∣∣∆PAC−Inv +

∣∣∣∣PAC−Inv

PAC−S
2

∣∣∣∣∆PAC−S (9)

ηGlobal =
PAC−Inv

PAC−S + PDC−FV
(10)

∆ηGlobal =

∣∣∣∣ 1
PAC−S + PDC−FV

∣∣∣∣∆PAC−Inv +

∣∣∣∣∣ PAC−Inv

(PAC−S + PDC−FV)
2

∣∣∣∣∣(∆PAC−S + ∆PDC−FV) (11)

where ηGlobal is global efficiency, PAC−Inv is inverter output power, PAC−S is converter input
power, ∆ηGlobal is global efficiency error, ∆PAC−Inv is inverter output power error, ∆PAC−S
is converter input power error, PDC−FV is PV power, and ∆PDC−FV is PV power error.

Harmonic distortion characterization was performed at the Sirio 1500 output, and the
Yokogawa WT500 was used for this test. The total harmonic distortion in the current (THDi)
and the total harmonic distortion in the voltage (THDv) were acquired. These values were
compared to that acquired when characterizing the GCPVS without developed converter
connections (reference test).

5. Results

This section presents the experimental results acquired in the performed tests. Firstly,
the Sirio 1500 characterization is shown. Secondly, the developed converter characterization
is presented. Thirdly, the global topology characterization results, with and without
irradiance (the dark condition), are shown, and finally, a graphic comparison between the
results is presented, including total harmonic distortion.

5.1. Inverter Characterization Results

Figure 9 shows the conversion efficiency curve as a function of the Sirio 1500 output
power. The maximum overall experimental error calculated using Equation (5) is 3%, and
the adjusted conversion efficiency function [21] is:

ηinv =
PAC−Inv

5.066 + 1.061PAC−Inv − 1.799 × 10−6PAC−Inv
2 (12)
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where ηinv is inverter efficiency, and PAC−Inv is inverter output power.
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Figure 10 shows the Sirio 1500 power factor vs. output power curve. These results
are useful to characterize the energy delivered to the grid as a function of the inverter
operating point.

Technologies 2024, 12, x FOR PEER REVIEW 9 of 16 
 

 

This section presents the experimental results acquired in the performed tests. Firstly, 
the Sirio 1500 characterization is shown. Secondly, the developed converter characteriza-
tion is presented. Thirdly, the global topology characterization results, with and without 
irradiance (the dark condition), are shown, and finally, a graphic comparison between the 
results is presented, including total harmonic distortion. 

5.1. Inverter Characterization Results 
Figure 9 shows the conversion efficiency curve as a function of the Sirio 1500 output 

power. The maximum overall experimental error calculated using Equation (5) is 3%, and 
the adjusted conversion efficiency function [21] is: 

𝜂 =  𝑃5.066 + 1.061𝑃 − 1.799 10 𝑃    (12)

where 𝜂  is inverter efficiency, and 𝑃  is inverter output power. 

 
Figure 9. Inverter conversion efficiency vs. output power curve. 

Figure 10 shows the Sirio 1500 power factor vs. output power curve. These results are 
useful to characterize the energy delivered to the grid as a function of the inverter operat-
ing point. 

 
Figure 10. Inverter output power factor vs. output power curve. 

With almost over 400 W of inverter output, the delivered energy power factor is 
around unity. Under that output power value, reactive energy is delivered to the grid by 
the Sirio 1500. This is a usual response for low-power inverters, as can be seen in [21,23]. 

5.2. DC/DC Converter Characterization Results 
To acquire an efficiency curve at different operating conditions, a DC/DC converter 

characterization was performed in two different experimental setups, one with seven PV 
modules connected in series and another with six. In both scenarios, efficiency vs. output 

Figure 10. Inverter output power factor vs. output power curve.

With almost over 400 W of inverter output, the delivered energy power factor is
around unity. Under that output power value, reactive energy is delivered to the grid by
the Sirio 1500. This is a usual response for low-power inverters, as can be seen in [21,23].

5.2. DC/DC Converter Characterization Results

To acquire an efficiency curve at different operating conditions, a DC/DC converter
characterization was performed in two different experimental setups, one with seven PV
modules connected in series and another with six. In both scenarios, efficiency vs. output
power was acquired (Figures 11 and 12). Applying Equation (7), the maximum error in
determining the efficiency of the developed source was 2%.

As can be seen in Figures 11 and 12, the efficiencies of the DC/DC converter for the
two different operating conditions are similar. Achieving high levels of efficiency, such as
those presented in this work, is common in DC/DC BUCK topologies [24,25].

Applying the system losses model [21] and using the MATLAB curve fitting tool, the
efficiency of the source for an array of six PV modules was determined as a function of the
output power:

ηSource =
PDC−S

6.728 + 0.9907PDC−S + 6.265 × 10−5PDC−S
2 (13)

where ηS is converter efficiency and PDC−S is converter output power.
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The efficiency as a function of the output power for an array of seven PV modules
connected in series was:

ηSource =
PDC−S

4.776 + 1.011PDC−S + 2.863 × 10−5PDC−S
2 (14)

By calculating Equations (13) and (14) for an output power range from 100 to 1000 W,
the efficiency curves for the two test conditions were obtained (Figure 13).
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The curves only represent approximations. In both cases, current source efficiencies
greater than 90% were obtained from 100 W output. Although these efficiency values
can be increased through the incorporation of more efficient electronic devices, they are
considered acceptable for the intended purpose [31].

5.3. Global Efficiency without PV Array Solar Exposure

Global efficiency for the system in the dark condition was obtained as a function of
the inverter output power (Figure 14) with a maximum error of 2%.
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Applying the system losses model [19] and using the MATLAB R2022a curve fitting
tool (cftool), the global efficiency was determined as a function of the output power.

ηGlobal =
PAC−Inv

21.63 + 1.133PAC−Inv + 1.159 × 10−5PAC−Inv
2 (15)

Considering the power at the PV array, a curve of dissipated power in the PV modules
was obtained as a function of the active power supplied to the developed current source
(Figure 15). The maximum error in dissipated power was around 1%.
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A linear response is observed with a slope such that the panel consumption represents
approximately 5.5% of the power delivered to the current source.
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Assuming a constant fill factor (FF) in the panel arrangement and VMPP/VOC = K1
the current difference ∆I between the ISC and the IMPP is proportional to the FF, and hence
the linearity observed in Figure 15 is justified, as shown in (13).

PD = (ISC − IMPP)VMPP =

(
ISC − FF

K1
ISC

)
VMPP =

(
1 − FF

K1

)
VMPP ISC = (1 − FF

K1
)PAC−S (16)

FF =
VMPP IMPP

VOC ISC
(17)

where PD is array-dissipated power, PAC−S = VMPP ISC is converter input power, and K1 is
a constant.

5.4. Global Efficiency with Radiation Incidence over PV Array Surface

In this case, the global efficiency of the system under the illuminated condition
(Figure 16) with a maximum error of 2.7% is presented.
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In (15), the adjusted efficiency is shown with an R2 = 0.99.

ηGlobal =
70.18 + 0.9817PAC−Inv − 3.977 × 10−5PAC−Inv

2

89.66 + PAC−Inv
(18)

It is important to note that with irradiance and from 150 W of inverter output power,
the system’s overall efficiency is above 90%. It was possible to connect a second-generation
system to a GCPVS working at 15% of nominal inverter power without substantially
affecting its performance.

On the other hand, in this work, the current source allows manual control of the
output current, but it is evident at this point that, with the help of an appropriate electronic
power converter with current control capabilities, the IS from the constant-current source
can be regulated to compensate the IPV fluctuations due to the diary radiation profile. The
proposed architecture could mitigate the effects of intermittency.

5.5. Comparison of Results

This section presents a graphic comparison between the results obtained with the
photovoltaic generator exposed to solar radiation and in dark conditions. Figure 17 presents
the adjusted global efficiency with and without irradiance using (12) and (15). Figure 18
show the difference.
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Figure 18. Adjusted global efficiency difference.

It was observed that from 300 W output power, the global efficiency difference is less
than 10, and the trend for higher output power is 5.5%, which is the percentage of power
consumed by the panels with zero irradiance.

Finally, Figure 19 presents the total harmonic distortion with and without the current
source (with radiation incidence in both cases). A maximum difference in THDi of 1.3%
and a maximum difference in THDv of 0.3% were observed.
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• The main novelty of the proposed method is that it allows taking advantage of the
electrical characteristics of the photovoltaic modules to interconnect another energy
supply source in parallel with a GCPVS, without further intervention. In this way, the
grid-connected inverter injects energy regardless of whether solar radiation hits the
photovoltaic generator.

• A DC/DC converter for constant-current source application was developed for the
characterization of the current injection into a GCPVS.

• High overall yields were obtained experimentally, showing that the total harmonic
distortion with the current source connected is at the same level as the GCPVS without
the current source connected.

• These results show a preliminary validation of the proposed method of coupling a
secondary generation system to a GCPVS.

• The presented topology opens a wide field of research in the photovoltaic systems area.
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