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Abstract: Millions of people worldwide currently suffer from chronic kidney disease (CKD), requiring
kidney replacement therapy at the end stage. Endeavors to better understand CKD pathophysiology
from an omics perspective have revealed major molecular players in several sample sources. Focusing
on non-invasive sources, gut microbial communities appear to be disturbed in CKD, while numerous
human urinary peptides are also dysregulated. Nevertheless, studies often focus on isolated omics
techniques, thus potentially missing the complementary pathophysiological information that multi-
disciplinary approaches could provide. To this end, human urinary peptidome was analyzed and
integrated with clinical and fecal microbiome (16S sequencing) data collected from 110 Non-CKD
or CKD individuals (Early, Moderate, or Advanced CKD stage) that were not undergoing dialysis.
Participants were visualized in a three-dimensional space using different combinations of clinical and
molecular data. The most impactful clinical variables to discriminate patient groups in the reduced
dataspace were, among others, serum urea, haemoglobin, total blood protein, urinary albumin,
urinary erythrocytes, blood pressure, cholesterol measures, body mass index, Bristol stool score, and
smoking; relevant variables were also microbial taxa, including Roseburia, Butyricicoccus, Flavonifractor,
Burkholderiales, Holdemania, Synergistaceae, Enterorhabdus, and Senegalimassilia; urinary peptidome
fragments were predominantly derived from proteins of collagen origin; among the non-collagen
parental proteins were FXYD2, MGP, FGA, APOA1, and CD99. The urinary peptidome appeared to
capture substantial variation in the CKD context. Integrating clinical and molecular data contributed
to an improved cohort separation compared to clinical data alone, indicating, once again, the added
value of this combined information in clinical practice.

Keywords: chronic kidney disease; CE-MS; CKD; feces; microbiome; peptidome; urine

1. Introduction

Chronic kidney disease (CKD) progressively reduces kidney function in about one-
tenth of the global population [1]. The comorbidities [2] and associated high costs [3–5]
are evident in this condition. Standard clinical signs include consistent abnormalities in
terms of structure or clinical markers (estimated glomerular filtration rate (eGFR) and
albuminuria) for a minimum of three months [6]. Nevertheless, molecular changes may be
indicative of disease pathophysiology, even before the manifestation of standard clinical
signs. Determining the relevant molecular players might be crucial for shedding light on
the disease mechanism.
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Along these lines, clinical samples collected through non-invasive methods, such
as feces (microbiome) and urine (peptidome), seem promising for CKD research. Mi-
crobiota in the human gut [7] provide vital benefits to the host through their symbiotic
relationship [8]. In that context, the health consequences associated with a dysregulated
microbiota (‘dysbiosis’) may be well justified. Microbial changes have been identified to
occur not only during kidney failure [9], but also in the earlier stages of CKD [10]. At the
same time, the physiological disturbance in CKD extends to the proteome, which, with
its various proteoforms, is associated with the biological complexity and phenotype of
an individual. These pathophysiological changes can be reflected by aberrant protein
fragment profiles observed in urine [11], which have been linked, among others, to CKD
and CKD progression [12]. Along these lines, microbiome-based interventions, including
probiotics [13], prebiotics [14], and fecal microbiota transplantation [15], are investigated
for their effect on CKD, while urinary peptidome has also been part of a CKD clinical
trial [16].

Nevertheless, despite this promising cumulative literature, a relevant unified mul-
tidisciplinary approach in the CKD context has not been performed yet. Therefore, in
this study, the fecal microbiome [17] as well as the urinary peptidome (acquired by cap-
illary electrophoresis coupled to mass spectrometry (CE-MS [11])) were collected from
110 CKD and Non-CKD individuals. In addition to the omics data, a variety of clinical
information was compiled. The aim was to assess the capacity of each dataset (clinical
and/or omics data, solely or in combinations) in separating the cohort according to CKD
disease state (Non-CKD, Early, Moderate, Advanced). A series of preprocessing steps
enabled the implementation of both numeric and nominal variables in the analyses. Using
the different datasets, participants were clustered into four groups, and each time, the
respective clustering quality was evaluated. Last, the impact of each clinical and molecular
variable on the reduced dataspace was examined in an attempt to highlight the disease
pathophysiology further.

2. Materials and Methods
2.1. Study Population

This study was based on 110 Non-CKD and CKD individuals recruited at the Ghent
University Hospital [17]. In stages 1 to 5, there were, respectively, 12, 20, 40, 19, and 9 patients
with CKD, along with 10 Non-CKD-diagnosed individuals. The eGFR was calculated using
the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [18] and was
used to determine the participants’ CKD stage. Based on these stages, the cohort was grouped
into Non-CKD as well as Early (stages 1–2, eGFR ≥ 60 mL/min/1.73 m2), Moderate (stage
3, 30 mL/min/1.73 m2 ≤ eGFR < 60 mL/min/1.73 m2), and Advanced CKD (stages 4–5,
eGFR < 30 mL/min/1.73 m2). Medication data were expressed as a 2nd level (pharmaco-
logical or therapeutic subgroup) of the anatomical therapeutic chemical (ATC) classification
system [19].

Nevertheless, kidney function is generally found to be associated with, e.g., body
mass index (BMI), age, blood pressure, etc., and as such, in this cohort, the four dis-
ease state groups differed in their clinical characteristics (Table 1A). Nevertheless, such
differences may potentially impact the molecular profiles. That said, although fecal micro-
biome data were not available, the urinary peptidome data of a historical cohort were also
considered in an attempt to account for the impact of clinical confounders. That cohort
(n = 408) consisted of four equally numbered groups matched for the clinical variables
described in Table 1B, namely, age, BMI, sex, as well as systolic and diastolic blood pres-
sure. The matched individuals were derived from already-published studies [16,20–36].
The requirements per group were the same as before, with the exception of the Non-
CKD group (eGFR ≥ 90 mL/min/1.73 m2 and, if known, urinary albumin-to-creatinine
ratio (UACR) < 30 mg/g and absence of kidney disease) and the Early CKD group
(eGFR ≥ 60 mL/min/1.73 m2 and UACR ≥ 30 mg/g).
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Table 1. Original and matched historical cohort clinical characteristics.

Characteristics Non-CKD Early CKD Moderate
CKD

Advanced
CKD p-Value *

(A) Original cohort.

n 10 32 40 28

Age 41.5 (13.1) 52.1 (16.7) 63.6 (14.8) 68.9 (13.5) <0.001

BMI 22.4 (3.3) 25.7 (3.8) 27.8 (5.1) 27.1 (3.6) 0.004

eGFR 79.3 (19.0) 88.7 (22.5) 44.3 (9.7) 19.1 (6.6) <0.001

Systolic blood pressure 118.4 (27.9) 130.0 (16.0) 137.1 (19.1) 145.2 (21.7) 0.002

Diastolic blood pressure 70.3 (9.2) 79.8 (11.8) 79.9 (12.2) 79.1 (8.6) 0.121

Female 7 (70.0) 14 (43.8) 14 (35.0) 6 (21.4) 0.041

(B) Matched historical cohort.

n 102 102 102 102

Age 72.3 (4.2) 72.4 (8.8) 72.4 (8.0) 74.6 (7.9) 0.085

BMI 29.5 (6.0) 29.8 (5.9) 30.2 (5.7) 31.3 (6.6) 0.152

eGFR 96.6 (8.9) 79.6 (16.6) 45.4 (8.9) 22.9 (5.6) <0.001

Systolic blood pressure 138.8 (13.4) 142.8 (18.1) 139.9 (21.4) 139.8 (20.7) 0.469

Diastolic blood pressure 76.8 (8.2) 75.4 (9.6) 74.5 (12.6) 77.3 (10.8) 0.205

Female 35 (34.3) 35 (34.3) 32 (31.4) 29 (28.4) 0.774
In the table, n refers to the number of subjects per group. Available clinical information was used to calculate the
mean (SD) and number (percentage) for numeric and categorical variables, respectively. SD: standard deviation;
BMI: body mass index; eGFR: estimated glomerular filtration rate. * p-values are based on analysis of variance
(ANOVA).

Of note, regarding the original cohort, the mean eGFR of the Non-CKD group appeared
to be lower than that of the Early CKD group. This might be attributed, on the one hand, to
a few of the Non-CKD participants having an eGFR < 70 mL/min/1.73 m2, likely, at least
to a degree, related to age; and, on the other hand, to the fact that the Early CKD patients
were diagnosed considering additional characteristics on top of eGFR.

2.2. Data Acquisition and Evaluation

The fecal microbiome and (most of the) clinical data originated from Gryp et al.,
2021 [17], with the respective methods being described in the original publication. In the
context of the STRATEGY-CKD consortium, the human urinary peptidome was acquired
based on CE-MS [11] and is provided as Supplementary Table S1. A detailed technical
description has already been published in original articles, such as in [37]. In brief, the
urinary peptidome analysis was divided into three steps: sample preparation, CE-MS
measurement, and data evaluation. Initially, 700 µL thawed urine aliquots were mixed
with 700 µL of 2 M urea and 10 mM NH4OH containing 0.02% sodium dodecyl sulfate to
suppress protein interactions. Subsequently, peptides and small proteins with molecular
weight < 20 kDa were isolated with a Centrisart centrifugal filter device (Sartorius, Göt-
tingen, Germany). A PD 10 gel filtration column (GE Healthcare Bio Sciences, Uppsala,
Sweden) was utilized to clear away the urea, salts, and electrolytes from the obtained
filtrate. Then, lyophilization and storage at 4 ◦C until the time of the CE-MS measurement
followed, at which time samples were re-suspended in 10 µL HPLC-grade H2O. The CE
relied on a P/ACE MDQ system (Beckman Coulter, Fullerton, CA, USA) that was connected
to an electrospray ionization interface (Agilent Technologies, Palo Alto, CA, USA) with a
potential of −4.0 kV to −4.5 kV, which produced ions towards a MicrOTOF II MS (Bruker
Daltonics, Bremen, Germany) mass spectrometer. The running buffer consisted of 20%
acetonitrile (Sigma-Aldrich, Taufkirchen, Germany) in HPLC-grade water (Roth, Karlsruhe,
Germany) supplemented with 0.94% formic acid (Sigma-Aldrich). Sample injection volume
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into CE-MS was ~290 nL at 2 psi for 99 sec. Separation was performed at 35 ◦C, applying
+25 kV voltage at the injection (capillary) side for 30 min. At the same time, pressure was
applied at 0.1, 0.2, 0.3, and 0.4 psi for 1 min each, and lastly, at 0.5 psi for 30 min. The m/z
spectrum range was 250–2500 (accumulation: every 3 s for about 80 min). The raw MS data
evaluation was performed using MosaFinder software (version 1.4) [11]. Internal standards
were used to calibrate the mass [Da] and CE migration time [min] based on global and
local regression, respectively. In order to account for variation in sample concentration, an
intensity-normalization step was considered, utilizing 29 disease-independent peptides
(from housekeeping proteins) as internal standards. In that way, comparability across
different datasets was achieved.

2.3. Data Preprocessing

In this study, clinical variables were considered in the subsequent analyses. Variables
utilized in defining CKD stages, particularly those linked to the CKD-EPI formula [18],
such as eGFR, age, sex, and serum creatinine (or related variables like smoking period
and urinary creatinine), had been previously excluded to prevent potential bias. Only the
urinary peptides with known sequence information were considered for further analyses.
The microbial amplicon sequence variants (ASVs), obtained through 16S rRNA sequencing,
were merged (summed) based on the microbial taxa information. Subsequently, data
from both omics approaches were independently turned into sample proportions. Then,
several preprocessing steps were applied. Initially, predefined frequency thresholds were
set for each type of omics data. Specifically, a 30% frequency threshold was applied to
the urinary peptidome, while a more tolerant 15% was applied to the microbiome data,
given their high sparsity. Clinical variables were kept intact; triglycerides had the lowest
percentage of non-missing values (30.9%). Subsequently, any variable with near-zero
variance (percentage of unique values to total samples < 10% and ratio of most frequent
to second most frequent value > 19) was removed. Missing data were imputed based on
the k-nearest neighbor algorithm (clinical and microbiome variables; neighbors = 5) or the
respective minimum value (peptidome variables). Categorical variables were also encoded
into one or more binary columns. Then, the remaining data were normalized based on
the ordered quantile normalization transformation [38] (as an attempt to turn skewed
distributions into symmetric ones, potentially) and z-standardization (mean of zero and
standard deviation of one) methods. The remaining processed variables were then used
for the generation of datasets with the following information: (A) clinical, (B) microbiome,
(C) clinical and microbiome, (D) peptidome, (E) clinical and peptidome, (F) microbiome
and peptidome, and last, (G) clinical and microbiome and peptidome.

2.4. Dimensionality Reduction and Clustering

Each dataset was used as the basis for a partial least square (PLS) feature extraction.
Variables were collectively transformed into a reduced space of three new features (PLS
components). These transformed features were the product of maximizing, on the one hand,
the variation in the original variables and, on the other, the relationship between them and
the disease state variable (Early, Moderate, Advanced, or Non-CKD). In that way, the PLS
components allowed for visualizing the participants as single data points in the 3D space.
In an attempt to objectively assess how well these formations of participants were in line
with distinct disease states, clustering around k = 4 medoids [39] was applied to the reduced
dataspace. The contents of the generated clusters in terms of the disease state groups as
well as the corresponding silhouette values were investigated. Last, the association of
each variable with the reduced dataspace was assessed, with the rationale that the most
impactful variables may as well be connected with the disease pathophysiology.

2.5. Software

The data preprocessing and statistical analyses were based on R programming (R
version 4.3.3) [40], running on Ubuntu 22.04 computer software. In that context, the
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‘tidyverse’ collection of R packages (version 2.0.0) [41] as well as the ‘tidymodels’ package
(version 1.1.1) [42] based on its very detailed resources [43] were used, among others.
The PLS feature extraction was also performed using the ‘mixOmics’ package (version
6.24.0) [44]. The package ‘plotly’ (version 4.10.3) [45] was utilized for plotting the PLS
components in the 3D space. The ‘patchwork’ (version 1.1.3) [46] package was used to
illustrate the confusion matrices and clustering-related metrics in the same figure. The
clustering of the data around medoids with the respective silhouette values was performed
using the ‘cluster’ package (version 2.1.6) [47]. Matching was heavily based on the MatchIt
package (version 4.5.5) [48]. Reproducibility can be achieved using set.seed (2020) before
the relevant functions.

3. Results

In this study, clinical, fecal microbiome, and urinary peptidome data correspond-
ing to 110 CKD and Non-CKD individuals recruited at the Ghent University Hospital
were studied. After a series of preprocessing steps, the remaining normalized 52 clinical,
98 microbiome, and 812 peptidome variables were considered for further analysis. The
original cohort’s main clinical characteristics are described in Table 1A, while those of the
matched historical cohort, in Table 1B. The study design is illustrated in Figure 1.

Figure 1. Study design. Initially, the clinical data, along with the fecal microbiome (Gryp et al.,
2021) [17] and the human urinary peptidome (current study, acquired by CE-MS), were collected
from 110 Non-CKD and CKD individuals. The participants were recruited at the Ghent University
Hospital across all CKD stages, not on dialysis. For this study, 67 clinical variables, 211 summed ASVs
according to microbial taxa, and 5071 sequenced urinary peptides were considered for further analysis.
Predefined frequency and variance thresholds were applied. Missing values were imputed based
on the k-nearest neighbor algorithm (clinical and microbiome variables) as well as the respective
minimum value (peptidome variables). Subsequently, nominal variables were transformed to binary,
and the 962 variables that remained were normalized. Each time, these clinical and/or molecular
variables, alone or in combinations, were used as an input for a partial least square (PLS) feature
extraction using the disease state as the target variable. The three generated PLS components were
then used as the basis for k-medoids clustering (k = 4), and each time the capacity of each dataset for
producing clusters in line with the disease state was evaluated based on participant visualizations in
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the reduced dataspace, the cluster contents, and the corresponding silhouette values. Of note,
the urinary peptidome data of a historical, matched cohort (n = 408) from previously published
studies [16,20–36] were also used for exploring the participants’ positioning in the reduced dataspace.
ASVs: amplicon sequence variants; CE-MS: capillary electrophoresis coupled to mass spectrometry.

3.1. Cohort Visualizations in the 3D Space

The preprocessed variables of each dataset were transformed into three new features,
namely, PLS components, and these were then used to visualize the individuals as single
data points in low-dimensional space. In that way, the cohort’s formation based on disease
state was visually examined per dataset. These visualizations are provided in 3D format as
Supplementary Figure S1A–G.

Along these lines, shared patterns between the plots were demonstrated by our analy-
ses. First, the tendency for separation that was observed in the plots between the different
disease states was in line with the CKD group stage continuity, i.e., sequentially, Non-CKD,
Early, Moderate, and Advanced CKD. Further, the Non-CKD group was relatively more
distant and localized than the CKD groups. The microbiome plot per se was rather an
exception to these observations, with generally overlapping and dispersed groups. Note-
worthy is that, through the plots, several outlier individuals were positioned towards
disease state groups with major differences in eGFR.

At the same time, dataset-specific patterns also existed in our analyses. A substantial
overlap of the Moderate with both the Early and Advanced CKD groups was observed
in the clinical plot (Supplementary Figure S1A). In the microbiome plot, the groups gen-
erally displayed higher overlap as well as a more balanced dispersion (Supplementary
Figure S1B). Nevertheless, combining the clinical and microbiome datasets led to an im-
proved separation of the Non-CKD group and clearer borders between the Advanced
and the (still) overlapping Early and Moderate CKD groups (Supplementary Figure S1C).
Further, combining both the peptidome and microbiome datasets with the clinical dataset,
the overlap between the Early and Moderate CKD groups was almost diminished (Supple-
mentary Figure S1G). Collectively, the latter formation of participants was similar to the
one observed in plots generated using the peptidome alone or in combination with either
the clinical or the microbiome data (Supplementary Figure S1D–F).

3.2. Clustering

Each time, the PLS features were used as a basis for unsupervised clustering towards
four groups. The contents of the generated clusters were then investigated; the assignment
of just one disease state per cluster was considered ideal clustering, corresponding to a
dataset of maximum capacity for cohort separation. The silhouette values were determined
as an additional quality metric for the entire clustering procedure as well as per individual
cluster. The clustering results are described in Figure 2. Of note, cluster numbers are
independent between the different datasets.

Using the sole clinical dataset, cluster 1 contained mainly Non-CKD and Early CKD
individuals, cluster 2 Moderate and Early CKD patients, and cluster 4 predominantly
Advanced but also several Moderate CKD patients, while cluster 3 was a mixture of all
but the Non-CKD group (Figure 2A). Compared to the clinical dataset, the microbiome
dataset demonstrated highly mixed clusters (Figure 2B), while combining the clinical and
microbiome datasets increased cluster “purity” (Figure 2C). The clusters of the peptidome
dataset (Figure 2D) were more distinct compared to the microbiome, and the inclusion of
clinical (Figure 2E) or microbiome data (Figure 2F) slightly increased the cluster purity.
The clusters in the clinical and peptidome dataset were identical to those of the clinical,
microbiome, and peptidome dataset (Figure 2G) regarding the distribution of all but the
Moderate CKD group.
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Figure 2. Clustering results. (A–G) Concordance between cluster content and disease state indi-
cated by colors (green is low concordance and red is high concordance). Percentages refer to the
proportion of the different disease state groups that were assigned to each cluster. (H) Silhouette
values. Higher silhouette values indicate that members of the same clusters are well matched com-
pared to neighboring clusters, while lower values suggest relatively poor matches. CKD: chronic
kidney disease.

Considering the entire clustering, the silhouette values were in line with the results
above regarding cluster “purity” (Figure 2H). In detail, the silhouette value for the clus-
tering of the clinical dataset was 0.32, higher than that of the microbiome dataset (0.22).
Nevertheless, when the clinical and microbiome datasets were combined, the silhouette
value increased to 0.38. Peptidome clustering demonstrated a silhouette value of 0.37. This
value was further boosted by the inclusion of the clinical (0.39), microbiome (0.38), or both
datasets (0.40).

3.3. Variable Associations with the Transformed Dataspace

In an attempt to explore a potential link with disease pathophysiology, we explored
which variables appeared to have the largest impact on the transformed dataspace (Supple-
mentary Figure S2). The top 20 molecular variables per PLS component of the combined
clinical, microbiome, and peptidome datasets are quantitatively illustrated in Figure 3, with
the respective peptide sequence information being described in Supplementary Table S1.
For each dataset, the top-five variables per PLS component are described below. For the
clinical dataset, the top variables affecting this reduced space were serum urea, vitamins,
blood substitutes and perfusion solutions, antigout preparations, beta-blocking agents,
total blood protein, agents acting on the renin–angiotensin system, Bristol stool score,
sex hormones and modulators, haemoglobin, and urinary erythrocytes (106/L). For the
microbiome dataset, these were microbes from the taxa Roseburia, Bacteroidetes, Holdemania,
Ruminococcus2, Bacteria, Veillonella, Allisonella, Haemophilus, Adlercreutzia, Senegalimassilia,
Dialister, and Slackia. Combining the clinical and microbiome datasets, the following proved
to be the most impactful: serum urea, vitamins, blood substitutes and perfusion solutions,
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antigout preparations, Howardella, total blood protein, Oligosphaera, Anaerofustis, Cloacibacil-
lus, Enterorhabdus, drugs used in diabetes, Senegalimassilia, and Dorea. On the other hand,
the most impactful peptides were derived from parental proteins such as collagen alpha-1(I)
chain (COL1A1), collagen alpha-1(II) chain (COL2A1), collagen alpha-2(I) chain (COL1A2),
collagen alpha-1(XVI) chain (COL16A1), collagen alpha-1(III) chain (COL3A1), CD99 anti-
gen (CD99), keratin, type I cytoskeletal 10 (KRT10), and fibrinogen alpha chain (FGA).
When the clinical variables were added to the peptidome dataset, the most impactful
variables were related to serum urea, COL1A1, COL2A1, COL1A2, COL16A1, COL3A1,
CD99, FGA, and KRT10. When instead of the clinical dataset, the microbiome dataset
was combined with the peptidome dataset, then the largest impact on the dataspace was
observed from microbes and fragments from the taxa and parental proteins, respectively,
COL1A1, COL2A1, COL1A2, COL16A1, COL3A1, CD99, FGA, and Enterorhabdus. Combin-
ing all datasets, the list with the most impactful variables included serum urea, COL1A1,
COL2A1, COL1A2, COL16A1, COL3A1, CD99, and FGA.

Figure 3. Heatmap of the 20 most impactful molecular variables per PLS component regarding
the clinical, microbiome, and peptidome dataset. Variables of the urinary peptidome are labeled
with their parental protein name and corresponding amino acid position (peptide ID in parenthesis),
while those of the fecal microbiome are labeled using the relevant taxa information. Values (green:
low, red: high) belong to the preprocessed dataset right before the dimensionality reduction step.
The respective peptide sequences are described in Supplementary Table S1. CD99: CD99 antigen;
COL16A1: collagen alpha-1(XVI) chain; COL19A1: collagen alpha-1(XIX) chain; COL1A1: collagen
alpha-1(I) chain; COL1A2: collagen alpha-2(I) chain; COL2A1: collagen alpha-1(II) chain; COL3A1:
collagen alpha-1(III) chain; COL5A2: collagen alpha-2(V) chain; FGA: fibrinogen alpha chain; FXYD2:
sodium/potassium-transporting ATPase subunit gamma; KRT10: keratin, type I cytoskeletal 10;
MGP: matrix Gla protein.

3.4. Visualization of the Matched Participants in the 3D Space

To account for the impact of the clinical confounders, the urinary peptidome of a
historical cohort (n = 408) in which the four groups were equally numbered and matched
for the clinical characteristics presented in Table 1 was considered. The preprocessing part
of the presented pipeline was applied again, this time considering the same 812 peptides
that remained after applying the pipeline to the urinary peptidome of the original cohort
(n = 110). Following the PLS feature extraction, the matched participants were visualized in
the 3D space (Supplementary Figure S3) to explore whether members of the same disease
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state group would be proximally positioned. Along these lines, although a degree of overlap
was observed (predominantly regarding the Moderate CKD group), participants still
displayed formations similar to the ones displayed by the original cohort (Supplementary
Figure S1D).

4. Discussion

The human urinary peptidome and fecal microbiome, although promising, have not
yet been integrated to cluster individuals in the CKD context. In this study, we attempted,
for the first time, a multidisciplinary approach that involved clinical, fecal microbiome, and
urinary peptidome data in a cohort of 110 CKD and Non-CKD participants. Individuals
were grouped as Non-CKD or CKD, with the latter being labeled as Early, Moderate, and
Advanced based on eGFR values. The aim was to explore the capacity for cohort separation
and distinct cluster formation based on the aforementioned disease state groups. Along
these lines, direct comparisons were performed using these three datasets alone or in
combinations. Each time, participants were visualized as single data points in a 3D space,
and the observed disease state formations were assessed. Clustering was also applied,
inspecting the correspondent concordance between cluster content and disease states.
Lastly, the impact of each variable in the reduced dataspace was examined to determine
potential underlying connections with disease pathophysiology.

Several remarks can be made for the cohort visualizations in the 3D space (Supplemen-
tary Figure S1A–G) and the eGFR-based clustering results (Figure 2). To begin with, the
capacity of the fecal microbiome dataset for distinct cluster formation appeared lower than
that of the urinary peptidome dataset, the latter demonstrating superior cohort separation
along with higher cluster purity and silhouette values. Although both data sources are from
non-invasive sample collections and capable of captivating systemic/peripheral changes,
urine (in addition to being easier and more straightforward to obtain) is more proximal to
the kidney system, thus potentially better reflecting disease state. Further, regarding techni-
cal detection, peptides are considered more stable than RNA in terms of both temperature
and cleavage enzymes. On the other hand, the microbiome’s capacity was substantially
boosted by adding it to the clinical dataset, while this appeared to be enhanced to a lesser
degree in the case of the peptidome. This might be attributed to the numerous clinical
confounders of the microbiome [49]. Nevertheless, combining the clinical and microbiome
datasets did not diminish the overlap between the Moderate and Early CKD groups. On
the other hand, the presence of the peptidome improved the plots along these lines. This
observation, along with the fact that all plots generated by the peptidome (alone or in
combination with the other datasets) were similar, is indicative of the magnitude of the
variation that was captured by this omics dataset. Particularly, participant visualization in
the 3D space using solely the urinary peptidome was repeated using a historical cohort
almost four times larger than the original one,generated after matching for theseveral
main clinical confounders. Although separation in this matched and larger cohort was
still evident, it was less efficient than before (especially due to overlaps regarding the
Moderate CKD group). This potentially indicates that the key to maximum separation is
including clinical information along with molecular data. This should be further explored
in future work. Further, the disease state continuum and the distant and relatively localized
Non-CKD group (with the exception of the microbiome plot), as well as the fact that the 3D
plots, cluster purity, and silhouette values were generally in line, add additional validity to
our findings.

Another aspect that might require an in-depth investigation is the unconventional
position of some patients in these plots. For instance, in Supplementary Figure S1F (mi-
crobiome and peptidome), a patient (PLS1: +12.5, PLS2: −5.4, PLS3: +2.9) with Moderate
CKD and eGFR 33 mL/min/1.73 m2 is located towards the Advanced CKD formation,
presumably due to being near the latter group’s eGFR threshold. Nevertheless, it is not
apparently clear why that patient is almost antidiametric to another one (PLS1: −1.2, PLS2:
+11.2, PLS3: +2.9) of the same group, even though they have similar kidney function (eGFR
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30 mL/min/1.73 m2). Unexpected positioning examples regarding the Moderate CKD
group’s upper eGFR threshold can also be observed (e.g., patients PLS1: +11.4, PLS2: +0.1,
PLS3: +0.9 with eGFR 55 mL/min/1.73 m2; and PLS1: −9.6, PLS2: +8.1, PLS3: +3.9 with
eGFR 59 mL/min/1.73 m2). Interestingly, these relative positions are also maintained in
the respective combined clinical, microbiome, and peptidome plot (Supplementary Figure
S1G). This unexpected positioning could be attributed to potential similarities in molecular
profiles favoring the proximal positioning of participants who, nevertheless, display to
some degree differences in the eGFR. In the past, patients with similar kidney function
have been described as displaying differences in their molecular profiles [50]. Thus, it
should be further explored whether this positioning is an indication that the molecular
profile of an individual reflects an underlying disease property (e.g., risk of progression or
cardiovascular outcome) that could go undetected by the current gold clinical standards.
This would require to be studied in-depth in the future with close follow-up, after initially
examining how other factors such as a shared CKD aetiology, affect the positioning of
the participants.

As expected, among the most impactful clinical variables (Supplementary Figure S2A,C,E,G)
were serum urea and haemoglobin, urinary albumin, total blood protein and urinary erythrocytes,
as well as blood pressure and cholesterol measures, smoking, BMI, and Bristol stool score.
Included in this list are medications targeting hypertension, such as beta-blocking agents, calcium
channel blockers, and agents that act on the renin–angiotensin system. This inclusion is attributed
to the significance of effectively managing hypertension in CKD [51].

Several of the most impactful microbiota presented (Supplementary Figure S2B,C,F,G)
have also been highlighted in the CKD literature. For example, the genus Roseburia had
the lowest levels in the Advanced (stage 5) CKD patients [10]. In the same study, the
genus Flavonifractor had higher levels in CKD vs. Non-CKD individuals. In another study,
the CKD vs. Non-CKD group was found to be deprived of bacteria of the Burkholderiales
order [52]. The authors also described, within a linear discriminant analysis, an enrich-
ment of the genus Holdemania in CKD. Investigating IgAN, patients had lower levels of
microbiota belonging to the Synergistaceae family than Non-CKD participants [53]. Further,
the genus Enterorhabdus has been negatively correlated with IL-10 and IL-4 inflammation
factors [54], while the genus Butyricicoccus has been positively correlated with eGFR [55].
In a Mendelian randomization study, the genus Senegalimassilia was found relevant in the
context of CKD [56]. Further, a species of the genus Haemophilus displayed an increased
trend in CKD compared to Non-CKD participants [57]. Another example is the Veillonella
genus, which was present at different levels in a mixed Moderate/Advanced CKD group
vs. a Non-CKD group as well as an Early CKD group [58]. Several gut bacteria species
belonging to genera such as Roseburia, Butyricicoccus, or Ruminococcus have the potential
to produce short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate [59]. A
variety of these SCFAs have the capacity for receptor binding, thus having modulatory
potential in, e.g., inflammation and oxidative stress, autophagy, energy metabolism, and
immune pathways [60]. Despite the fact that a number of factors appear to influence
the gut microbiome [49], inevitably introducing variability, especially in several relatively
low-size studies in this relatively new field, a noteworthy common ground is the fact
that the CKD pathophysiological environment appears to impede the growth of beneficial
SCFA-producing microbiota, thus consequently depriving CKD patients of the blessings of
their metabolites.

The top 20 peptidome variables in all different datasets (Supplementary Figure S2D,E,F,G)
have been derived from 16 parental proteins. In more detail, these fragments originated from
collagen proteins, namely, COL1A1, COL2A1, COL3A1, COL16A1, collagen alpha-1(XIX)
chain (COL19A1), COL1A2, collagen alpha-2(IV) chain (COL4A2), and collagen alpha-2(V)
chain (COL5A2), but also from non-collagen proteins, including apolipoprotein A-I (APOA1),
CD99, cadherin-related family member 5 (CDHR5), FGA, sodium/potassium-transporting AT-
Pase subunit gamma (FXYD2), KRT10, vesicular integral-membrane protein VIP36 (LMAN2),
and matrix Gla protein (MGP). Nevertheless, it was from collagen that the majority of these
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peptides were derived. Collagen proteins are amongst the main components of the extracellu-
lar matrix, which is accumulated in the kidney during the fibrotic phenomenon [61], which
is a hallmark of CKD. Fragments from all of these proteins except CDHR were among the
significantly different findings when comparing a matched cohort of Early (stage 2) vs. mixed
Moderate/Advanced (stages 3b−5) CKD patients [12]. In detail, out of the 51 (48 unique)
peptides presented in Supplementary Figure S2G (clinical, microbiome, and peptidome datas-
pace), 38 were found to be significantly different in the aforementioned comparison, as well
as 2 when comparing fast and slow progressors within the Early CKD group.

The number of impactful variables per type (clinical, microbiome, peptidome) in the
combined datasets (Supplementary Figure S2C,E,F,G) was in line with the 3D visualizations
and clustering results. To illustrate, the aforementioned boost for cohort separation after the
addition of the clinical dataset in the microbiome dataset is reflected by the numerous im-
pactful clinical variables (53%) regarding the respective reduced dataspace (Supplementary
Figure S2C). In contrast, after the addition of clinical variables to the peptidome dataset,
although serum urea was again the most impactful variable on the first PLS component,
collectively, the total number of impactful clinical variables was low (3%) (Supplementary
Figure S2E). Similarly, low numbers of impactful non-peptidome variables were recorded
after the addition of the microbiome (8%) (Supplementary Figure S2F) or both the clinical
and microbiome variables (3% and 12%, respectively) (Supplementary Figure S2G) in the
peptidome dataset. Further, in the presence of the urinary peptidome dataset, specific
peptides consistently were proved impactful. These observations, although notably made
in this small cohort, might be indicative of the substantial variation captured by the urinary
peptidome in CKD. However, it is noteworthy to mention that certain relevant clinical
variables, such as age or serum creatinine, were excluded by design from the analysis due
to their relation to the eGFR [18].

Our study has several limitations. First of all, although a variety of clinical data
were included, information on several confounders (expected to especially affect the fecal
microbiome) was not available. For example, data regarding exercise, diet, or country of
origin were missing. It is worth noting, however, that participants were recruited from the
same hospital in Ghent, and CKD patients are expected, to a degree, to be encouraged to
follow common diet patterns, such as avoiding foods that would lead to hyperkalemia [62].
Further, shotgun metagenomics is expected to be more informative than the amplicon
sequencing of the fecal microbiome. In addition, since a standard preprocessing protocol is
not yet fully established in the microbiome field, common methods (e.g., proportion-based
normalization) were followed across our pipeline. Last, caution should be taken not to
confuse any here-presented correlational relationship as causational. Thus, given the rela-
tively low sample size and imbalanced disease state groups, more extensive studies are
warranted to validate and further expand the presented results involving multiple ethnici-
ties or geographical origins and designed toward utilizing as many clinical confounders as
possible. Additionally, future studies should assess the effects of missing value imputation
and dimensionality reduction methods, encompassing the chosen dimensions and target
label, along with various clustering methods and quality metrics.

At the same time, this study has several strengths. To our knowledge, this is the first
time that an attempt has been made to directly evaluate the fecal microbiome and the human
naturally occurring urinary peptidome in terms of their capacity for capturing variation in
CKD as standalone datasets or in combinations. In addition, a large part of microbiome
CKD studies focus on patients with kidney failure, while the investigated cohort covered
patients across the entire CKD stage spectrum and not undergoing dialysis. Importantly, the
presented preprocessing pipeline can be implemented in both clinical and (even multiple
different) omics datasets, towards maximizing their combined utility in analyses. This is
highly relevant in machine learning processes, in which several algorithms cannot handle
categorical data, e.g., support vector machines. That said, often carefully designed and
promising models in the literature, rely solely on omics data, considering clinical variables
only for establishing cohort exclusion criteria. In that way, not only is a substantial part
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of potentially valuable clinical information not utilized, but also the applicability of the
developed models is isolated only to a subset of the patient population. Thus, parts of the
presented pipeline may as well be utilized towards enhancing model development in the
biomedical field with the ultimate goal of clinical practice implementation.

5. Conclusions

The urinary peptidome appears to capture a substantial part of the variation in CKD,
mainly with collagen but also several non-collagen parental proteins. When combining both
clinical and molecular information, an improved cohort separation was observed compared
to when using clinical data alone. Such a combination is expected to boost the performance
of (often single omics-based) machine learning models designed to support clinical practice.
The necessity for validation in broader, more comprehensive studies involving, among
others, shotgun sequencing microbiome data, an expanded array of clinical data, and
alternative clustering methods or even CKD grouping is underscored. Future studies are
also encouraged to have as their main focus the exploration of potential bacterial proteins
in urine and their association with gut bacteria and the gut proteome based on pathway
analyses. Studying cohort separation through the lens of clinical outcomes might also shed
more light on why patients with similar clinical characteristics appear to have different
(e.g., kidney and cardiovascular) disease course.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/proteomes12020011/s1. Table S1: Urinary peptidome
data. Information on the (raw) relative abundance of the sequenced 5071 peptides (columns) for
participants (rows) belonging to the original (n = 110) and matched historical (n = 408) cohorts is
provided. Given is also the sequence information regarding the peptides that are among the top 20
most impactful variables per PLS component of the clinical, microbiome, and peptidome dataspace.
Figure S1A–G: Cohort visualizations in the 3D space per dataset. Each single dot represents an
individual labeled with the respective eGFR. The color is based on the corresponding disease state,
namely, Non-CKD (blue), Early (yellow), Moderate (orange), and Advanced (red) CKD stages. CKD:
chronic kidney disease; eGFR: estimated glomerular filtration rate. Figure S2: PLS loadings. The top
20 most impactful variables per PLS component are shown for each dataset. The X axis refers to the
PLS coefficient value. In the Y axis, variables of the urinary peptidome are labeled with their parental
protein name and corresponding amino acid position (peptide ID in parenthesis), while those of the
fecal microbiome are labeled using the relevant taxa information. Colors indicate that a variable
is either clinical (teal), microbiome (magenta), or peptidome (gold). APOA1: apolipoprotein A-I;
CD99: CD99 antigen; CDHR5: cadherin-related family member 5; COL16A1: collagen alpha-1(XVI)
chain; COL19A1: collagen alpha-1(XIX) chain; COL1A1: collagen alpha-1(I) chain; COL1A2: collagen
alpha-2(I) chain; COL2A1: collagen alpha-1(II) chain; COL3A1: collagen alpha-1(III) chain; COL4A2:
collagen alpha-2(IV) chain; COL5A2: collagen alpha-2(V) chain; FGA: fibrinogen alpha chain; FXYD2:
sodium/potassium-transporting ATPase subunit gamma; KRT10: keratin, type I cytoskeletal 10;
LMAN2: vesicular integral-membrane protein VIP36; MGP: matrix Gla protein. Figure S3: Matched
cohort visualization in the 3D space.
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