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Abstract: Inspired by the ideas of R. Kannan, we define the new concepts of mutual Kannan con-
tractivity and mutual contractivity between two self-maps on a metric space that generalize the
concepts of the Kannan map and contraction. We give some examples and deduce the properties
of the operators satisfying this type of condition; in particular, we study the case where the space
is normed, and the maps are linear. Then we generalize some theorems proposed by this author
on the existence of a fixed point of one operator or a common fixed point for two operators. Our
results first prove the existence of a common fixed point of a set of self-maps of any cardinal number
(countable or uncountable) satisfying the conditions of Kannan type in metric spaces. The same is
proved for a set of maps satisfying the mutual relations of classical contractivity. We prove in both
cases the convergence of iterative schemes involving operators with mutual relations of contractivity,
proposing sufficient conditions for the iteration of the operators on any element of the space to
converge to the common fixed point when a different operator is taken in each step. The results
obtained are applied to operators acting on real functions, coming from the fractal convolution with
the null function.

Keywords: iteration; fixed point; discrete dynamical systems; attractors; Kannan’s mappings

MSC: 26A18; 47H10; 47J26; 54H25; 37C25

1. Introduction

Iterative schemes are ubiquitous in applied mathematics and in numerical methods
and algorithmics in general. Usually they are described by a recurrence formula such as
xk+1 = T(xk), where xk belongs to some space E, and T is a self-map on E.

These types of iterations are found in classical numerical procedures, such as Newton–
Raphson and fixed point methods to solve nonlinear equations, as well as in fractal theory
to define fractal sets and attractors. In the framework of the fractal interpolation, there
is an operator T defined in a space of functions E (usually E is a subspace of continuous
or integrable real functions), giving rise to a fractal interpolant f ∗ of a set of data (see for
instance [1–4]). The fractal function is obtained as attracting fixed point of an iterative
process of the aforementioned type:

fk+1 = T fk.

The operator T is a Banach contraction, and it depends on a vectorial parameter, called
a scale vector, that measures the contractivity ratio of the self-map T. If the scale vector is
constant (it does not depend on the step k), the iterations of any map f0 ∈ E converge to
the fractal function f ∗. This scheme may be generalized in different ways. For instance,

Mathematics 2022, 10, 2632. https://doi.org/10.3390/math10152632 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152632
https://doi.org/10.3390/math10152632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5502-3934
https://orcid.org/0000-0003-4847-0493
https://orcid.org/0000-0002-0477-835X
https://orcid.org/0000-0001-7591-6660
https://doi.org/10.3390/math10152632
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152632?type=check_update&version=2


Mathematics 2022, 10, 2632 2 of 14

if the scale vector (that is to say, the operator T) is different at each step, do we obtain
also an attracting fixed map? What happens if T (or Tk) is a more general contraction (not
necessarily Banach)?

We substitute here the mapping T with a set of operators on a metric space of any
cardinal number (countable or uncountable) and establish Kannan and contractivity condi-
tions for the existence of a common fixed point and the convergence of the scheme. For
similar results on classical Banach contractions, see the reference [5].

In the 1960s, R. Kannan ([6,7]) introduced a new type of mappings, which are a form
of contraction, now known as Kannan’s mappings. They are defined as follows:

Definition 1. Let E be a metric space and T : E→ E. If there exists a number β, 0 < β < 1
2 , such

that, for all x, y ∈ E,
d(T(x), T(y)) ≤ β[d(x, T(x)) + d(y, T(y))]

then T is called a Kannan mapping.

Remark 1. The concepts of Kannan map and contractivity are independent (see [6,7]). Let f :
[0, 1] → [0, 1] be defined by f (x) = x

3 . This function f is a contractive mapping but it is not a
Kannan mapping. On the other hand, the function g : [0, 1]→ [0, 1] defined by

g(x) =

{
x
4 , if 0 ≤ x < 1

2
x
5 , if 1

2 ≤ x ≤ 1,

is a Kannan mapping with β = 4
9 but it is not a contractive mapping due to its discontinuity. Both

examples are taken from the reference [7].

In general, the maps of Kannan type need not be continuous and, in this sense, are
more general than contractions. For applications of these kinds of mappings, the reader
may consult the references [8,9].

In Section 2, we define the concept of mutual Kannan contractivity for any collection
of mappings and show the existence of a common fixed point for the given collection under
some specific conditions. We also show that the common fixed point of this collection is
asymptotically stable. In Section 3, we obtain some results on a common fixed point for
a set of mutually contractive mappings. Therein, we also prove some results regarding a
common fixed point for a set of mappings satisfying weaker assumptions than the classical
contractivity. In both cases, we study the convergence of discrete iterative processes
defined by the operators. In Section 4, we illustrate some applications of our results on
fractal convolution.

2. Sets of Mutually Kannan Operators

We consider in this section the existence of common fixed points for a set of operators
with mutual relations of Kannan type. We will prove the existence of a common fixed
point of a set of self-maps on a metric space E. The results generalize the next theorem of R.
Kannan ([6], Theorem 1):

Theorem 1. If T1 and T2 are two operators, each mapping a complete metric space (E, d) into itself,
and if

d(T1(x), T2(y)) ≤ β[d(x, T1(x)) + d(y, T2(y))] ∀x, y ∈ E, (1)

where 0 < β < 1
2 , then T1 and T2 have a unique fixed point.

Based on this result we propose the following definition describing a condition involv-
ing two self-maps on a metric space.
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Definition 2. The self-maps T1, T2 : E → E, where E is a metric space with respect to d are
mutually Kannan with constant β if there exists β ∈ R such that 0 < β < 1

2 satisfying the
condition (1).

Remark 2. T is Kannan (Definition 1) if and only if is mutually Kannan with respect to itself.
In this sense a mutual Kannan contraction generalizes the Kannan contractivity.

Example 1. Let f , g : [0, 1]→ [0, 1] be defined by

f (x) =
x
4

and g(x) =
x
6

.

It is simple to check that both functions f and g are mutually Kannan mappings since

d( f (x), g(y)) =
∣∣∣ x
4
− y

6

∣∣∣ ≤ ∣∣∣ x
4

∣∣∣+ ∣∣∣y
6

∣∣∣ ≤ 1
3

{∣∣∣x− x
4

∣∣∣+ ∣∣∣y− y
6

∣∣∣} =

β{d(x, f (x)) + d(y, g(y))},

where β = 1
3 .

Two maps with mutual relation of Kannan type need not be contractive, as explained
in Remark 1. However, if the maps are linear on a normed space, we can establish some
relations between contractivity and mutual Kannan contractivity. The next result is classical
in functional analysis.

Lemma 1. If L is a linear operator from a Banach space into itself such that ‖L‖ < 1, then
(I − L)−1 exists, is bounded and

(I − L)−1 = I + L + L2 + . . . ,

where I is the identity.

Proposition 1. If E is a normed space, L, S : E → E are linear and mutually Kannan with
constant β, then L and S are bounded, contractive and such that

max{‖L‖, ‖S‖} ≤ β

1− β
.

If E is Banach, I − L and I − S are invertible.

Proof. Applying the property of Kannan (1), for x ∈ E and y = 0,

‖L(x)‖ ≤ β ‖L(x)− x‖ ≤ β ‖x‖+ β ‖L(x)‖.

Thus
‖L‖ ≤ β

1− β
< 1

consequently L is contractive. The invertibility of I − L comes from the previous lemma.
The same is true for S.

In this case, the mutual Kannan property implies contractivity.
The following result can be found in the reference [10].

Lemma 2. If L is a linear operator from a Banach space into itself, and there exist c1, c2 ∈ R, such
that 0 ≤ c1, c2 < 1 and

‖L(x)− x‖ ≤ c1‖x‖+ c2‖L(x)‖. (2)
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Then L is a topological isomorphism and

1− c1

1 + c2
‖x‖ ≤ ‖L(x)‖ ≤ 1 + c1

1− c2
‖x‖, (3)

1− c2

1 + c1
‖x‖ ≤ ‖L−1(x)‖ ≤ 1 + c2

1− c1
‖x‖. (4)

Proposition 2. If E is a Banach space, L : E→ E is linear and mutually Kannan with S : E→ E
linear and invertible, such that ‖I − S−1‖ < 1, then, L is a topological isomorphism, and

1− 2β

1 + β
‖x‖ ≤ ‖L(x)‖ ≤ 1 + 2β

1− β
‖x‖,

1− β

1 + 2β
‖x‖ ≤ ‖L−1(x)‖ ≤ 1 + β

1− 2β
‖x‖.

where β is the constant of the mutual contractivity.

Proof. It is a consequence of the previous lemma. Let us take y = S−1x in the inequality (1);
then, for any x ∈ E,

‖L(x)− x‖ ≤ β(‖L(x)− x‖+ ‖x− S−1(x)‖) ≤ β‖x‖+ β‖L(x)‖+ β‖x‖.

We obtain the inequality (2) for c1 = 2β < 1 and c2 = β < 1. Consequently, L is
invertible, and

1− 2β

1 + β
‖x‖ ≤ ‖L(x)‖ ≤ 1 + 2β

1− β
‖x‖,

1− β

1 + 2β
‖x‖ ≤ ‖L−1(x)‖ ≤ 1 + β

1− 2β
‖x‖.

Thus, the proof of the proposition is completed.

The following simple note can be seen in [11]. However, we include its details for the
reader’s convenience.

Note 1. Let T : E→ E be a contraction of a metric space (X, d) with constant c < 1
3 . Then T is

Kannan contractive relative to d.
Since T is a contraction, we have

d(T(x), T(y)) ≤ cd(x, y) ≤ cd(x, T(x)) + cd(T(x), T(y)) + cd(T(y), y), ∀ x, y ∈ E.

This yields

d(T(x), T(y)) ≤ c
1− c

[d(x, T(x)) + d(y, T(y))], ∀ x, y ∈ E.

Since 0 < β := c
1−c < 1

2 , T is a Kannan mapping.

Proposition 3. Let d1 and d2 be equivalent metrics on a complete metric space E, i.e., there exist
positive constants c1, c2 such that

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y), x, y ∈ E.

If T is a contraction on E with respect to the metric d1 then there exists an m ∈ N, such that
Tm is a contraction with respect to the metric d2. Moreover, for some n0 ∈ N, Tn is a Kannan map
with respect to the metric d2 for all n ≥ n0.
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Proof. Since T is contraction with respect to metric d1, there exists 0 ≤ c < 1 such that

d1(T(x), T(y)) ≤ cd1(x, y), x, y ∈ E.

Then d2(T(x), T(y)) ≤ c2d1(T(x), T(y)) ≤ c2cd1(x, y) ≤
(

c2
c1

c
)

d2(x, y). Choose m ∈ N
such that c2

c1
cm < 1. Then

d2(Tm(x), Tm(y)) ≤ c2d1(Tm(x), Tm(y)) ≤ c2cmd1(x, y) ≤
(

c2

c1
cm
)

d2(x, y).

This completes the proof of the first part. According to the previous note, taking n
large enough to have c2cn/c1 < 1/3, Tn is Kannan as well.

Definition 3. Given a set of self-maps F = {Ti : E → E; i ∈ I}, where E is a metric space,
x̄ ∈ E is a fixed point of F , if Ti(x̄) = x̄, ∀i ∈ I .

We will consider now the iterative scheme

xk = Tik (xk−1), (5)

∀ k ≥ 1, x0 ∈ E, Tik ∈ F .

Definition 4. x∗ ∈ E is a global attractor for the scheme (5) if lim
n→∞

τn(x) = x∗, ∀x ∈ E, where
τn := Tin ◦ Tin−1 ◦ . . . Ti2 ◦ Ti1 .

Theorem 2. Let E be a complete metric space, and F = {Ti : E→ E, i ∈ I}, such that ∀i, j ∈ I ,
Ti, Tj are mutually Kannan with constant βij; 0 < βij <

1
2 and β = sup

i,j
βij <

1
2 . Then:

1. F has a unique fixed point x̄ ∈ E.
2. x̄ is the only fixed point of each Ti ∀i ∈ I .
3. The point x̄ ∈ E is a global attractor for any scheme of type (5).

Proof. According to Kannan’s theorem ∀i, j ∈ I , Ti, Tj have a unique fixed point x̄ij ∈ E.
Let us see now that x̄ij = x̄ ∀i, j. Let us consider the maps Ti, Tk (k 6= j) applied to x̄ij:

d(Ti(x̄ij), Tk(x̄ij)) ≤ βik [d(x̄ij, Ti(x̄ij)) + d(x̄ij, Tk(x̄ij))].

Since x̄ij is a fixed point of Ti and βik < β < 1/2:

d(x̄ij, Tk(x̄ij)) ≤ d(x̄ij, Tk(x̄ij))/2.

Consequently x̄ij is a fixed point of Tk and x̄ij = x̄ik = x̄. According to Kannan’s
Theorem 1 x̄ is unique.

For the second item, let us assume that Ti has another fixed point ȳ ∈ E, then for k ∈ I ,

d(x̄, ȳ) = d(Tk(x̄), Ti(ȳ)) ≤ β [d(x̄, Tk(x̄)) + d(ȳ, Ti(ȳ))] = 0

and x̄ = ȳ. Accordingly, the fixed point of Ti is unique.
For the third item, let us define, for any x ∈ E, x0 = x, x1 = Ti1(x0), x2 = Ti2(x1), . . . xn =

Tin(xn−1), then

d(x1, x2) = d(Ti1(x0), Ti2(x1)) ≤ β [(d(x0, Ti1(x0)) + d(x1, Ti2(x1))]

thus
d(x1, x2) ≤ β [d(x0, x1) + d(x1, x2)]
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hence,

d(x1, x2) ≤
β

1− β
d(x0, x1).

In the same way,

d(x2, x3) ≤
β

1− β
d(x1, x2) ≤

(
β

1− β

)2
d(x0, x1).

In general,
d(xn, xn+1) ≤ γn d(x0, x1), (6)

where γ = β/(1− β) < 1. Let us check that (xn) is a Cauchy sequence. For q ≥ 1 :

d(xn, xn+q) ≤
q−1

∑
j=0

d(xn+j, xn+j+1) ≤
(

n+q−1

∑
k=n

γk

)
d(x0, x1).

Since
∞

∑
k=0

γk is convergent, (xn) is a Cauchy sequence, and there exists x∗ ∈ E, such

that x∗ = lim
n→∞

xn.

Let us prove that x∗ is the fixed point of F . For i ∈ I and n ∈ N:

d(x∗, Ti(x∗)) ≤ d(x∗, xn) + d(xn, Ti(x∗)).

Applying the condition (1) for Tin and Ti,

d(x∗, Ti(x∗)) ≤ d(x∗, xn) + β [d(xn−1, Tin(xn−1)) + d(x∗, Ti(x∗))]

and
(1− β) d(x∗, Ti(x∗)) ≤ d(x∗, xn) + β d(xn−1, xn).

The terms of the right hand tend to zero; consequently x∗ = Ti(x∗), and x∗ = x̄. Then
the limit does not depend on x.

Let us remind two definitions on dynamical systems.

Definition 5. B ⊆ E is a forward invariant set of F if Ti(B) ⊆ B ∀i ∈ I .

Definition 6. x̂ ∈ E is Lyapunov stable for the system (5), if ∀ ε > 0 ∃ δ > 0, such that if
d(x, x̂) < δ, then d(τn(x), τn(x̂)) < ε, where τn := Tin ◦ Tin−1 ◦ · · · ◦ Ti1 for all n. An element
x̂ ∈ E is asymptotically stable, if it is stable and attractor.

Proposition 4. In the conditions of Theorem 2, any ball Br = B(x̄, r), where x̄ is the fixed point of
F and r > 0, is a forward invariant set of F .

Proof. Let y ∈ Br, and i, k ∈ I ,

d(Ti(y), x̄) ≤ β [d(y, Ti(y)) + d(x̄, Tk(x̄))]

and
d(Ti(y), x̄) ≤ β [d(y, x̄) + d(x̄, Ti(y))].

Consequently,

d(Ti(y), x̄) ≤ β

1− β
d(y, x̄) < d(y, x̄) < r

and Ti(y) ∈ Br.

Proposition 5. In the conditions of Theorem 2, x̄ is asymptotically stable.
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Proof. x̄ is a fixed point of τn for all n. For any ε > 0, let us take δ = ε. If d(x, x̄) < δ, then,
according to the previous proposition Ti1(x) ∈ B(x̄, δ), τ2(x) = Ti2 ◦ Ti1(x) ∈ B(x̄, δ), etc.
In general d(τn(x), x̄) < δ = ε.

Since x̄ is a global attractor and stable, then, x̄ is asymptotically stable.

Let us now deduce the rate of convergence of the orbits τn(x) to x̄:

d(τn(x), x̄) = d(Tin(xn−1), Tin(x̄)) ≤ β [d(xn−1, Tin(xn−1)) + d(x̄, Tin(x̄))],

then, according to (6),

d(τn(x), x̄) ≤ βd(xn−1, xn) ≤ β γn−1d(x0, x1)

and the convergence is of exponential type. The last inequality illustrates also the conver-
gence of different orbits:

∀x, y ∈ E; d(τn(x), τn(y)) ≤ β γn−1[d(x, Ti1(x)) + d(y, Ti1(y))
]
.

3. Mutually Contractive Operators

We consider in this section the existence of common fixed points for systems of
operators with mutual relations of "classical" contractivity. Let F be a set of self-maps on a
metric space:

F = {Ti : E→ E; i ∈ I},

where I may be finite or infinite.
Our aim is the generalization of the following theorem by R. Kannan ([6], Theorem 3)

for a type of operators different from the previous sections.

Theorem 3. If T1 and T2 are two operators mapping a complete metric space (E, d) into itself,
and if

1. d(T1(x), T2(y)) ≤ α d(x, y), 0 < α < 1, x, y ∈ E, x 6= y.
2. T2 is a contraction mapping, i.e., there exists β, 0 < β < 1, such that

d(T2(x), T2(y)) ≤ β d(x, y), ∀ x, y ∈ E.

3. There exists x ∈ E, such that the sequence x1 = T1(x), x2 = T2(x1), x3 = T1(x2),
x4 = T2(x3) . . . , is such that xr 6= xs if r 6= s.

Then, T1, T2 have a unique common fixed point.

On the basis of the first condition, we introduce the concept of mutual (classical) contractivity.

Definition 7. The operators T, S : E→ E, where E is a metric space, are mutually contractive, if
there exists α ∈ R such that 0 < α < 1 and for x 6= y, x, y ∈ E,

d(T(x), S(y)) ≤ α d(x, y). (7)

Remark 3. It is clear that T is contractive if and only if T is mutually contractive with itself. As a
consequence, the concept of mutual contractivity generalizes that of the classical contraction.

Remark 4. Kannan mutual contractivity and mutual contractivity are idependent concepts. For in-
stance the map g of Remark 1 is mutually Kannan with itself, but it is not contractive.

Remark 5. Two contractions need not be mutually contractive. For instance, let us consider
f (x) = (1/2)x and g(x) = (1/6)x in R with the usual metric, taking x = 1, y = 1.01 in the
inequality (7)

| f (1)− g(1.01)| = 1.99/6 ≤ α 0.01,
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and this contradicts the condition α < 1.

The following results provide a way of constructing mutually contractive linear operators.

Proposition 6. Let E be a normed space with norm ‖ · ‖, and let us define the distance

d(x, y) := ‖x− y‖+ ‖x‖+ ‖y‖. (8)

Let L, L′ : E → E be two linear and bounded operators such that k := max{‖L −
L′‖, ‖L‖, ‖L′‖} < 1/2. Then L, L′ are mutually contractive with constant α = 2k < 1 with
respect to the distance d.

Proof. Let us prove the triangular inequality for the map d.

d(x, z) = ‖x− z‖+ ‖x‖+ ‖z‖ ≤ ‖x− y‖+ ‖y− z‖+ ‖x‖+ ‖z‖.

This is less than or equal to d(x, y) + d(y, z).
Now, let us prove the property of being mutually contractive:

d(L(x), L′(y)) = ‖L(x)− L′(y)‖+ ‖L(x)‖+ ‖L′(y)‖ ≤

‖L(x)− L′(x)‖+ ‖L′(x)− L′(y)‖+ ‖L(x)‖+ ‖L′(y)‖

and
d(L(x), L′(y)) ≤ ‖L− L′‖‖x‖+ ‖L′‖‖x− y‖+ ‖L‖‖x‖+ ‖L′‖‖y‖.

This quantity is less than or equal to

k‖x− y‖+ 2k‖x‖+ k‖y‖,

and thus
d(L(x), L′(y)) ≤ αd(x, y),

taking α = 2k.

Example 2. The maps f (x) = (1/4)x and g(x) = (1/6)x are mutually contractive with respect
to the metric d in R, according to the previous proposition.

We now give the inverses of the previous result.

Proposition 7. Let E be a normed space with norm ‖ · ‖ and L, L′ : E → E be two linear
and bounded operators. If L, L′ are mutually contractive with constant α, and k := max{‖L−
L′‖, ‖L‖} < α/2, Then, L is contractive with respect to the distance d defined in (8).

Proof. Applying the contractivity condition of L, L′ for x 6= y:

‖L(x)− L(y)‖ ≤ ‖L′(x)− L(y)‖+ ‖L(x)− L′(x)‖ ≤ α‖x− y‖+ ‖L− L′‖‖x‖,

then,

d(L(x), L(y)) = ‖L(x)− L(y)‖+ ‖L(x)‖+ ‖L(y)‖ ≤ α‖x− y‖+ 2k‖x‖+ k‖y‖ ≤

α(‖x− y‖+ ‖x‖+ ‖y‖).

Proposition 8. Let E be a normed space and L : E → E be a linear operator. If L is mutually
contractive with the identity with constant α, then L is bounded and contractive, and ‖L‖ ≤ α.
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Proof. Take y = 0 in the inequality (7).

In the following results, we provide conditions for the existence of a common fixed
point of a family of mutually contracting operators (not necessarily linear).

Theorem 4. Let E be a complete metric space andF be a set of self-mapsF = {Ti : E→ E, i ∈ I}.
If there exists Ti0 ∈ F , such that, ∀i ∈ I , Ti0 and Ti are mutually contractive with factor αi ∈ R,
such that α := sup αi < 1/3, then,

1. Ti is contractive ∀i ∈ I .
2. F has a unique fixed point.

Proof. Ti0 is contractive then it owns a unique fixed point x̄. For i 6= i0, if x 6= y,

d(Ti(x), Ti(y)) ≤ d(Ti(x), Ti0(y)) + d(Ti0(y), Ti0(x)) + d(Ti0(x), Ti(y)) ≤ 3αd(x, y),

consequently, Ti is also contractive. Let x̄i be its fixed point. If x̄ 6= x̄i then,

d(x̄, x̄i) = d(Ti0(x̄), Ti(x̄i)) ≤ αd(x̄, x̄i).

Since α < 1 both agree.

According to the last result, if the constants α and β of Kannan’s Theorem 3 are lower
than 1/3 then T1 is a contraction too, and the condition 3 is no longer needed.

Theorem 5. Let E be a complete metric space and F a set of self-maps F = {Ti : E→ E, i ∈ I}.
Let Ti0 ∈ F be such that ∀i ∈ I , Ti0 and Ti are mutually contractive with factor αi ∈ R and
α := sup αi be such that 1/3 ≤ α < 1. Let us assume that there exists y ∈ E, such that the
sequence yn = (Ti0)

n(y), y0 = y, tends to x̄ and satisfies the inequalities yn 6= x̄, for all n > n0,
where n0 is a natural number, such that n0 ≥ 1, and x̄ is the fixed point of Ti0 , then:

1. F has a unique fixed point x̄ ∈ E.
2. x̄ is the only fixed point of every Ti ∈ F .

Proof. Since Ti0 is a contraction and E is complete, there exists x̄ ∈ E, such that x̄ is the
fixed point of Ti0 . Given y ∈ E such that the sequence yn = (Ti0)

n(y), y0 = y satisfies the
conditions described, let us consider for i 6= i0 and n > n0:

d(x̄, Ti(x̄)) ≤ d(x̄, yn) + d(yn, Ti(x̄)) ≤ d(x̄, yn) + d(Ti0(yn−1), Ti(x̄)) ≤ d(x̄, yn) + α d(yn−1, x̄).

Both right summands tend to zero; then x̄ = Ti(x̄) and x̄ is a fixed point of Ti, ∀i ∈ I .
Ti0 has a unique fixed point; consequently, F has only the fixed point x̄.

For i 6= i0, if x̄i is another fixed point of Ti and x̄i 6= x̄, then

d(x̄i, x̄) = d(Ti(x̄i), Ti0(x̄)) ≤ α d(x̄i, x̄),

where α < 1. Hence, x̄i = x̄, and Ti has only a fixed point (equal to x̄).

Theorem 6. Let E be a complete metric space and F = {Ti : E → E; i ∈ I} satisfying the
conditions of Theorem 4 or Theorem 5. Let us define ∀ x ∈ E the sequence x0 = x, and for k ≥ 1,

xk = Tik (xk−1)

where Tik ∈ F . Let x̄ be the fixed point of F . Then:

1. For any x ∈ E
lim

n→∞
τn(x) = lim

n→∞
Tin ◦ Tin−1 ◦ · · · ◦ Ti1(x) = x̄.

2. x̄ is globally asymptotically stable.
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Proof. Let us consider any x ∈ E and define the sequence xn = τn(x) = Tin ◦ Tin−1 ◦ · · · ◦
Ti1(x), x0 = x. If xn 6= x̄ ∀n ≥ 0, then

d(xn, x̄) = d(Tin(xn−1), Ti0(x̄)) ≤ αd(xn−1, x̄) ≤ . . . αnd(x0, x̄). (9)

If there exists m > 0 such that xm = x̄ then xm+1 = Tim+1(xm) = xm = x̄ and
so on. In any case, d(xn, x̄) ≤ αnd(x0, x̄). Consequently, lim

n→∞
τn(x) = x̄ and therefrom

the attraction.
For any ε > 0 if d(x, x̄) < δ then by (9), d(τn(x), x̄) ≤ αn d(x, x̄) < αn δ < δ. The

election δ = ε satisfies the definition of stability. Hence, x̄ is asymptotically stable.

Theorem 7. If E is a Banach space, F = {Li : E → E, i ∈ I} a family of linear and bounded
operators, and there exists j ∈ I such that the constants ki := max{‖Li− Lj‖, ‖Li‖, ‖Lj‖} < 1/2
satisfy the condition k := sup ki < 1/2, then Li, Lj are mutually contractive for any i ∈ I with
respect to the distance d defined in (8), and

1. 0 is an equilibrium asymptotically stable for the system xk = Lik (xk−1) for k ≥ 1.
2. 1 does not belong to the point spectrum of Li for any i.

Proof. According to Proposition 6, Li, Lj are mutually contractive with respect to the
distance d with constant αi = 2ki. The set F owns the fixed point zero. If any Li has another
fixed point x̄i 6= 0, then

d(x̄i, 0) = d(Li(x̄i), Lj(0)) ≤ 2kid(x̄i, 0).

Since 2ki < 1, then d(x̄i, 0) = 0, and Li owns a single fixed point. The proof for stability
is similar to Theorem 6.

Remark 6. The convergence of the system holds in norm also due to the definition of d (8).

Proposition 9. In the hypothesis of Theorems 4 or 5, any ball B(x̄, r), where x̄ is the fixed point of
F and r > 0, is an invariant set.

Proof. If x ∈ B(x̄, r) then if x 6= x̄, ∀i ∈ I ,

d(Ti(x), x̄) = d(Ti(x), Ti0(x̄)) ≤ α d(x, x̄) < α r < r

then, Ti(x) ∈ B(x̄, r).
If x = x̄, Ti(x) = Ti(x̄) = x̄ ∈ B(x̄, r).

In fractal theory, the backward orbits of type

τ̃n(y) = Ti1 ◦ Ti2 ◦ · · · ◦ Tin(y)

are as important as the forward orbits, that acquire full sense in algorithmics.
Let us study now the stability of the point x̄ with respect to the backward orbits τ̃n.

Proposition 10. If E,F satisfy the conditions of Theorem 4, then the fixed point x̄ is asymptotically
stable with respect to backward orbits τ̃n.

Proof. For y ∈ E, let us define yn = τ̃n(y) = Ti1 ◦ Ti2 ◦ · · · ◦ Tin(y). According to Theorem 4,
the operators Ti are contractive with factor 3α, then,

d(τ̃n(y), x̄) = d(τ̃n(y), τ̃n(x̄)) ≤ (3α)nd(y, x̄).

From this inequality the conclusion is easily verified.
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Variant of Banach’s theorem

The following theorem proves the existence of fixed point of a single operator on a
metric space not necessarily complete (see the reference [7]).

Theorem 8. Let E be a metric space (not necessarily complete), with T : E → E continuous at
x0 ∈ E. If there exists x ∈ E, such that the sequence of iterations (Tn(x)) converges to x0, then x0
is a fixed point of T. If, in addition, ∃ α ∈ R, such that 0 < α < 1 and ∀ ξ ∈ E

d(T(x0), T(ξ)) ≤ α d(x0, ξ),

then, x0 is the unique fixed point of T.

We generalize the former result to a set of operators acting on a metric space not
necessarily complete, proving the existence of a common fixed point, which is the unique
fixed point of every element of the family.

Theorem 9. Let E be a metric space (not necessarily complete) and F = {Ti : E → E; i ∈ I} a
collection of self-maps. For i0 ∈ I , let us assume that Ti0 is continuous at x̄ ∈ E. If there exists
x ∈ E, such that Tn

i0
(x)→ x̄ (as n→ ∞), and ∀ξ ∈ E, ∀i ∈ I

d(Ti(x̄), Ti0(ξ)) ≤ αi d(x̄, ξ),

where α = sup αi < 1, then x̄ is the unique fixed point of each Ti.

Proof. Due to continuity, x̄ is a fixed point of Ti0 . Let us take i 6= i0 and, for the element x
of the statement, define xn = Tn

i0
(x), then

d(x̄, Ti(x̄)) ≤ d(x̄, xn) + d(xn, Ti(x̄)) ≤ d(x̄, xn) + α d(xn−1, x̄)→ 0.

Consequently, x̄ = Ti x̄, and x̄ is a fixed point of F .
If x̄i is another fixed point of Ti

d(x̄, x̄i) = d(Ti0(x̄), Ti(x̄i)) ≤ α d(x̄, x̄i).

Since α < 1 then x̄ = x̄i.

4. An Application to Fractal Convolution

In this section, we apply the previous results to iterations of a side operator related
to fractal convolution [12]. We introduce first the formalism of a type of Iterated Function
System (IFS).

Let us define in E = [a, b]×R an IFS {wn : n = 1, . . . , N} associated with a partition
of the interval, a = t0 < t1 < t2 < . . . tN = b, where N > 1, and a set of scale functions (or
constants) {αn(t) : n = 1, . . . , N}, such that the sup norm is ‖αn‖∞ < 1 for all n .

The IFS is composed of the mappings wn(t, x) = (Hn(t), Fn(t, x)), where Hn are affine,
and Hn(t0) = tn−1, Hn(tN) = tn, and Fn(t, x) = αn(x− b(t)) + f ◦ Hn(t), for n = 1, . . . N,
where f , b ∈ Lp([a, b]). This system induces an operator W on the set K(E) of compact sets
of E, defined for A ∈ K(E) as:

W(A) = ∪N
n=1wn(A).

The self-map W owns an attractor G. The set G is the graph of a function on the interval
called in previous papers α-fractal function and denoted as f α ∈ Lp([a, b]). The notation
describes the dependence of the map on the so-called scale vector (αn)N

n=1.
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Moreover, f α can be seen as the result of an operation between f and b. This operation
has been called fractal convolution of f and b (for instance, see the reference [12]), though it
has nothing to do with other types of convolution between maps. Thus,

f α = f ∗ b.

Beginning from this association, we defined the side or partial convolutions with the
null function:

L0(b) = f0 ∗ b,

R0( f ) = f ∗ f0,

where f0 is the null function.
Figure 1 represents the outcome of the action of L0 on the map b(x) = sin(πx) in the

interval [0, 2π], an evenly sampled partition with N = 10 subintervals and αn(t) = t/8, for
any n = 1, . . . , 10.

0 1 2 3 4 5 6
-2

-1

0

1

2

Figure 1. Graph of the image of the function b(x) = sin(πx) by the operator L0 in the interval
I = [0, 2π] (fractal convolution of the null function with a sinus).

We studied the properties of these operators. For instance, they are linear and
bounded, and

‖L0‖ ≤
Λ

1−Λ
, (10)

‖R0‖ ≤
1

1−Λ
, (11)

where Λ = max{‖αn‖∞ : n = 1, . . . , N} < 1. Consequently, if Λ < 1/2 then L0 is a
contraction, and if Λ = 0 then L0 = 0, where 0 represents the null operator.

We consider now the iteration of the left convolution with zero but associated with
different scale vectors, defining F = {Lαi

0 : i ∈ I} and

gk = Lαk

0 (gk−1),

for k ≥ 1, Lαk

0 ∈ F and g0 ∈ Lp(I). That is to say, in each step, the convolution with zero is
perfprmed with respect to the scale vector αk in the IFS described.

According to Theorem 7, if Λi = max{‖αi
n‖∞ : n = 1, . . . , N}, and there exists j ∈ I

such that

sup
i∈I

{
Λi

1−Λi +
Λj

1−Λj

}
< 1/2
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then the sequence gk converges to the null function for any g0 ∈ Lp(I) as k tends to infinity.

5. Conclusions

For two self-maps T1, T2 defined on a metric space (E, d), we have defined two new
concepts (Definitions 2 and 7): Mutual Kannan contractivity and mutual contractivity.
We proved some relations between mutual Kannan contractivity and classical Banach
contraction and also with isomorphism (in the case where E is a normed space, and the
self-maps are linear).

In Theorem 2, we provided sufficient conditions for the existence of a common fixed
point of a set F of operators satisfying mutual relations of Kannan type. Under the
hypotheses given, we proved that this equilibrium is a global attractor for any iterative
scheme of type

xk = Tik (xk−1),

where xk ∈ E and Tik ∈ F .We observed some other stability and invariance aspects of the
stationary point.

We also described some properties related to mutual contractivity, in particular, if E is a
normed space, and the operators are linear. Theorems 4 and 5 establish sufficient conditions
for the existence of a common fixed point of a set of operators (linear or nonlinear) showing
mutual contractivity. With the conditions given, the equilibrium is also asymptotically
stable for the same system.

In Theorem 9, we studied the existence of a common fixed point of a set of operators
acting on a metric space E, non necessarily complete.

In the last section, we considered the fractal convolution operation in Lp(I) defined in
previous papers (see for instance [12]). We found that under some conditions on the scale
vectors, the iteration of the left fractal convolution with the null function converges to zero
for any initial map in Lp(I) even if the scale vector is changed at each step.
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