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Abstract: The solution of any engineering problem starts with a modelling process aimed at formu-
lating a mathematical model, which must describe the problem under consideration with sufficient
precision. Because of heterogeneity of modern engineering applications, mathematical modelling
scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-
modelling, which is more appropriate for practical engineering computations. In the field of masonry
structures, a macro-model of the material can be constructed based on various elasticity theories,
such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-
behaviour is expected depending on the specific theory used in the background. Although there
have been several theoretical studies of different elasticity theories in recent years, there is still a
lack of understanding of how modelling assumptions of different elasticity theories influence the
modelling results of masonry structures. Therefore, a rigorous approach to comparison of different
three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper.
In this way, three elasticity models are described and spatial boundary value problems for these mod-
els are discussed. In particular, explicit representation formulae for their solutions are constructed.
After that, by using these representation formulae, explicit estimates for the solutions obtained by
different elasticity theories are obtained. Finally, several numerical examples are presented, which
indicate a practical difference in the solutions.

Keywords: quaternionic analysis; mathematical modelling; operator calculus; model comparison;
masonry structures; elasticity theory; micropolar elasticity

MSC: 30G35; 35Q74; 47B38; 47N20

1. Introduction

The classical linear elasticity provides a description of material behaviour, which
is sufficiently accurate for many practical applications. Nonetheless, while modelling
such materials, as for example cellular material, fibers and human bones, a more accurate
material model describing not only displacement, as in the case of classical elasticity,
but also rotations, is required. One the first extension of the classical elasticity towards
accounting microeffects of a continuum is related to the so called Cosserat continuum,
introduced by Cosserat brothers [1]. After that, several further refinements of the this theory
have been proposed by several researchers; see, for example, works of A.C. Eringen [2],
and W. Nowacki [3]. After introduction of micro-inertia to the theory of Cosserat brothers,
a new theory called the micropolar elasticity has been formed. From the macromodelling
point of view, the micropolar elasticity can be used for modelling of masonry structures
and objects having similar cellular-like structure.

Modelling of masonry structures in practical engineering is typically empirical-based,
i.e., performed by help of empirical formulae and results of experiments. Therefore, the
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mechanical behaviour of a masonry material is often predicted by simple empirical equa-
tions containing basic parameters such as elasticity, compressive, and tensile strengths [4].
Although empirical-based models serve often as a basis for engineering norms, a proper
modelling and understanding of material behaviour of masonry structure requires ad-
vanced models from continuum mechanics, i.e., theoretical models. Several results related
to microscale and mesoscale theoretical models of masonry structures have been presented
in recent years [5,6]; see [7] for a comprehensive review of various modelling strategies
for masonry structures. From the theoretical point of view, material behaviour can be
generally modelled either by help of linear elastic models, or by help of anisotropic models.
Although anisotropic models provide a more accurate material description, their use in
engineering practice is limited due to high complexity of these models. However, even in
the case of linear elastic models, more refined theories of elasticity, such as Cosserat and
micropolar theories, are able to account for more complex material behaviour. Nonetheless,
practical use of these theories, especially constructing engineering macro-models on their
basis, requires a proper theoretical comparison of the elasticity theories for providing a
clear guidance on advantages and disadvantages of each theory, which is still lacking. Thus,
this paper aims at a formal theoretical comparison on three elasticity models.

Although one of the aims of this paper is performing a formal theoretical comparison
of elasticity models, it is important to mention that theoretical models are rarely used in
practical engineering, but rather macro-models derived based on theoretical models are
more valuable for engineering; see, for example, Refs. [8,9]. Therefore, after performing the
a rigorous model comparison by help of quaternionic operator calculus, we discuss several
macro-models for Cosserat and micropolar models. These macro-models are based on
“simplified”material parameters of Cosserat and micropolar models, which can be easily
calculated in engineering practice. The need for such macro-models comes not only from an
easier use in engineering practice, but also from the fact, that identifying material constants
of Cosserat and micropolar models is not a trivial task; see [10,11] for details.

The paper is organised as follows: Section 2 provides a brief presentation of models of
linear elasticity, Cosserat elasticity and micropolar elasticity; Section 3 presents a formal
approach to model comparison, which is based on abstract mathematics and relational
algebra; finally, Section 4 provides ideas on creating macro-models for using in engineering
applications, as well as numerical comparison of various models discussed in this paper.

2. Elasticity Models

In this section, the elasticity models which will be compared in the sequel are shortly
summarized. As it is well known, there are several ways for presenting an elasticity model,
for example by help of a tensor notation or by help of vectors and matrices. Moreover, very
often formulations in terms of secondary variables, such as for example stresses, is preferred
over the formulation in terms of primary variables. Evidently, for an objective comparison
of models it is necessary to keep a unique style of model formulations. Therefore, all the
models presented in this section will follow one style of presentation, which might be
different from the original papers and books, where these models were introduced.

2.1. Classical Linear Elasticity

The classical model of linear elasticity is based on the set of three equations; see, for
example, Refs. [12,13]:

(i) Constitutive
σij = λδijεkk + 2µεij, i, j, k = 1, 2, 3,

where σij are components of the stress tensor, εkk is a volumetric strain, εij are compo-
nents of the eulerian strain tensor, λ and µ are Lamé coefficients.

(ii) Strain-displacement relation

ε =
1
2
(∇u +∇uT),
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where u ∈ R3 is the displacement vector.
(iii) Equilibrium equation

∇ · σ + ρF = ρü,

where σ is the stress tensor, F ∈ R3 is the density of external forces, and ρ is the
material density.

By rewriting the equilibrium equation with respect to the displacement vector u, the
famous Lamé equation in the static case and absence of body forces is obtained:

µ∆u + (λ + µ)∇(∇ · u) = 0.

Finally, let us formulate a complete boundary value problem for the classical lin-
ear elasticity:

Problem 1. Let Ω ⊂ R3 be a bounded simply connected domain with a sufficiently smooth
boundary Γ = Γ0 ∪ Γ1. A boundary value problem of the linear elasticity is formulated as follows{

µ∆u + (λ + µ)∇(∇ · u) = 0,
u = g on Γ0, σlknl = σ(n)k on Γ1.

where g is the vector of prescribed displacements on Γ0, nj are components of the unit outer normal
vector, σ(n)k are given surface forces.

2.2. Cosserat Theory of Elasticity

Following [14], the main equations of Cosserat elasticity are briefly recalled in this
subsection. In addition to the displacement vector u of classical elasticity, Cosserat theory
considers also the axial vector of the total rotation ψ̂ ∈ R3 representing the rigid Cosserat
triad. Basic equations of the Cosserat elasticity are given by the set of three equations:

(i) Constitutive equations

τij = λδijεkk + 2µεij, σij = 2τγij,

µ̂ij =
α

2
δijκ̂kk + 2ηκ̂ij + 2η′κ̂ji,

where µ̂ij is the couple stress tensor, κ̂ij is the gradient of the total rotation, λ and µ are
the Lamé coefficients of classical elasticity, η, η′ are moduli used in the couple stress
theory; see [15] for details, τ denotes the modulus of local rotation, and α denotes
the modulus of the volume flux of local rotation. It is important to mention, that the
coefficients τ and α are specific parameters of the Cosserat theory. Additionally, the
coefficients µ and τ have the same dimensions and thus allowing to introduce the
coupling number N:

N :=
√

τ

µ + τ
, 0 ≤ N ≤ 1.

N has the value 0 for classical elasticity and the value 1 for the couple stress theory.
(ii) Strain-displacement relations. The main difference to the classical elasticity is that

additionally to the usual strain tensor εij and the usual rotation tensor ωij, the relative
rotation between the triad and the principal axes of strain is introduced as follows

γij = ωij − ψij = −γji,

which is also represented by the axial vector

γ̂k = −ω̂k − ψ̂k, γ̂ =
1
2
∇× u− ψ̂. (1)
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(iii) Equilibrium equations
τji,j + σji,j + fi = 0,
2µ̂ji,j + 2σ̂i + ĉi = 0,

where fi is the coordinate of the body force per unit volume, ĉi is the coordinate of the body
couple per unit volume, τij is the symmetric stress tensor, σij is the skew symmetric stress
tensor, and µ̂ij is the couple stress tensor, σ̂i = 1

2 eijkσjk, eijk is the permutation tensor and the
comma notation is used to indicate a differentiation with respect to the coordinates.

Next, we write the equilibrium equations of the Cosserat theory in the vector form
as follows

(λ + 2µ)∇2u− µ∇× (∇× u)− 2τ∇× γ̂ + f = 0,
(α + 4η + 4η′)∇2ψ̂− 4η∇× (∇× ψ̂) + 4τγ̂ + ĉ = 0,

where f is the body force per unit volume, ĉ is the body couple per unit volume and the
vector identity

∇2v = ∇(∇ · v)−∇× (∇× v)

has been used. Next, by substituting (1) into the vector form, we obtain the system of
equations with two unknowns

(λ + 2µ)∇(∇ · u)− (µ + τ)∇× (∇× u) + 2τ∇× ψ̂ + f = 0,
(α + 4η + 4η′)∇(∇ · ψ̂)− 4η∇× (∇× ψ̂)− 4τψ̂ + 2τ∇× u + ĉ = 0,

Finally, a complete boundary value problem is formulated for Cosserat elasticity:

Problem 2. Let Ω ⊂ R3 be a bounded simply connected domain with a sufficiently smooth
boundary Γ = Γ0 ∪ Γ1. A boundary value problem of the Cosserat elasticity is formulated as follows

(λ + 2µ)∇(∇ · u)− (µ + τ)∇× (∇× u) + 2τ∇× ψ̂ + f = 0
(α + 4η + 4η′)∇(∇ · ψ̂)− 4η∇× (∇× ψ̂)− 4τψ̂ + 2τ∇× u + ĉ = 0,
u = g1 and ψ̂ = q2 on Γ0,
tj = niτij + niσij and m̂j = niµ̂ij on Γ1,

where tj is the coordinate of the surface force per unit area, m̂j is the coordinate of the surface couple
per unit area, and ni is the coordinate of the exterior normal.

2.3. Micropolar Model

The Cosserat theory has been extended by including body microinertia effects by
Eringen in [2] and therefore, the resulting theory has been named as micropolar theory. The
basic equations of the micropolar theory are given by:

(i) The constitutive equations for a linear micropolar continuum are given as follows [2,11]:

σji = (µ + α)ε ji + (µ− α)εij + λδijεkk,
µji = (γ + ε)κji + (γ− ε)κij + βδijκkk,

where µji is the couple stress, σij is the force stress tensor, εij is the asymmetric tensor
of deformation and κij is the torsion flexure tensor, and with i, j, k = 1, 2, 3. The six
micropolar elastic constants are λ, µ, α, β, γ and ε.

(ii) The strain-displacement relations are given by [3]:

ε ji = ui,j − ekij ϕk, κji = ϕi,j, ϕ =
1
2
∇× u

where ui is the displacement coordinate.
(iii) Equilibrium equations are given as follows [3]:

σji,j + fi = 0,
eijkσjk + µji,j + ci = 0,
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where ϕi is the coordinate of the rotation vector, fi is the coordinate of the body force per
unit volume, ci is the coordinate of the body couple per unit volume, ρ is the density, $ is
the rotational inertia and eijk is the permutation symbol.

Substituting the constitutive equation into the equilibrium equation and defining the
deformations, lead to a system of six differential equations; see again [3]. In a compact
vector form, these equations have the following form:

(µ + λ)∆u + (λ + µ− α)∇(∇ · u) + 2α∇×ϕ+ f = 0,
((µ + ε)∆− 4α)ϕ+ (β + γ− ε)∇(∇ ·ϕ) + 2α∇× u + c = 0,

where f ∈ R3 is the body forces, c ∈ R3 is the body moments, u ∈ R3 and ϕ ∈ R3 represents
the deformation and rotation of a particle, respectively.

Finally, a complete boundary value problem of the micropolar elasticity is formulated
as follows:

Problem 3. Let Ω ⊂ R3 be a bounded simply connected domain with a sufficiently smooth
boundary Γ = Γ0 ∪ Γ1. A boundary value problem of the Cosserat elasticity is formulated as follows

(µ + λ)∆u + (λ + µ− α)∇(∇ · u) + 2α∇×ϕ+ f = 0,
(µ + ε)∆ϕ+ (β + γ− ε)∇(∇ ·ϕ)− 4αϕ+ 2α∇× u + c = 0,
u = g1 and ϕ = g2 on Γ0,
tj = niσij + niτij and lj = niµij on Γ1,

where tj is the coordinate of the surface force per unit area, τij is the skew symmetric force stress
tensor, lj is the coordinate of the surface couple per unit area, and ni is the coordinate of the
exterior normal.

3. Theoretical Model Comparison

The aim of this section is to provide a theoretical basis for a quantifiable comparison of
elasticity models introduced in the previous section. Especially, it is important to develop
estimates for a “distance” between the models, which will provide the difference between
the models not only in general terms as the difference in physical phenomena the models
describe, but in terms of specific estimates as well. Moreover, once such estimates are
developed, they might be used in practical calculations for simplifying the decision process
on choosing a specific model in a concrete situation. Evidently, constructing of such
“distance” estimates requires the same theoretical basis for all the models.

In this paper, quaternionic operator calculus is used as a basis for comparative analysis
of elasticity models. The choice of quaternionic operator calculus is motivated by the
elegance of representation formulae for solutions constructed by help of the well-known
operators, which simplifies significantly theoretical analysis of models. Additionally, since
quaternionic analysis is a generalisation of the classical complex analysis to R3 and R4,
the results for two-dimensional problems are automatically embedded in the construction.
Moreover, quaternionic operator calculus has been already used for studying problems of
classical elasticity [16], as well as for problems of micropolar elasticity [17]. Finally, in [17]
the “distance” estimate for the difference between the micropolar and classical elasticity
has been provided, meaning that only representation formulae for the Cosserat theory and
related estimates must still be constructed.

3.1. Basics of Quaternionic Analysis

In this subsection, following [16,18], the basics of quaternionic analysis is briefly
recalled. Let 1, e1, e2, e3 be an orthonormal basis of the Euclidean vector space R4. The
basis vector e0 is identified with 1. We introduce an associative multiplication of the basis
vectors subject to the multiplication rules:

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3.
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This non-commutative product generates the algebra of real quaternions denoted
by H. The real vector space R4 will be embedded in H by identifying the element
a = (a0, a1, a2, a3) ∈ R4 with the element

a = a0 + a1e1 + a2e2 + a3e3 ∈ H.

The real number Sc a := a0 is called the scalar part of a and Vec a := a1e1 + a2e2 + a3e3
is the vector part of a, or the pure quaternion. The quaternion ā := a0 − a1e1 − a2e2 − a3e3 is
the conjugate of a = a0 + a1e1 + a2e2 + a3e3. The norm of a is given by |a| =

√
aā which

coincides with the corresponding Euclidean norm of a, as a vector in R4. Finally, the real
vector space R3 will be embedded in H by identifying the element a = (a1, a2, a3) ∈ R3

with the corresponding pure quaternion, i.e., a = a1e1 + a2e2 + a3e3 ∈ H.
Let Ω be an open subset of R3 with a sufficiently smooth boundary. An H-valued

function is a mapping

f : Ω→ H with f (x) =
3

∑
k=0

f k(x)ek, x ∈ Ω,

where the coordinates f k are real-valued functions defined in Ω, i.e., f k : Ω→ R,
k = 0, 1, 2, 3. Continuity, differentiability or integrability of f are defined coordinate-wisely.

Definition 1. For continuously real-differentiable functions f : Ω ⊂ R3 → H, which we will
denote for simplicity by f ∈ C1(Ω,H), the operator

D :=
3

∑
k=1

ek∂xk

is called the Dirac operator.

Additionally, two integral operators is introduced [18]:

Definition 2. Let Ω ⊂ R3, u ∈ C(Ω). Then the linear integral operator

(T u)(x) := −
∫
Ω

E(y− x)u(y)dσy with E(x) =
1

4π

ω̄(x)
|x|3 , ω(x) =

x
|x| ,

is called the Teodorescu transform over Ω. We also define the operator

(FΓu)(x) :=
∫
Γ

E(y− x)dy∗u(y)

that is called Cauchy-Bitsadze operator.

Finally, by using the introduced operators, the Borel-Pompeiu formula can be written
in the form

(FΓu)(x) + (TD u)(x) =
{

u(x), x ∈ Ω,
0, x ∈ R3 \Ω,

or shortly F + TD = I for x ∈ Ω.
For construction of explicit representation formulae, it is necessary to work with

Plemelj projections, and a proper definition of these projections requires the information
about the boundary behaviour of the Cauchy-Bitsadze operator:
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Theorem 1 (Plemelj-Sokhotzki formulae). Let u ∈ C0,β(Γ,H), 0 < β ≤ 1. Then we have for
each regular point x0 ∈ Γ

lim
x→x0

x∈G± ,x0∈Γ

(FΓu)(x) =
1
2
[±u(x0) + (SΓu)(x0)],

where G+ := G and G− := Rn \ G+, the limit has to be taken as a non-tangential limit, and SΓ is
the singular integral operator defined by

(SΓu)(x) := 2
∫
Γ

E(y− x)dy∗u(y), x ∈ Γ.

The limits define the Plemelj projections PΓ := 1
2 (I + SΓ) and QΓ := 1

2 (I− SΓ); see [16]
for further details.

For treating boundary value problems of micropolar and Cosserat elasticity, it is
necessary to work with modified operators associated with the Dirac operator:

Definition 3. For continuously real-differentiable functions f : Ω ⊂ R3 → H, which we will
denote for simplicity by f ∈ C1(Ω,H), the operator

Dα := α +
3

∑
k=1

ek∂xk , α ∈ C

is called a modified Dirac operator.

Definition 4. Let Ω ⊂ R3, u ∈ C(Ω). Then the weakly singular integral operator

(Tαu)(x) := −
∫
G

eα(y− x)u(y)dσy, x ∈ Ω,

is called the modified Teodorescu transform; further, the operator

(Fαu)(x) :=
∫
Γ

eα(y− x)dy∗u(y), x ∈ R3 \Ω,

acting of functions u ∈ C1(Ω)∩C(Ω), is called the modified Cauchy-Bitsadze operator. The kernel
eα is given by

eα(x) = −
1

4π|x|3

(
α|x|2 + (iα|x|+ 1)

3

∑
k=1

exxk

)
e−iα|x|.

Theorem 2 (Modified Plemelj-Sokhotzki formulae). Let u ∈ C0,β(Γ,H), 0 < β ≤ 1. Then
we have

lim
y→x∈Γ

y∈Ω

(Fαu)(x) = (Pαu)(x) =
1
2
(I + Sα)u(x),

lim
y→x∈Γ
y∈Rn\Ω

(Fαu)(x) = −(Qαu)(x) = −1
2
(I − Sα)u(x),

where the singular integral operator Sα is defined by

(Sαu)(x) :=
∫
Γ

eα(y− x)dy∗u(y), x ∈ Γ.

Details of the modified operators and study of their properties can be found in [18].
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Important ingredients for the representation formulas which will be used later on in
the paper are the mapping properties of the integral operators. These properties have been
studied precisely in [16,18]:

T : Wk,p(Ω)→Wk+1,p(Ω), and T±α : Wk,p(Ω)→Wk+1,p(Ω),

as well as the facts

∂iTu ∈Wk,p(Ω), and ∂iT±αu ∈Wk,p(Ω) if u ∈Wk,p(Ω),

with ∂i denoting partial derivatives w.r.t. coordinate xi, i = 1, 2, 3.

3.2. Construction of Representation Formulae

Now the application of the quaternionic operator calculus is used in the formal com-
parison of elasticity models introduced in Section 2. The strategy follows ideas presented
in [17] for the case of micropolar elasticity. Moreover, the use of operator calculus for the
classical elasticity has been already presented in the past; see, for example, Refs. [16,18] and
references wherein. However, the Cosserat elasticity, as well as comparison of three models,
has not been studied yet. To this end, several propositions are presented and theorems for
all of three model of elasticity, but new results are only related to the Cosserat elasticity and
comparison of three models. Moreover, for shortening the presentation, we will present re-
sults for three different elasticity theories immediately in one proposition/theorem. Finally,
only Dirichlet boundary conditions will be considered from now on.

We start with the following proposition presenting a hypercomplex reformulation of
boundary value problems of three elasticity theories:

Proposition 1. Let ue denotes the elasticity solution, uc denotes the “Cosserat” solution, and um
denotes the micropolar solution. Considering the displacement fields ue, uc, um ∈ C2(Ω), the vector
of total rotation ψ̂ ∈ C2(Ω) and the micropolar rotations ϕ ∈ C2(Ω) as pure quaternions, i.e.,
j = u1e1 + u2e2 + u3e3 for j = {e, c, m}, ψ̂ = ψ̂1e1 + ψ̂2e2 + ψ̂3e3, ϕ = ϕ1e1 + ϕ2e2 + ϕ3e3,
equations of the classical elasticity, Cosserat elasticity, and micropolar elasticity, respectively, can be
written as follows

D A D ue = 0, (2)
D N1 D uc − 2τVec Dψ̂ = 0,(

D− i
√

τ

η

)
N2

(
D + i

√
τ

η

)
ψ̂− 2τVec Duc = 0, (3)


D M1 D um − 2αVec Dϕ = 0,(

D− i

√
4α

γ

)
M2

(
D + i

√
4α

γ

)
ϕ− 2αVec Dum = 0,

(4)

where the operators A, N1, N2, M1, and M2 are defined by

Aw :=
E− µ

E− 4µ
w0 − w1e1 − w2e2 + w3e3,

N1w := −(λ + 2µ)w0 − (µ + τ)w1e1 − (µ + τ)w2e2 − (µ + τ)w3e3,
N2w := −(α + 4η + 4η′)w0 − 4ηw1e1 − 4ηw2e2 − 4ηw3e3,
M1w := −(λ + 2µ− 2α)w0 − (µ− 2α)w1e1 − (µ− 2α)w2e2

−(µ− 2α)w3e3,
M2w := −(α + β + γ)w0 − γ w1e1 − γ w2e2 − γ w3e3,

for a quaternion-valued function w = w0 + w1e1 + w2e2 + w3e3.

Proof. The proof can be done by straight-forward calculations.

Next step is reformulating Equations (2)–(4) as operator equations providing the
possibility to study directly existence, regularity, stability and uniqueness of Dirichlet
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boundary value problems. Since the results for the classical elasticity and the micropolar
elasticity have been already presented in [16,18], we only briefly summarise these results.

Theorem 3. The boundary value problem

D A D ue = 0, in Ω,
ue = g, on Γ,

with g ∈W2,k+ 3
2 (Γ) is uniquely solvable and its solution is given by

ue = FΓg + TA−1FΓ(trTA−1FΓ)
−1QΓg.

For the case of micropolar elasticity, due to the coupled nature of the problem, a few
intermediate steps a used. At first, we the have the following theorem:

Theorem 4. The system of equations
D M1 D um − 2αVec Dϕ = 0,(

D− i

√
4α

γ

)
M2

(
D + i

√
4α

γ

)
ϕ− 2αVec Dum = 0,

with Dirichlet boundary conditions{
um = g1 on Γ,
ϕ = g2 on Γ

is equivalent to the system of operator equations{
um = A1ϕ+ f1,
ϕ = A2um + f2,

(5)

where the operators A1 and A2 are defined by

A1 := 2α TM−1
1 T Vec D, A2 := 2α Tα M−1

2 T−αVec D,

together with additional terms f1, f2

f1 := FΓg̃1 + TM−1
1 FΓ(trTM−1

1 FΓ)
−1QΓg̃1,

f2 := Fαg̃2 + Tα M−1
2 F−α

(
trTα M−1

2 F−α

)−1
Qαg̃2,

where g̃1 = g1 − 2α trTM−1
1 T Vec Dϕ and g̃2 = g1 − 2α trTα M−1

2 T−αVec Dum.

Next, we perform a decoupling of the coupled system of operator Equation (5). Using
the representation formula for ϕ in the first equation of (5) and correspondingly, the
representation formula for um in the second equation of (5), the following is obtained: um = A1

(
Fαg̃2 + Tα M−1

2 F−α

(
trTα M−1

2 F−α

)−1
Qαg̃2 + 2α Tα M−1

2 T−αVec Dum

)
+ f1,

ϕ = A2

(
FΓg̃1 + TM−1

1 FΓ(trTM−1
1 FΓ)

−1QΓg̃1 + 2α TM−1
1 T Vec Dϕ

)
+ f2.

By help of the new notations

B1 := A1

(
2α Tα M−1

2 T−αVec D
)

,

B2 := A2

(
2α TM−1

1 T Vec D
)

,
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and
f∗1 = f1 + A1

(
Fαg̃2 + Tα M−1

2 F−α

(
trTα M−1

2 F−α

)−1
Qαg̃2

)
,

f∗2 = f2 + A2

(
FΓg̃1 + TM−1

1 FΓ(trTM−1
1 FΓ)

−1QΓg̃1

)
,

we finally obtain the following decoupled system{
um = B1um + f∗1 ,
ϕ = B2ϕ+ f∗2 .

⇐⇒
{

(I− B1)um = f∗1 ,
(I− B2)ϕ = f∗2 ,

(6)

where I is the identity operator.
Finally, we have the following theorem for the unique solvability of a decoupled problem:

Theorem 5. For the given boundary conditions g1,2 ∈ Wk+ 3
2 ,2(Γ) and sufficiently small α, the

solution um,ϕ ∈Wk,2(Ω) of decoupled problem (6) is unique, the problem is well-posed, and the
solution can be estimated as follows

‖um‖ ≤ ‖(I− B1)
−1‖‖f∗1‖, ‖ϕ‖ ≤ ‖(I− B2)

−1‖‖f∗2‖,

with f∗1 and f∗2 explicitly given by

f∗1 = FΓg̃1 + TM−1
1 FΓ(trTM−1

1 FΓ)
−1QΓg̃1

+2α TM−1
1 T Vec D

(
Fαg̃2 + Tα M−1

2 F−α

(
trTα M−1

2 F−α

)−1
Qαg̃2

)
,

f∗2 = Fαg̃2 + Tα M−1
2 F−α

(
trTα M−1

2 F−α

)−1
Qαg̃2

+2α Tα M−1
2 T−αVec D

(
FΓg̃1 + TM−1

1 FΓ(trTM−1
1 FΓ)

−1QΓg̃1

)
.

The results for the Cosserat elasticity will be obtained in the same way, as for the
micropolar elasticity, because the type of equations is the same.

Theorem 6. The system of equations
D N1 D uc − 2τVec Dψ̂ = 0,(

D− i
√

τ

η

)
N2

(
D + i

√
τ

η

)
ψ̂− 2τVec Duc = 0,

with Dirichlet boundary conditions{
uc = g3 on Γ,
ψ̂ = g4 on Γ

is equivalent to the system of operator equations{
uc = A3ψ̂ + f3,
ψ̂ = A4uc + f4,

(7)

where the operators A3 and A4 are defined by

A3 := 2τ TN−1
1 T Vec D, A4 := 2τ TαN−1

2 T−αVec D,

together with additional terms f1, f2

f3 := FΓg̃3 + TN−1
1 FΓ(trTN−1

1 FΓ)
−1QΓg̃3,

f4 := Fαg̃4 + TαN−1
2 F−α

(
trTαN−1

2 F−α

)−1
Qαg̃4,

where g̃3 = g3 − 2τ trTN−1
1 T Vec Dψ̂ and g̃4 = g4 − 2τ trTαN−1

2 T−αVec Duc.
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Proof. As we have already underlined, the proof of this theorem is identical to the proof of
similar results for the micropolar elasticity presented in [17], and therefore, we omit the
proof.

After decoupling the system of equations of the Cosserat elasticity, the following
system of operator equations is obtained:{

(I− B3)uc = f∗3 ,
(I− B4)ψ̂ = f∗4 ,

(8)

where I is the identity operator, and the operators B3, B4 are given by

B3 := A3

(
2τ TαN−1

2 T−αVec D
)

,

B4 := A4

(
2τ TN−1

1 T Vec D
)

,

and

f∗3 = f3 + A3

(
Fαg̃4 + TαN−1

2 F−α

(
trTαN−1

2 F−α

)−1
Qαg̃4

)
,

f∗4 = f4 + A4

(
FΓg̃3 + TN−1

1 FΓ(trTN−1
1 FΓ)

−1QΓg̃3

)
.

After that, by studying the mapping properties of operators B3, B4 and by using the
Banach inverse mapping theorem, the following theorem can be proved:

Theorem 7. For given boundary conditions g3,4 ∈ Wk+ 3
2 ,2(Γ) and sufficiently small κ, the

solution uc, ψ̂ ∈ Wk,2(Ω) of decoupled problem (8) is unique, the problem is well-posed, and the
solution can be estimated as follows

‖uc‖ ≤ ‖(I− B3)
−1‖‖f∗3‖, ‖ψ̂‖ ≤ ‖(I− B4)

−1‖‖f∗4‖,

with f∗3 and f∗4 explicitly given by

f∗3 = FΓg̃3 + TN−1
1 FΓ(trTN−1

1 FΓ)
−1QΓg̃3

+2τ TN−1
1 T Vec D

(
Fαg̃4 + TαN−1

2 F−α

(
trTαN−1

2 F−α

)−1
Qαg̃4

)
,

f∗4 = Fαg̃4 + TαN−1
2 F−α

(
trTαN−1

2 F−α

)−1
Qαg̃4

+2τ TαN−1
2 T−αVec D

(
FΓg̃3 + TN−1

1 FΓ(trTN−1
1 FΓ)

−1QΓg̃3

)
.

3.3. Estimates for the Differences between the Models

Next, following ideas from [17], the theoretical estimates for the pairwise differences of
three elasticity models are presented. The main goal is to construct the following estimates

‖ue − uc‖, ‖ue − um‖, ‖um − uc‖, ‖ϕ− ψ̂‖,

in W2,1(Ω) with ue denoting the elasticity solution, uc denoting the “Cosserat” solution,
and um denoting the micropolar solution. The choice of Sobolev space W2,1(Ω) is motivated
by the fact that this is the most popular function space used in engineering applications.
Evidently, estimates in other spaces can be straightforwardly constructed.

To construct the estimates, we note that the elasticity solution ue can be obtained
from the “Cosserat” solution and micropolar solution by setting constants τ and α to
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zero. Further, representation formulae for ϕ and ψ̂ will also be used. Thus, the following
estimates are obtained

‖ue − uc‖ ≤
∥∥∥2τ TN−1

1 T Vec D
[
(I− B4)

−1f∗4
]∥∥∥,

‖ue − um‖ ≤
∥∥∥2α TM−1

1 T Vec D
[
(I− B2)

−1f∗2
]∥∥∥.

(9)

For constructing the remaining two estimates, i.e., ‖um − uc‖ and ‖ϕ− ψ̂‖, general
representation Formulaes (5)–(7) will be used, which lead to the following estimates:{

‖um − uc‖ =
∥∥A1ϕ+ f1 −A3ψ̂− f3

∥∥ ≤ ∥∥A1ϕ−A3ψ̂
∥∥+ ‖f1 − f3‖,

‖ϕ− ψ̂‖ = ‖A2umf2 −A4uc − f4‖ ≤ ‖A2um −A4uc‖+ ‖f2 − f4‖.

Hence, the estimates are split into two parts: the part related to boundary conditions
via fi, i = 1, 2, 3, 4, and the part related to the difference in the sought physical quantities.
Moreover, because of the coupled nature of the boundary value problems of micropolar
and Cosserat elasticity, the estimate for um and uc depends on ϕ and ψ̂ and vice versa.

It is important to underline that it would be possible to use representation formulae for
the decoupled formulations (6)–(8), which would evidently lead to the following estimates{

‖um − uc‖ ≤ ‖B1um − B3uc‖+ ‖f∗1 − f∗3‖,
‖ϕ− ψ̂‖ ≤

∥∥B2ϕ− B4ψ̂
∥∥+ ‖f∗2 − f∗4‖.

However, it is more suitable to work with the coupled system for the upcoming discussion.
By using the definitions of operators Ai and terms fi, i = 1, 2, 3, 4, the following explicit

estimates are straightforwardly obtained:

‖um − uc‖ ≤
∥∥∥2T

(
αM−1

1 T Vec Dϕ− τN−1
1 T Vec Dψ̂

)∥∥∥+ ‖FΓ(g̃1 − g̃3)‖

+
∥∥∥TM−1

1 FΓ(trTM−1
1 FΓ)

−1QΓg̃1 − TN−1
1 FΓ(trTN−1

1 FΓ)
−1QΓg̃3

∥∥∥,

‖ϕ− ψ̂‖ ≤
∥∥∥2Tα

(
αM−1

2 T−αVec Dum − τN−1
2 T−αVec Duc

)∥∥∥+ ‖Fα(g̃2 − g̃4)‖

+
∥∥∥Tα M−1

2 Fα(trTα M−1
2 Fα)

−1Qαg̃2 − TαN−1
2 Fα(trTαN−1

2 Fα)
−1Qαg̃4

∥∥∥.

(10)

Analysing the above expressions, it becomes visible that the main difference in between
the micropolar model and the Cosserat model is related to the material constants, which
are “hidden” in the multiplicative operators M1, M2 and N1, N2, while all other operators
are the same. This fact is particularly visible for the boundary part of the estimate. Recall
that both models describe displacement of a continuum, it is natural to assume that the
displacement boundary conditions g̃1 and g̃3 are equal. Thus, the estimate for ‖f1 − f3‖
can be simplified to

‖f1 − f3‖ ≤
∥∥∥T
(

M−1
1 FΓ(trTM−1

1 FΓ)
−1 − N−1

1 FΓ(trTN−1
1 FΓ)

−1
)

QΓg̃1

∥∥∥,

where the non-commutativity of the operators has been taken into account. Further, due
to the uniqueness of solution of decoupled problems (6)–(8), it follows that um = uc in
the case of equal boundary conditions. Therefore, the first summand in the estimate for
‖ϕ− ψ̂‖ will depend again on the difference in material constants of both models and the
norm of um = uc. If similar assumptions on the equality of boundary conditions g̃2 and
g̃4 could be made, then the estimate for ‖ϕ− ψ̂‖ would also simplify to the difference in
material constants. However, justification of this assumption is not so clear not only from
the theoretical point of view, but from the point of view of practical engineering modelling,
as well.

The results of this subsection are therefore briefly summarized as:
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• The difference between the classical elasticity and the two refined models presented
in estimates (9) is controlled by material constants τ for the Cosserat model and κ for
the micropolar model. Hence, for τ → 0 and κ → 0 the refined solutions should tend
to the elasticity solution.

• The estimates between the micropolar model and the Cosserat model presented in
(10) indicates also that the main difference between the models is controlled by the
material constants of both models, although the estimates have a more complex
structure compared to (9).

Theoretical results presented in this section clearly indicate that material constants of
elasticity models play the crucial role in theoretical model comparison and as a result, in a
practical engineering modelling, as well. It is also well known that practical identification
of material parameters of the micropolar model and the Cosserat model is difficult; see, for
example, Refs. [10,11], which limits applicability of these models. To overcome this problem,
various engineering approaches for practical calculations of these material parameters and
simplified macro-models are used in practice. Some of these macro-models are discussed
in the next section.

4. Macro-Models and Numerical Results

In this section, an engineering approach to practical use of the micropolar model
and the Cosserat model is discussed. In this way, the two macro-models, namely Cosserat
layered rocks and equivalent micropolar continuum, are presented and discussed with respect to
practical identification of constants. Moreover, for the sake of a better presentation, only the
two-dimensional models will be considered from now on and the constitutive equations for
macro-models will be presented in a matrix form. Finally, numerical examples illustrating
practical difference between three elasticity models are presented at the end of this section.

4.1. Macro-Models for the Micropolar Elasticity and Cosserat Elasticity

In comparison to the classical elasticity, the Cosserat model and the micropolar model
have additional kinematic and static descriptors, which are able to account for the material
internal structure. The Cosserat macro-model in this section has a micro- rotation compo-
nent, while the micropolar model includes both the micro-rotation and skew-symmetric
stress. These additional effects of the theories are reflected in new material parameters.

A two-dimensional Cosserat model, which has 4 non-symmetric stress components σ11,
σ22, σ21, σ12 and two couple stress components m31, m32, is often used in rock engineering to
model the behaviour of rock masses consisting of a large number of layers. The idea behind
this macro-model is to introduce a continuum model in which the layers are virtually
smeared across the mass. This construction reduces the computational costs for practical
calculations with the model, because when the rock layers are aligned in 1-coordinate
direction the moment stress term m32 disappears; see [8,19] for the details. Additionally,
the Cosserat layered rock model assumes the original Cosserat theory with the additional
conjecture that the relative rotation γij can be considered as independent and ignored. The
model therefore only considers the effect of micro-rotations in addition to the classical
elasticity material strain. The stress-strain relationship is then given in the matrix form
as follows: 

σ11
σ22
σ21
σ12
m31

 =


A11 A12 0 0 0

A22 0 0 0
G11 G12 0

symm G22 0
B1




ε11
ε22
ε21
ε12
κ31

,
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and the material parameters are given by

A11 =
E

1− ν2 − ν2(1+ν)2

1−ν2+ E
hkn

, A22 =
1

1−ν−2ν2

E(1−ν)
+ 1

hkn

, A12 =
ν

1− ν
A22,

1
G11

=
1
G

+
1

hks
, G11 = G12 = G21, G22 = G11 + G,

B1 =
Eh2

12(1− ν2)

(
G− G11

G + G11

)
,

where the curvatures are κ31, E is the Young’s modulus of the intact layer, ν is the Poisson’s
ratio, h is the layer thickness, G is the shear modulus of the intact layer, kn and ks are the
joint normal and shear stiffness, respectively.

A macro-model for the micropolar theory has been proposed in [20], where it has been
described how a masonry structure can be modelled as a micropolar continuum equivalent
to discrete systems of blocks with different geometry. Interlocking bricks are designed to
self-lock to the other bricks without the use of mortar. Moreover, this macro-model allows
also accounting for independent rotations of individual blocks, which is expected from the
micropolar theory. Further, this macro-model includes the parameters for the plain stress
classical elasticity solution, which is extended include the skew symmetric tensor τ12 and
couple stresses µ31 and µ32. Therefore, the micropolar formulation is able to give results of
the relative rotation (r3 − ϕ3), which measures the effect of the skew symmetric tensor and
the micro-rotation ϕ3. In this 2D micropolar macro-model, the stress-strain relationship is
given as follows:



σ11
σ22
σ12
τ12
µ31
µ32

 =



A1111 A1122 0 0 0 0
A2211 A2222 0 0 0 0

0 0 A1212
1
2 (B2121 − B1212) 0 0

0 0 1
2 (B1212 − B2121) − 1

2 (B1212 + B2121) + B1221 0 0
0 0 0 0 C11 0
0 0 0 0 0 C22





ε11
ε22
ε12

r3 − ϕ3
κ31
κ32

, (11)

where τ12 is the skew-symmetric stress component and r3 is the independent component of
the macrorotation tensor, and the material coefficients are given by

B1212 =
GmdL

s
p2, B2121 =

Ldp1

s

(
Em

2p3
+ Gm

)
, B1221 =

GmdL
s

p1,

C11 =
EmdL3

s
ε1

(
1

32ρ
p2

1 +
1
2

p2
2

)
, C22 =

EmdL3

8s
p2

1 p2,

where Gm = Em/(2 × (1 + ν)), is the tangent modulus of the mortar, Em is the Young’s
modulus of the mortar layer, p1 = b/L and p2 = h/L are scale parameters, d is the thickness
of the masonry panel, s is the thickness of the mortar layer, L is the length and height of a
masonry wall, p3 = h/b is the aspect ratio of a masonry block, h is the height of the block
and b is the width of the block. For the case of masonry without interlocking, the matrix
coefficients can be written as [20]:

B1212 =
GmdL

s
p2, B2121 =

GmdL
s

p1, B1221 = 0,

C11 =
EmdL3

8s
p1 p2

2, C22 =
EmdL3

8s
p2

1 p2.

Evidently, the stress-strain relationship (11) includes the sub-matrix representing the
classical elasticity, namely:σ11

σ22
σ12

 =

A1111 A1122 0
A2211 A2222 0

0 0 A1212

ε11
ε22
ε12

 =
E

1− ν2

1 ν 0
ν 1 0
0 1−ν

2

 ε11
ε22

2ε12


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where the Young’s modulus is E, Poisson’s ratio is ν, the Cartesian coordinates system are
related to the numbers on the right hand side in the subscript so that 11 = xx, 22 = yy and
12 = xy.

4.2. Identification of Additional Material Parameters

As it has been mentioned already, the main obstacle in the way of practical use of
the micropolar theory and the Cosserat theory is identification of additional material
parameters appearing in these theories. Therefore, in this sub-section, a short overview of
available results related to identification of material parameters is provided.

Several authors have used theoretical investigations to obtain material parameters
of the Cosserat theory and the micropolar theory. In particular, Adomeit determined
the couple-stress elastic coefficients of a three-dimensional honeycomb structure from a
structural perspective in [21]. Further, Herrmann and Achenbach used couple-stress theory
to express the dynamics of a laminated structure and obtained the non-classical material
constants based on the geometry and classical elasticity properties in [22]. Additionally,
several other authors used an equivalent continuum approach to calculate the material
coefficients from structural considerations [23–25].

Additionally to theoretical approaches, several experimental studies for identification
of additional material parameters have been made in the past by several authors. One of
the first experiments for determining the micropolar material coefficients was conducted
by Askar in 1972 [26]. Perkins and Thompson used a dynamic test based on couple stress
theory to interpret the thickness-dependency of the apparent shear stiffness of an elastic
layer of material embedded between two rigid planes [27]. Gauthier and Jahsman were
the first to directly attempt to determine all six elastic constants of the linear isotropic
micropolar theory through experiments [28,29]. However, they concluded that detection of
the micropolar phenomena requires either series of dynamic tests or higher resolution static
measurements. Later, Lakes used this conjecture to further develop experiments which are
able to determine micropolar elastic constants for materials such as bone, polymeric foams
and metallic foams [10]. Additionally, Lakes noted that the micropolar elastic parameters
can be related to be more beneficial in terms of the shear modulus, Poisson’s ratio and
Young’s modulus as follows [11]:

E =
(2µ + ε)(3λ + 2µ + ε)

2λ + 2µ + ε
, G =

2µ + ε

2
,

ν =
λ

2λ + 2µ + ε
, coupling number N =

[
ε

2(µ + ε)

]1/2
,

polar ratio PΨ =
β + γ

α + β + γ
, characteristic length for torsion lt =

[
β + γ

(2µ + ε)

]1/2

characteristic length for bending lb =

[
γ

2(2µ + ε)

]1/2
.

4.3. Numerical Comparison of 2D Micro-Models

In this sub-section, several numerical results related to comparison of the two-dimensional
macro-models described in the previous subsections are presented. As a reference example,
a wall of the length L = 3 m and height H = 3 m is considered, which is subjected to a
uniformly distributed load of intensity q = 0.3 MPa applied to the top of the panel and a point
displacement δ = 0.003 m applied to the top left corner. The base is fixed in displacements in
the x and y directions, and the left and right boundaries are free; see Figure 1.
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Figure 1. A scheme for the reference example for comparing the two-dimensional macro-models.

The following material parameters are chosen for numerical calculations:

• parameters of the classical elasticity: Young’s modulus E = 3655 MPa and Poisson
ratio ν = 0.15.

• parameters of the Cosserat model: h = 0.025 m, kn = 500 GPa and ks = 250 GPa.
• parameters of the micropolar model: Em = 780 MPa, Gm = Em

2(1+ν)
, d = 0.5 m,

b = 0.1 m and h = 0.025 m.

The differential equations of the three elasticity theories are solved by using the
classical finite element method with triangular quadratic elements with the finest mesh
refinement H/400 providing elements of the characteristic size 0.0075 m. The von Mises
stress, or the equivalent tensile stress, is chosen as a comparison parameter, because it is
typically used in the design of structures for comparing the calculated value to the yield
stress of the material. The von-Mises and principal stress are calculated by using an average
of the non-symmetric shear stresses σ21and σ12. Additionally, for relating the numerical
results presented in this sub-section with the results of theoretical operator calculus-based
estimates provided in Section 3, displacements will be also analysed.

Figure 2 shows the von Mises stresses calculated for different macro-models. As it
can be clearly seen from this figure, the stresses observed in the Cosserat layered rocks
solution are lower than that of the classical elasticity model, which is expected since the rock
layer formulation allow for a weakened horizontal plane allowing for larger displacements.
Additionally, the stress profile of the micropolar theory is similar to the one obtained by
the classical elasticity, while the Cosserat model provides a slightly different stress profile.
The displacement profile is similar for all the models and slightly varies in the magnitude.

Figure 3 presents results of calculations of the relative rotations r3 − ϕ3 and the
micro-rotations ϕ3 for the Cosserat and mircopolar models. Evidently, micro-rotations
ϕ3 are parallel to the plane of the material layers, which is explained by the applied
boundary conditions. The distribution of micro-rotations in the Cosserat layered rock
model, micropolar masonry with and without interlocking have major difference. While
the micro-rotations in the Cosserat layered rocks formulation runs parallel to the continua,
the micro-rotation and relative rotations in the micropolar models tend to resist forces
diagonally to the applied loads.

Figures 4 and 5 show further results related to von Mises stress and stress components
σ11 and σ22. In particular, Figure 4 shows von Mises stress calculated along the line y = 0,
i.e., in the fixed support. It is important to underline that this result makes sense, since
elements of higher regularity are considered and therefore, Sobolev embedding in C1 is
satisfied. From these figures, as well as from Figure 2, it is visible that the micropolar model



Mathematics 2022, 10, 1670 17 of 22

predicts higher stresses in the masonry compared to the classical elasticity. The reason for
this is that the models aim to reduce the relative rotations (r3 − ϕ3) and micro-rotations ϕ3
with additional stiffness in the formulation. The micro-rotations and relative rotations are
less in the interlocked masonry model due to larger rotational stiffness, Figure 3. Higher
von Mises stresses are observed in the interlocked masonry walls as a result, Figure 2.

Classical Elasticity Continuum

umax = 3.434 σmin = 6.394 (max value) von Misesmax = 6.171

Cosserat Layered Rocks

umax = 3.217 max σmin = 5.704 von Misesmax = 5.666

Masonry without Interlocking as Equivalent Micropolar Continua

umax = 3.498 max σmin = 6.779 von Misesmax = 6.547

Figure 2. Cont.
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Masonry with Interlocking as Equivalent Micropolar Continua

umax = 3.717 max σmin = 8.215 von Misesmax = 7.945

Figure 2. Plot of displacement magnitude in mm (left column), minimum principal stress in N/mm2

(centre) and von Mises Stress in N/mm2 (right column). The results of calculations have been
magnified by 100 for illustrative purposes.

Masonry without Interlocking as
Equivalent Micropolar Continua

Masonry with Interlocking as Equivalent
Micropolar Continua Cosserat Layered Rocks

ϕmax = 2.207×10−4 ϕmax = 2.058×10−4 ϕmax = 3.082×10−1

max(r− ϕ) = 5.076×10−4 max(r− ϕ) = 5.727−5

Figure 3. Plot of micro-rotations ϕ3 (first row) and contour lines of relative rotations (r3− ϕ3) (second
row). The results of calculations have been magnified by 100 for illustrative purposes.

From Figures 4 and 5 it is also visible, that that the values of σ22 in the Cosserat layered
rocks model are more concentrated at the bottom of the wall, if compared to the micropolar
model and the classical elasticity model. Figure 5 also indicated significant changes in σ11
stress distribution of all three models, which underlines the influence of extra material
parameters of the more refined models.
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Figure 4. von Mises Stress at y = 0 along length of wall with mesh division H/50.

Classical Elasticity Cosserat Layered Rocks Masonry with Interlocking as Equivalent
Micropolar Continua

Figure 5. (Top row) shows the stress components σ11 and (bottom row) shows the stress components
σ22. The results of calculations have been magnified by 100 for illustrative purposes.

Next for providing further overview of the difference between the three elasticity
models, directional strain energies in x and y direction, i.e., normal and tangential strain
energy, are calculated:

Ux =
1
2

∫
v
(σ11ε11 + 0.5σ12ε12 + 0.5τ12φ3 + µ31κ31)dV,

Uy =
1
2

∫
v
(σ22ε22 + 0.5σ21ε21 + 0.5τ21φ3 + µ32κ32)dV.

Table 1 shows results of these calculations. From Table 1 and Figure 2, it can be
noted that the total strain energy is proportional to the von Mises stress. Additionally,
the directional strain components provided in Table 1 indicate the plane of weakness
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particularly when comparing the directional energy in the classical elasticity continuum
and Cosserat continuum.

Table 1. Directional strain energies Ux and Uy in N-m × 103.

Strain Energy Classical Elasticity Cosserat Layered Rocks Masonry without Interlocking Masonry with Interlocking

Ux 4.502 1.033 7.227 9.586
Uy 17.565 18.692 21.374 31.759

Finally, the numerical results presented in this section are linked to the theoretical
estimates (9) and (10) provided in Section 3. For that purpose, Table 2 presents results
of computing umax, max σmin and maximum von Mises stresses for different values of
additional material constants in the macro-model of Cosserat theory. The last two rows of
the table show additional computations for the micropolar theory with interlocking and
the classical elasticity. As it can be clearly seen from Table 2, the micro-rotation coefficients
do not significantly affect the maximum of von Mises stresses unless the coefficients κ31
and κ32 have values of order 107 or higher. The values for the coefficient of κ used in the
numerical example are of order 106 (see the row with the micropolar model) and thus do
not have a major effect on the stresses. Moreover, the result in Table 2 clearly show that if
1
2 (B2121 − B1212) and − 1

2 (B1212 + B2121) + B1221 are set to 0, then the solution close to the
classical elasticity solution, as predicted by estimates (9) and (10). However, it is important
to underline that there is still a small difference between these solutions. The reason for
this is using of macro-models for computation and not the original differential equations,
since the material parameters of the full models are not known.

Table 2. Change in displacements, principal and von Mises stresses for different micro-rotation coeffi-
cients in the Cosserat model and its comparison to the micropolar model and the classical elasticity.

Coefficients of κ31 and κ32
1
2 (B2121 − B1212) umax max σmin max von Mises

C11 C22 mm N/mm2 N/mm2

1 × 109 5 × 108 4.536 × 109 3.726 8.240 7.971
1 × 108 5 × 107 4.536 × 109 3.718 8.217 7.948
1 × 107 5 × 106 4.536 × 109 3.717 8.215 7.946
1 × 106 5 × 105 4.536 × 109 3.717 8.215 7.945
1 × 105 5 × 104 4.536 × 109 3.717 8.215 7.945
1 × 104 5 × 103 4.536 × 109 3.717 8.215 7.945
1 × 103 5 × 102 4.536 × 109 3.717 8.215 7.945
1 × 102 5 × 101 4.536 × 109 3.717 8.215 7.945
1 × 101 5 × 100 4.536 × 109 3.717 8.215 7.945
1 × 100 5 × 10−1 4.536 × 109 3.717 8.215 7.945

0 0 4.536 × 109 3.717 8.215 7.945
0 0 0 3.415 6.248 6.029

6.094 × 106 1.219 × 106 4.536 × 109 3.717 8.215 7.945 Micropolar with interlocking
- - - 3.434 6.394 6.170 Classical Elasticity

5. Summary and Conclusions

In this paper, three elasticity theory are discussed and compared: the classical linear
elasticity, the Cosserat elasticity, and the micropolar elasticity. The idea of Cosserat and
micropolar elasticity is that not only displacements of a continuum are considered, but
rotations as well. These theories are expected to describe more accurately materials having
cellular structure, or, on a macro level, masonry structures constructed from individual
bricks. The obstacle in the way of applying Cosserat and micropolar elasticity in engineering
practice is related to additional material constants appearing in these theories. In particular,
it is not a trivial task to identify these constants in practice. Therefore, to shed some
light on a principal difference between these models, a rigorous quaternionic operator
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calculus-based analysis of these models is performed and after that we discussed simplified
macro-models, which could be used in engineering practice.

Theoretical results presented in this paper are the first of all related to the Cosserat
elasticity theory, which has not been considered so far in the setting of quaternionic operator
calculus. In this way, explicit representation formulae for the solution of a Dirichlet
boundary value problem have been presented, as well as the solvability and uniqueness
theorem. Further, several explicit estimates showing the difference between the classical
linear elasticity, the Cosserat elasticity, and the micropolar elasticity have been constructed.
The main point of these estimate is the fact, that material constant have the biggest influence
on the difference between the models. After that the two the general macro-models for
the Cosserat elasticity and the micropolar elasticity have been discussed and numerical
experiments for these models have been analysed. Numerical results show a difference
between the models indicating the tendency of the classical elastic model to underestimate
stresses appearing in a structure. The results also indicates Moreover, the results also
clearly underline that the material parameters have the major influence on the results
of computations with the advanced elasticity models, as it has been predicted by the
theoretical estimates. In conclusion, the results of this study indicates that:

• The material constants of micropolar and Cosserat elasticity can be used to introduce
anisotropies important for the modeling of masonry structures

• Directional strain energies can be used to identify planes of weakness
• To further evaluate the results of this study, future works should correlate the microp-

olar and Cosserat material constants to masonry continua based on experiments
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