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Abstract: In this study, we create a new monitoring system for change detection in sparse attributed
network streams with multilevel or nested dynamic structures. To achieve this, we hypothesize
that the contingency of establishing an edge between two network nodes at time t depends on the
properties of the network edges, network nodes, groups, or categories. Then, we estimate the model
parameters using the expressed logit model. The model parameters are developed using the state-
space model to achieve a dynamic state in the system. The extended Kalman filter (EKF) updates
state-space parameters and predicts upcoming networks. Predicted residuals are tracked using
statistical process control charts to identify changes in the underlying mechanism of edge generation.
This research makes a methodological contribution by combining zero-inflated generalized linear
mixed models (ZI-GLMMs) with the state-space model to monitor changes in the sequences of sparse,
attributed, and weighted multilevel networks by applying control charts. The proposed model is
compared to previous models to evaluate performance by implementing three scenarios. The results
show that the model is faster at detecting the first change. Finally, using real e-MID data, we measured
the model’s performance in detecting real data changes. The findings suggest that the proposed
model could predict a crisis in advance of significant European Central Bank statements and events.

Keywords: zero-inflated generalized linear mixed models; extended Kalman filter; multilevel net-
works; temporal monitoring; interbank multilevel network

MSC: 05C82

1. Introduction

Due to the complexity of the real world and the advent of data collection tools,
storing information derived from the relationships between elements has become inevitable.
A common way to display relationships between elements is by using a network (or
graph) in which elements, nodes, and connections represent network edges. For example,
in financial markets, we can consider a correlated network of stocks, where each stock
is a network node, and the correlation between them is specified by network edges [1].
The supply chain’s resulting network is composed of the links between the various chain
components [2]. Communication networks are digital networks [3]. People create the
nodes in a social network, and their interactions create the edges [4–7]. The relationships
between people in a social group is an example of a social network [8]. Recent studies
have shown a substantial increase in the modeling and analysis of networks in which the
connections between network nodes are functions of their characteristics. For example, in a
social network, the probability of people communicating depends on their age, gender,
and other factors [9]. Azarnoush et al. (2016) modeled the probability of contact between
two people using logistic regression [9]. They used subgroup members and correlation data
as explanatory variables in their study. Finally, changes in the logistic regression model
were detected by the likelihood ratio test appropriate to each new graph. Nonetheless, their
method had a drawback; it did not accurately describe network dynamics and dynamic
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flow. To address this problem, using the generalized linear model (GLM) to model the
attributed static network, Gahrooei and Paynabar (2018) developed a statistical method
for dynamic social network monitoring [10]. The model was aggregated with the state
transfer equation to obtain the dynamic state. They used the Kalman filter to update and
predict system parameters over time. In practice, nodes in a network, including networks
resulting from financial exchanges between two banks or networks resulting from high
correlations between corporate stocks, are sparsely interconnected. Furthermore, GLM
is unable to model zero-inflated distributions correctly, because when there are a lot of
zeros, the data are difficult to fit into typical distributions (e.g., normal, Poisson, binomial,
negative binomial, and beta). As a result, their approach to modeling this type of network
is flawed. Ebrahimi S et al. (2021) [11] improved the above-mentioned method based
on the Hurdle model to address this problem. They monitored a stream of weighted,
attributed, and sparse networks. Modeling sparse networks was their innovation. Using
the Hurdle model, this method calculated the probability of edge formation between two
nodes. They assessed the validity of their model using two modeling and case study
methods. Nonetheless, Their method overlooks the effect of specific variables between
groups when predicting the probability of a relationship between the two edges using
zero-inflated and Hurdle models. For example, two people living in the same neighborhood
communicated more than others in a social network. In the stock market, the correlation of
stocks in one category is higher than in other stocks. Likewise, in the interactions between
several banks studied by Ebrahimi et al. (2021) [11], the probability of communication
and interaction between two banks in the same area or with a common culture was higher
than other banks. Data grouping in certain population levels makes using mixed effects
models inevitable. Thus, ignoring the fixed and random effects in calculating the likelihood
reduces the accuracy of the measurement and increases false results. The use of multilevel
networks helps analyze these systems [12–14]. Carley reintroduced multilevel network
concepts in the analysis of group processes within organizations, in her theory of group
stability in 1991 [15]. For example, regarding the application of multilevel networks,
Holloway et al. (2016) showed how various micro-mechanisms of multilevel clustering that
emerge from the accumulation of mutual and multilateral relationships between countries
shape the structure of the global network of fisheries systems [16]. In 2015, the multiplex
structure of interbank networks using Italian data was studied by Bargigli et al. [17]. Their
findings showed that different layers render several topological and metric properties
which are layer specific. Langfield et al. (2014) have analyzed various layers of the U.K.
interbank exposure and funding networks using granular U.K. interbank data. They find
the importance of considering different layers because structure typically differs among
them. According to several empirical studies, network statistics, such as the average
network degree distribution, might change depending on whether the market is stable or
in a crisis [8]. As far as we know, the obvious approach has not yet been established to
routinely detect the new state of these networks in real-time. We fill this gap by improving a
method. In this study, we utilize zero-inflated generalized linear mixed models (ZI-GLMM)
to develop a method for calculating the probability of a network connection between two
nodes by considering their relationship in different levels or groups [18]. As proposed
by Courgeau and Franck [19], ZI-GLMM allows the researchers to link observations and
contexts such as companies and countries, students and schools, family and neighborhood
relationships, and categories. It further considers fixed and random effects in regression.
This paper proposes a new method to model and detect changes in sparse, weighted,
and attributed network streams with multilevel or nested and dynamic structures. The
attributes of nodes and network edges at various network levels described the contingent
presence of an edge between two network nodes. Comprehending this process is the
main idea of our approach using ZI-GLMM. Sparsity and mixed levels exist in various
contexts, including our case study application of financial networks. This study seeks to
calculate the probability of creating an edge between two network nodes by taking into
account fixed and random effects, as well as other effects in different levels of multilevel
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networks, which are not considered by the Hurdle model proposed by Ebrahimi et al. [11].
As previously mentioned, fixed effects include factors, such as being a fellow citizen,
a teammate, a neighbor, having ethnic relations, and so on. We use the state-space model
to achieve a dynamic state and develop the parameters of the ZI-GLMM model over
time. Then, the parameters are estimated and updated using the extended Kalman filter
(EKF) as an online, recursive inference procedure. Finally, the next step is predicted and
compared with the realized network. The network change point is identified and reported
using the exponentially weighted moving average (EWMA) control chart to monitor the
differences between the two networks. This study makes a methodological contribution
by combining ZI-GLMM with the state-space model to monitor changes in the sequences
of sparse, attributed, and weighted multilevel networks using control charts. Moreover,
the model presented by Ebrahimi et al. [11] is updated by considering the effects of the
other network levels when calculating the probability of edge formation between two
nodes as previously noted. For this purpose, the proposed method is described in full
detail in Section 2. In Section 3, using simulation, we measured the model’s validity and
compared it with benchmark methods. Finally, we validated the model using a case study
in Section 4.

2. Overview of the Proposed Methodology

This study presents a method for monitoring sparse attributed network streams with
multilevel and dynamic structures. This method consists of modeling the network structure
and providing a method for detecting changes. The attributes of nodes and network edges
at various network levels describe the contingent presence of an edge between two network
nodes. For example, the probability of correlation between two stocks in the stock market
is a function of the rate of return, grouping, dependency, and other factors. The country of
origin’s prevailing interest rate affects the possibility of exchanging between two banks [11].
According to L. P. L. Fávero (2017) [20], there are many situations where data are placed in
a mixed or nested structure. Hierarchy refers to the fact that identical observations have
similar groups, contexts, aspects, or characteristics, indicating a degree of homogeneity.
Although the model presented by Ebrahimi et al. (2021) [11] simulates and monitors
sparse attributed network streams with dynamic structures, the proposed Hurdle model
cannot model sparse networks with multilevel structures. We used ZI-GLMMs to address
this issue [21], and develop the model to simulate sparsely attributed multilevel network
streams with dynamic structures. Regular Poisson models are ineffective at simulating
zero inflation or deflation, which makes them unsuitable for modeling sparse networks.
In this research we assume zero observations have two different origins in our model:
“structural” and “sampling". Therefore, a modeling approach that considers all zeros is
required. To achieve this goal, we developed the zero-inflated model for dynamic and
multilevel settings. Different zero-Inflated models can be introduced but we focus on the
“Poisson-logit” specification.

2.1. Zero-Inflated Generalized Linear Mixed Models

Lambert proposed modeling zero-inflated data in 1992 [22]. This model assumes that
the data come from a composition of a degenerate distribution at zero and an orderly count
distribution, such as the Poison distribution. It is presumed for a zero-inflated Poisson
(ZIP) model that for subject i,

Yi =

{
0 with probability plogiti

Poisson(λi) with probability (1 – plogiti)
(1)

According to the ZIP model, the probability density can be written as follows:

P(Yi = a) =

{
plogiti + (1 – plogiti)(e–λi ) if a = 0

(1 – plogiti)
λa

i .e–λi

a! if a > 0
(2)
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Moreover, using the following regressions, the model parameters plogiti and λi can be
estimated by plogiti = Zi

Tδ, and, ln(λi) = Xi
Tπ. There are many situations where data are

placed in a mixed or nested structure. We used ZI-GLMMs to analyze such data. ZI-GLMMs
are versatile and computationally effective models that include elements of generalized
linear models, mixed models, and zero-inflated models or similar data. In GLMM, the term
mixed-effects refers to the fact that predictor variables can be incorporated in the regres-
sion model’s fixed and random effects, with random effects aggregated in the error term.
Moreover, as proposed by Courgeau and Franck (2003) [19], ZI-GLMM links observations
and contexts, such as companies and countries, students and schools, and family and
neighborhood relationships. Furthermore, a multilevel ZIP regression model is developed
to handle correlated count data with extra zeros. With this perspective, the two-level
zero-inflated count data mixed model is defined as follows:

ln(
plogitij

1 – plogitij
) = Zij

Tδ, being δ = Gj
Tα, (3)

ln(λij) = Xij
Tπ + vj, being π = Lj

Tβ

The first level refers to observations i (i = 1, 2, 3, . . . , I). The second level refers to
units or layers j (j = 1, 2, 3, . . . , J). The vectors vj denote the cluster random effects, Z, X
is Matrix of predictor variables and the sentence δ = GT

j α is a regression between j of
different levels and δ,α,π and β are regression parameters. δ can be interpreted in terms
of the proportion of inflation of zeros, π is related to the mean response in the count data
part, and α and β correspond to the differences among the two contexts in structural and
sample zeros, respectively, due to the behavior of predictor variables in level two (Gj and
Lj). Following Lee, Wang, Scott, Yau, and McLachlan (2006) [23] and L. P. L. Fávero, Serra,
dos Santos, and Brunaldi (2018) [24], δj represents the random variations at the second level,
which means that heterogeneity among higher levels of analyses (groups, for instance) and
between individuals is allowed through the random effects δ, with variance equal to σ2

vj
.

In a network, the set of the observations at time t is equal to the set of the edges between
the network nodes in each level and are defined as {wkd,j,t| k = 1, 2, . . . , K, d = 1, 2, . . . , D,
j = 1, 2, . . . , J, t = 1, 2, . . . , T} That the observation wkd,j,t is the weight of the edge between
nodes k and d at the j level and at time t; considering wkd,j,t = wi,j,t, we can say that wkd,j,t
is the same observation of i at the j level at time t, so:

P(wkd,j,t = a) =

 plogitkd,j,t + (1 – plogitkd,j,t)(e
–λkd,j,t ) if a = 0

(1 – plogitkd,j,t)
λkd,j,t

a.e–λkd,j,t

a! if a > 0
(4)

where plogitkd,j,t is the probability of the edge between two nodes k, d at the level j and time

t. In Equation (4), if a > 0 then P(wkd,j,t = a) = (1 – plogitkd,j,t)
λkd,j,t

a,e–λkd,j,t

a! , since, a truncated
distribution is a conditional distribution that results from restricting the domain of some
other probability distribution. Therefore, we consider Equation (4) as follows:

P(wkd,j,t = a) =

 plogitkd,j,t + (1 – plogitkd,j,t)(e
–λkd,j,t ) if a = 0

p(wkd,j,t = a|a > 0) =
p(wkd,j,t=(a∩a>0))

p(wkd,j,t=a>0) = (1 – plogitkd,j,t)
λkd,j,t

a.e–λkd,j,t

a!(1–e–λkd,j,t )
if a > 0

(5)

The probabilities of unreported communications are calculated. In a weighted network,
if there is no edge between nodes i and j, no weight can be considered for it. Therefore,
in specific cases, we can consider Formula (5) as follows:

P(wkd,j,t = a) =

 plogitkd,j,t if a = 0

(1 – plogitkd,j,t)
λkd,j,t

a.e–λkd,j,t

a!(1–e–λkd,j,t )
if a > 0

(6)
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If plogitkd,j,t = 0, clearly the probability distribution of (6) is summarized to the Poisson
distribution, if wkd,j,t = 0 will be the Bernoulli probability distribution. In other words,
zero observations have two different origins in zero-inflated Poisson regression models,
one owing to the binary distribution (structural zeros) and the other owing to the Poisson
distribution (sample zeros). To extend the model (6) to a regression setting, we assume that
the model parameters (λijandplogitij) are functions of the explanatory variables (node and
edge and layer attributes).

ln(
plogitkd,j,t

1 – plogitkdj,t
) = Zkd,j,t

Tδ, being δ = Gj,t
Tβ0,j,t, (7)

ln(λkd,j,t) = Xkd,j,t
Tπ + vj,t, being π = Lj,t

Tβ1,j,t

where, k = 1, 2, 3, . . . , K, d = 1, 2, 3, . . . , D, j = 1, 2, 3, . . . , J, t = 1, 2, 3, . . . , T and ZT
kd,j,t is

the transpose matrix of the network edge attributes at the j level and GT
j,t is the transpose

matrix of the characteristics of different surfaces or groups j. The vector vj,t denotes the
cluster or level of random effects. In this step, to obtain the probability value P(wkd,j,t = a),
we estimate the model parameters. In the manner of Wang, Yau, and Lee (2002) [25],
the penalized log-likelihood is given by ll = ll1 + ll2, with ll1 being the log-likelihood
function when the random effects are conditionally fixed and ll2 is the log density of the
random effects. Lee et al. (2006) [23] present the log-likelihood function for zero-inflated
count data mixed models. The first term, ll1, is given by L. P. L. Fávero (2017) [21] and is
related to the ZIP estimations:

l(β0,t,β1,t) = (8)

∏
wkd,j,t=0

plogitkd,j,t + (1 – plogitkd,j,t)(e
–λkd,j,t ) ∏

wkd,j,t>0
(1 – plogitkd,j,t)

λkd,j,t
wkd,j,t .e–λkd,j,t

wkd,j,t!(1 – e–λkd,j,t )

If N is the total number of outputs and N0 is the total number of zeros in the data,
we have:

l(β0,t,β1,t) = (9)

[plogitkd,j,t + (1 – plogitkd,j,t)(e
–λkd,j,t )]N0 (

1 – plogitkd,j,t

1 – e–λkd,j,t
)N–N0 ∏

wkd,j,t>0

λkd,j,t
wkd,j,t .e–λkd,j,t

wkd,j,t!

Thus, the log-likelihood can be written as follows:

ll1(β0,t,β1,t) = N0ln[plogitkd,j,t + (1 – plogitkd,j,t)e
–λkd,j,t ] +

(N – N0)[ln(1 – plogitkd,j,t) – λkd,j,t – ln(1 – e–λkd,j,t )] +

ln(λkd,j,t) ∑
wkd,j,t>0

wkd,j,t – ∑
wkd,j,t>0

ln(wkd,j,t!) (10)

and the second term is given by ll2 = –1
2 [Jln(2πσ2

v) + σ–2
v vTv]. Random effects v allow the

existence of heterogeneity among clusters and also among individuals; ll1 is maximized,
and the values of the variance components are updated as a result of the estimation of
a restricted maximum likelihood (REML) function from ll2 [21]. Thus, ll1 + ll2 generates
the final ll for a zero-inflated multilevel model. As stated in Younès, Ezzahid, and Belasri
(2012) [26], the numerical algorithm can be used to find the estimated value of λkd,j,t; by
placing λkd,j,t, the value of plogitkd,j,t is obtained. In this paper, all estimations are obtained
through the software R version 4.1.1. In the next subsection, we will discuss how to
incorporate network structural dynamics through a state-space model on the parameters of
the ZI-GLMM.
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2.2. State Space Models and the Extended Kalman Filter

A state-space model provides a flexible framework to represent linear or generally non-
linear dynamic models. The system’s state is unknown in general, but it can be deduced
using the observation method. Therefore, we assume that β = (β0,t,β1,t), (coefficients
specified in Equation (7)), are system state variables, which are driven by a random process,
and observations of network edges wkd,j,t, t = 1, 2, . . . , T are considered noisy observations.
Thus, according to Ebrahimi et al. (2021) [11], we consider the state-space model as follows:

βj,t = Fβj, t – 1 + εj,t (11)

wkd,j,t = W(Zkd,j,t, Xkd,j,t, Gj,t, Lj,t,βj,t)

where β,j,t = (β0,j,t,β1,j,t) is the state vector and F is the state transfer matrix, the error term
εt ∼ N (0, Qt) has a normal distribution with zero mean and variance Qt. Xkd,j,t, Zkd,j,t,
respectively, are the attributes of node k ending in node d, and the edge attributes between
node k and d in layer j and Gj,t,Lj,t are the attributes of layer j at time t. W is a nonlinear
link function that with data (Zkd,j,t, Xkd,j,t, Gj,t, Lj,t,β,j,t) Provides a proper understanding
of wkd,j,t. The ll function can be divided into two parts, with the most significant value of
the total obtained by maximizing each component separately. As a result, we consider the
W function as follows:

W(Zkd,j,t, Xkd,j,t, Gj,t, Lj,t,β,j,t)


e

ZT
kd,j,tδ

1+e
ZT

kd,j,tδ
, δ = GT

j,tβ0,j,t for modeling the zero counts

eXT
kd,j,tπ+vj,t ,π = LT

j,tβ1,j,t for non zero
(12)

β1,j,t and β0,j,t are the estimated regression coefficients at time t. Thus far, we have esti-
mated the values and defined a state-space model for it. The next step is to estimate the
model parameters and update them using the EKF. Although the EKF was designed for
observations with a normal distribution, Fahrmeir L, Kaufmann H in 1991 demonstrated
that it may also be utilized for the exponential distribution family. Therefore, it can be used
for the proposed model. Brown and Hwang (1997) [27] explain the prediction and update
the equations for EKF.

Assume that βt|t–1 is the prediction of the state of βt and Pt|t–1 is the covariance
matrix of the observations up to t – 1 and βt|t, and Pt|t represent the estimation of the state
variable and the covariance matrix up to time t. Therefore, the prediction equations at time
t will be as follows [11]:

βt|t–1 = Fβt–1|t–1

pt|t–1 = Fβt–1|t–1FT + Q, t = 1, 2, . . . (13)

The β0|0 and P0|0 can be estimated by fitting the model on the data obtained from the
first snapshot of the network. If wt = vec[wkd,j,t] is a vectorized adjacency matrix of the
network resulting from exchanges between the network nodes and vector Zt, Gt contains j
components of Zkd,j,t and Gj,t, and vectors Xt and Lt contain the j vectors Xkd,j,tLj,t in time
t, the incoming network data (wt) are used to update the predicted parameters using the
following equations:

kt = Ptt–1HT
t (HtPt|t–1HT

t + Rt)–1

β = βt|t–1 + kt(wt – W(Zt, Xt, Gt, Lt,βt|t–1)) (14)

pt|t = (I – ktHt)Pt|t–1

where Ht =
[

dW
dβ

]
β=βt|t

is the measurement Jacobian matrix used for the linearization of

the observation function. W(Zkh,j,t, Xkh,j,t, Gj,t, Lj,t,β), Kt are known as the Kalman gain, Rt
is a covariance matrix of the observation at time t, which depends on the distribution of
observations for Bernoulli observations Ri,j,t = (1 – p̂logiti,j,t)̂λi,j,t; the positive Poisson is
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equal to Ri,j,t =
λ̂i,j,t

1–exp(–λ̂i,j,t)
(1 + λ̂i,j,t +

λ̂i,j,t

1–exp(–λ̂i,j,t)
) Because the initial values of the F and Q

matrices are unknown, we first estimate the initial values for each network in control, wt.
Using the multi-dimensional time-series representation and a vector auto-regression (VAR)
model, we estimate the initial values F0 and Q0 for the Bernoulli model and F1 and Q1 for
the positive Poisson model [11]. After the initialization of F and Q matrices, the process of
updating and predicting β matrix values using the state-space model and Kalman filter
will be performed, and the wt network is predicted using the obtained values. In the
next section, we use the EWMA control chart to monitor the multilevel sparse network
stream changes.

2.3. Monitoring of Dynamic and Multilevel Sparse Network Streams

Prediction residuals are tracked by statistical process control charts in this part in order
to identify changes in the underlying mechanism of edge generation. For this purpose,
the adjacency matrix obtained from the predicted values is compared with the adjacency
matrix obtained from real values. (ε̂k,d,t = wk,d,t – ŵk,d,t). To ensure the residuals have
approximately constant unit variances, we used the Pearson residuals, denoted by rk,d,t,

computed by rk,d,t = ε̂k,d,t√
var(ŵk,d,t)

; for t = 1, 2, . . . , T. Instead of monitoring any value

of rk,d,t, the values of r̄t = 1
K ∑k,d rk,d,t that have normal distributions are monitored

using the EWMA control chart [11]. The EWMA statistic at time t is calculated with
ωt = λr̄t+1 + (1 – λ)ωt–1, and the upper and lower bounds of the EWMA control chart at time

t are calculated by UCLt = L × s
√

λ
1–λ (1 – (1 – λ)2t) and LCLt = –L × s

√
λ

1–λ (1 – (1 – λ)2t)
that λ ∈ [0, 1]. (L is the multiple of the rational subgroup standard deviation that establishes
the control limits. L is typically set at 3 to match the other control charts, but it may be
necessary to reduce L slightly for small values of λ). If UCLT+1 ≤ ωT+1 or LCLT+1 ≥ ωT+1,
the null hypothesis that there is a change in the network stream is rejected.

3. Performance Evaluation Using Simulation

This section evaluates the proposed model compared to the online Hurdle model [11]
using a simulation to examine the speed of detecting changes in the model. (The pro-
posed model in [11] has already been compared with “Dynamic GLM”, “Dynamic Av-
erage Weight”, and ”Degree and Betweenness-EWMA” models, and its advantage has
been reported). For this purpose, to more closely match the actual data settings in terms
of network size and the number of explanatory auxiliary variables, we consider a net-
work with 50 nodes and a potential of 50 × (50 – 1) = 2450 edges. We assume that
the weight of each edge at each level (j = 2) is a function of five attributes Zkd,j,t =
Xkd,j,t =

{
X1

kd,j,t, X2
kd,j,t, X3

kd,j,t, X4
kd,j,t, X5

kd,j,t
}

, where each Xe
kd,j,t =

{
Xe

kd,1,t, Xe
kd,2,t

}
, e =

1, 2, 3, 4, 5, j = 1, 2, and the attribute of each level is Gj,t = Lj,t =
{

G1,t, G2,t
}

. The at-
tribute value changes over time and is different for each edge and level. It is also cre-
ated using a normal distribution with mean µ = [0.5, 0.5, 0, 5, 0, 5, 0, 5] and variance ∑ =
0.25× I5×5 for the edges and mean µ = [0.5, 0.5] and variance ∑ = 0.25× I2×2 for lev-
els. To simulate a dynamic stream of networks, we assume β0,t = Fβ0,t–1 + ε0,t, β1,t =
Fβ1,t–1 + ε1,t that ε0,t ∼ N (0, Q), ε1,t ∼ N (0, Q). In the simulations, the Values β0,t ={
β0

0,t,β
1
0,t,β

2
0,t,β

3
0,t,β

4
0,t,β

5
0,t
}

and β1,t =
{
β0

1,t,β
1
1,t,β

2
1,t,β

3
1,t,β

4
1,t,β

5
1,t
}

at t = 0 are consid-
ered equal β0,t =

{
0.01, 0.01, 0.01, 0.01, 0.01, 0.01

}
, and β1,t =

{
0.02, 0.02, 0.02, 0.02, 0.02, 0.02

}
,

and F = 0.8I66, Q = 0.25I66.
Random effects vj,t have a normal bivariate distribution with a mean of 0 and covari-

ance ∑ =
[

∑11 0
0 ∑22

]
where the ∑ is the estimate of the model parameters. (For model

comparability, we identically use the simulation settings from [11]. We estimate the control
chart and determine the EWMA control limits using in-control simulated snapshots of
networks using the techniques outlined in Section 2.3. In order to evaluate the performance
of the proposed model and compare it with the online Hurdle model, we consider three
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scenarios in two modes [11]. Moreover, the method’s performance is evaluated with the
average run length (ARL), which shows the speed detection of changes in each scenario
for different values of δ. For this, we created a network simulation for an out-of-control
scenario, with the first out-of-control alarm sounding. Then, we record the number of
simulated points until the first change occurs (ARL). We do this process 1000 times and
record the average run length. The method with the smallest ARL is more effective at de-
tecting changes. In Equation (13), F is the model coefficient matrix, and Q is the model error
covariance matrix. In order to execute the scenarios, for each coefficient βi, we consider the
shift value δσi. The value of δ represents the magnitude of the shift and σi is the standard
deviation of the ith factor in the controlled position. Given the initial values of F and Q,

σI =
√

Qii
(1–Fii)2) = 2.5 so βi

0,t = Fiiβ
i
0,t–1 + εi

0,t + δσi and βi
1,t = Fiiβ

i
1,t–1 + εi

1,t + δσi. If the

value of the coefficients βi
0,t changes, it affects the presence or absence of edges between

two network nodes. If the value of the coefficients βi
1,t changes, it will affect the edge

weight. Therefore, to the first scenario, to investigate the presence or absence of edges
between the two nodes of the network as well as changes in the weight of the network
edges over time, we apply the change value of three coefficients β2

0,t, β4
0,t, β5

0,t, and β2
1,t,

β4
1,t, β5

1,t, and the results for two modes
{

G1,t = 1, G2,t = 1
}

and
{

G1,t = H1,t, G2,t = H2,t
}

,
are compared with the results of [11]. In the second scenario, in order to investigate the
changes in the relationship between the nodes, we just change the values in three coef-
ficients β2

0,t,β
4
0,t,β

5
0,t. By applying the change values in three coefficients β2

1,t,β
4
1,t,β

5
1,t in

scenario 3, the effect of the change is only on the amount of the interaction (edge weight)
between the two nodes. By defining the control limits, we use adjusted control limits for
detection in the out of control scenarios. (the in-control ARL for all methods is equal to 200
(α = 0.005)). In order to influence the level attributes in the Hurdle model, the following
approach was used:

ZT
kd,j,t(new) = ZT

kd,j,tG
T
j,t

XT
kd,j,t(new) = XT

kd,j,tL
T
j,t

ZT
kd,j,t is the transpose matrix of the network edge attributes at the j level.

Simulation Results

The ARL results for the defined scenarios and the two cases considered are shown
in Figure 1. It is easy to see that the behaviors of the two models are almost the same in
the first case. The difference is due to structural differences between the online Hurdle
and online ZI-GLMM models. The calculation of the weight of the network edges in the
second case differs from the online Hurdle model due to the change in the value of the
features in the online ZI-GLMM model. In the first scenario, with a small change of δ = 0.5,
the ARL value in the proposed model is approximately 10, which is approximately 125
(worst performance) for the online Hurdle model. As a result, the proposed model is faster
at detecting changes and performs better than the Hurdle model reported by Ebrahimi et al.
(2021) [11]. The change only affects the existence of an edge in scenario 2, making it more
challenging to identify the shift so two techniques have higher ARL values than other
situations. For Scenario 3, our method has a slightly higher ARL than the first scenario.
The interactions (edge weight) between the two nodes are only affected by the change,
and the Bernoulli model (decision to connect) remains intact. by taking into account the
effects of distinct groups on the probability of edge formation [11]. The reason for the
rapid detection of the first warning is that the proposed model is sensitive to small changes,
which is significant in sparse networks.
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Figure 1. Comparison of average run length (ARL) using simulation data in the performances of
different scenarios. Smaller ARL values indicate better performances.

4. Case Study: Change Detection in the Interbank Market during the Financial Crisis

According to reports, the US financial crisis of 2007–2009 slowed economic growth
and resulted in high social costs. Furthermore, during the stock market turmoil, the s
& p500 index lost half of its value. Thhis crisis highlighted the need to monitor markets
and financial institutions [11]. Therefore, the researchers analyzed financial networks
and monitored financial markets to illustrate the interrelationships. Financial institutions
are considered network nodes in a financial network, and the connections between them
are considered network edges. Monitoring financial networks monitors the amount of
communication between network nodes. A sparsely connected interbank lending network,
for example, could mean that banks have stopped interbank market transactions due to the
understanding of systematic risk. We used e-MID data from January 2006 to December 2012
to review and compare the proposed model with the model presented by Ebrahimi et al.
(2021) [11]. Each transaction comprises the date, the lender, the borrower, the nation of
origin of the lender and borrower, the interest rate, the quantity, the number of trades, and a
statement of which party initiated the transaction (with their true names anonymized). A
total of 50–60 publicly traded banks are represented in the statistics. The precise quantity
is withheld to maintain anonymity because interbank market bank identities are obscure.
From the stock market, we obtain the weekly returns of the banks. This article’s type of
financial network is the direct relationship between financial institutions, including credit
relations. Because there are different links between two institutions, each of which belongs
to a class, the interrelationships between two financial institutions are highly complicated.
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Analyzing these links in different classes is suitable for systematic risk analyses. Therefore,
it is better to model this situation with a multiplex network, consisting of several layers, each
of which has the same nodes, and only the edges and the weight of the edges are different.
A multiplex network with various connections between its nodes can be represented as a
network since the network nodes in each layer are the same. Figure 2 illustrates an example
of a multilevel network.

Figure 2. Schematic representations of multilevel interbank networks. Each node is a bank, and links
represent credit relations. The network in black is the total interbank market, obtained by aggregating
all layers.

The probability of an edge between two nodes of the network in the general network
is equal to the probability of an edge between two nodes of the network in at least one of
the layers:

p(wkd,t > 0) ∼ p(wkd,1,t > 0)∨ p(wkd,2,t > 0)∨ . . . ∨ p(wkd,J,t > 0)

“In 2012, about 78 percent of the Italian interbank market’s volume was transacted
between two banks from the same group, while just 22 percent was intergroup lending” [28].
Since systematic risk is spread through intergroup lending, we consider the network of
banking groups in six categories based on the loan exchanges presented in Bargigli, di Iasio,
Infante, Lillo, and Pierobon (2016) [28]:

1. Overnight (OVN) transactions. Unsecured (U) loans, i.e., without collateral. (OVNU).
2. Overnight (OVN) transactions. Secured (S) loans, i.e., with collateral. (OVNS).
3. Short-term (ST) transactions, namely those with maturity up to 12 months, excluding

overnight. Unsecured (U) loans, i.e., without collateral. (STU).
4. Short-term (ST) transaction, namely those with maturity up to 12 months, excluding

overnight. Secured (S) loans, i.e., with collateral. (STS).
5. Long-term (LT) transactions, namely those with the maturity of more than 12 months

of consideration. We distinguish collateralization. Unsecured (U) loans, i.e., without
collateral. (LTU).

6. Long-term (LT) transactions, namely those with the maturity of more than 12 months
of consideration.

Banks do not pay high-risk loans with unsecured collateral when they feel threatened.
Therefore, the probability of edge formation between network nodes in various groups
differs. In this case, a network analysis using single-layer network methods does not
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provide accurate results. As stated in [20], there was a 73.68% dispersion rate among
all possible banking transactions in the pre-crisis period. We consider banks as network
nodes to monitor the financial exchange network between banks in the e-MID market
network. Meanwhile, the characteristics of nodes, edges, and network layers are defined as
independent variables in the proposed model as follows [11]:

We utilize the lender and borrower returns as node attributes. The lender’s return is the
average stock market return of the lending bank in week t – 1, and the borrower’s return is
the average stock market return of the borrowing bank in week t – 1. The return correlation,
number of trades, and rate (the average interest rate of each loan between two banks in
week t – 1 (if any transaction occurred)) are used as edge attributes. The return correlation
measures the correlation between the returns of the two banks from the beginning of the
data up to week t – 1.

It is important to note that we utilized nation (an indicator variable that is one if
two banks are different) and ratio (the ratio of layer financial transaction volume to total
financial transactions) as random effects and layer attributes (Gj,t = Hj,t). Finger et al.
discuss the country difference (2013); community banks lend primarily to the areas where
their depositors live and work as opposed to banks that may accept deposits in one state
while making loans in another. This helps to maintain and grow local communities.

The majority of the other factors are primarily based on stock market results. Stock
market performances can affect a bank’s interbank trading activity, particularly if they
significantly impact the bank’s balance sheet (Brunetti et al., 2019 [29]). We, therefore,
expect the need for return-based variables, particularly during periods of high stock market
volatility, such as during crisis sub-periods. Because these data are generated immediately
following a transaction, we did not incorporate the number of transactions and rates in the
logistic regression model.

To monitor the real data network, we used data from 20 weeks before the crisis as
controlled observations, based on which the initial values of F and Q were calculated.
Based on Pearson’s residual errors from the in-control data, we determined the control
limits for the in-control ARL to equal 200 (α ∼ 0.005). According to the proposed method
by Nishina (1992) [30], to estimate the EWMA change point after receiving an out-of-
control signal at time T, the proposed method detected the first changes on 10 April 2007
(where the out-of-control signal is above the upper control limit (UCL) in Figure 3), which
was the diagnosis before August 2007, when banks worldwide revealed acute liquidity
shortages [29]. The European Central Bank raised interest rates on 6 June 2007 (European
Central Bank, 2007). Rational expectations from this action have put loan exchanges under
control until the threshold of 2008. The crisis continued until early 2009 after the Wall
Street bailout was approved, ending the tremendous financial crisis by keeping the banks
active. Findings show that the model identified pre-crisis points with higher accuracy than
the online Hurdle model [11]. Figure 3 shows the Pearson residual monitoring results for
crisis diagnoses.



Mathematics 2022, 10, 4483 12 of 14

Figure 3. EWMA charts for Pearson’s residuals from the zero-inflated generalized linear mixed model
to detect the onset of Crisis 1. Red dots are considered as out of control data.

5. Conclusions

In this study, we developed a model to monitor sparsely attributed multilevel net-
work streams with dynamic structures. To do this, we hypothesized that the likelihood
that two network nodes would form an edge at time t depends on the characteristics of
network edges, network nodes, and categories or groupings. Then, we estimated the model
parameters using the expressed logit model. The model parameters were developed using
the state-space model to achieve the dynamic state in the system. The extended Kalman
filter updated state-space parameters and predicted upcoming networks. The proposed
model was compared to the online Hurdle model [11] to evaluate the performance by
implementing three scenarios. The results show that the model is faster at detecting the first
change. Finally, using real e-MID data, we measured the model’s performance in detecting
real data changes. The findings suggest that the proposed model may predict a crisis before
it arises and detects changes more precisely and quickly than the online Hurdle model [11].
As a result, the random effects of groups and categories in detecting network changes
can be considered using this method, which improves the model’s accuracy. Finally, it is
recommended that the proposed model be combined with clustering methods to analyze
data in which groups and categories are unknown. Additionally, a mixed model approach
must be used to consider both within- and between-subject variabilities when drawing the
concluding group’s functional magnetic resonance imaging (fMRI) data. The results only
apply to participants in the study and not the sample population if a mixed effects model is
not utilized to examine the sparse fMRI data [31]. The proposed model is recommended
to evaluate FMRI data because using a fixed effects model may increase the false-positive
test findings.
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