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Abstract: The propagation of rumors on online social networks (OSNs) brings an awful lot of trouble
to people’s life and society. Aiming at combating rumors spreading on OSNs, two novel rumor-
propagation models without and with time delays are proposed, which combine with the influence
of the immune mechanism, isolation mechanism and network structure. Firstly, we analyze the
existence of rumor equilibria and obtain some existence conditions of backward bifurcation. Secondly,
the local stabilities of rumor-free and rumor equilibria are proved by using the Jacobian matrix
method, and some critical conditions for the existence of Hopf bifurcation are acquired by selecting
critical parameters and delays as bifurcation parameters. Furthermore, an optimal control method is
proposed, which can prevent the spread of rumors within an expected time period and minimize the
cost of control. Finally, some numerical simulations are provided to verify the effectiveness of the
proposed theoretical results.
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1. Introduction

The current information age has witnessed the emergence of various communication
platforms and online social network software, which provide convenience for users to
obtain all kinds of information [1]. As an attractive information statement, a rumor catches
people’s attention naturally. It spreads rapidly and widely on OSNs since the content is
close to people’s daily life [2–4]. For example, the rumors that ‘eating garlic can cure cancer’
and ‘smearing ginger can cure hair loss’ spread widely on OSNs. As a result, some users
believe these rumors and miss the best treatment period. Another well-known example is
about the treatment of COVID-19, such as the claims that drinking Banlangen, fumigation
vinegar and Shuanghuanglian oral liquid can prevent COVID-19, and the thicker the mask,
the better the antiviral effect. This rumor not only reduced the public’s vigilance to the
virus but also intensified the anxiety and panic to a certain extent. Hence, the spread of
rumor has a negative impact on people’s lives [5,6]. It is of great significance to explore
spreading rules and propose some feasible control methods to prevent the spread of rumors
on OSNs.

The research on the dynamics of rumor propagation is mainly inspired by the infec-
tious disease model due to the similarity of transmission mechanism. The systematic study
of rumor spreading model began in 1965. As a milestone of the rumor-spreading model,
the DK [7,8] model and MT [9] model divide the population into three categories. Each
person can only be in one of the following three states: ignorant (the user who does not
know the rumor); spreader (the one who propagates the rumor); and removed (the one who
knows the rumor but does not spread it). However, these models [7–9] are only suitable for
describing the spread of rumor by word of mouth. With the rapid development of social
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science and technology, the spread of rumors on social media has gradually replaced oral
communication and become a new mainstream way. Therefore, some new research meth-
ods have been proposed by scholars. In 2001, Zanette [10] first applied complex network
theory to the study of rumor spreading. After that, an increasing number of scholars began
to investigate the rumor propagation model on small world networks [11–13], uniform
networks [14–16] and scale-free networks [17,18].

With the widespread use of new Internet media and the occurrence of frequent emer-
gencies in the past few years, research about rumor spreading on OSNs has also been
widely carried out [19–21]. Meanwhile, a growing number of attention has been paid to
the influence of group psychological characteristics [22–26], government refutation [27–29],
the immune mechanism [30] and the educational mechanism [31]. In addition, the authors
studied a rumor spreading model with homogeneous network, and introduced expert
intervention strategy into the model in [32]. In [33], an impulsive rumor-blocking strategy
was proposed, in which the rumor users were isolated for a limited period and the optimal
control method was applied to save cost. Different from the above articles, considering
the difference in regulatory capabilities of network platforms, a kind of forced silence
mechanism was introduced to suppress the spreading of rumors in [34,35]. In practical
application, the forced silence mechanism can be realized by forbidding the rumor dis-
seminator. Unfortunately, these useful models were all proposed in a single language
environment, rarely involving multiple language environments.

Multilingual OSNs refer that there are multiple languages on social platforms. The
emergence of a large number of social network platforms has greatly facilitated people’s
communication. At the same time, online translation and other software also provide
convenience for information exchange between multiple languages. Therefore, it is of great
practical significance to study the spread of rumors on multilingual OSNs. There are some
results [36–39] about rumor spreading in multilingual environment. In [36], an I2S2R rumor-
spreading model was proposed in homogeneous complex networks, and the global stability
of the rumor-free and rumor equilibria was proved. In [37], a multilingual SIR rumor-
spreading model with a cross-transmitted mechanism was established. In [38,39], two
rumor-propagation models with heterogeneous networks were proposed. In the process
of rumor spreading, it is an effective way to isolate the rumor disseminator or forbid the
users. Therefore, it is meaningful to study the rumor-transmission model with the isolation
mechanism. However, as far as we know, there is no research on the modeling and control
of rumor propagation with the isolation mechanism in a multilingual environment.

Based on the above-mentioned factors, in this paper, we propose two new rumor-
propagation models with an isolation mechanism on multilingual OSNs. In the model,
all users are divided into six categories, including two types of ignorants, two types of
spreaders, quarantined users and recovered users. We abbreviate this type of model as
the 2I2SQR model. Moreover, we study the dynamic behaviors of the model, and propose
an optimal control by using the Pontriagin maximum principle to minimize the control
cost. The main contributions of this paper are as follows. Firstly, based on some basic
assumptions, a rumor-spreading model with quarantine control is designed on multilingual
OSNs. The existence of a rumor equilibrium is analyzed, and some conditions for the
existence of backward bifurcation are obtained. Secondly, we prove the local stability of the
rumor-free and rumor equilibria without and with time delays. Concurrently, by selecting
the critical parameters and the time delays, some conditions for the existence of Hopf
bifurcation are given. In addition, using the optimal control theory, an optimal control is
obtained, which can minimize the objective function and suppress the spread of rumor.

The rest of this paper is arranged as follows. In Section 2, a novel rumor-propagation
model without time delay is proposed, and the dynamic analysis of the model is given. An
optimal control is proposed to optimize the isolation mechanism in Section 3. In Section 4,
a rumor-propagation model with time delays is given, and the dynamics of the model is
studied. The validity of the theoretical results is verified by several numerical simulations
in Section 5. Section 6 concludes this paper.
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2. 2I2SQR Rumor Model without Time-Delay

In this section, a rumor spreading model without time-delay is proposed on OSNs
with multilingual environment, and the dynamics of the model is carefully analyzed.

2.1. Model Formulation

Users may speak multiple languages on an OSN when they come from different
regions or countries. According to the language ability, we classify users into two groups.
The first group is the ones who can speak both the official language and unofficial language,
but they are more likely to browse the information published in the unofficial language
when they are skimming through the web, and they also prefer to edit it in the unofficial
language. The second group is the ones who can only speak the official language. In
our model, we divide users into six categories. Ignorants-1(I1(t)) and Ignorants-2(I2(t))
represent the ratios of users who are not aware of the rumor in the first and second groups.
Spreaders-1(S1(t)) and Spreaders-2(S2(t)) denote the ratios of users who know the rumor
and spread it in the first and second groups, respectively. Quarantined (Q(t)) denotes the
ratio of the user whose communicator is temporarily banned. Recovered (R(t)) represents
the ratio of the individual who knows the rumor and no longer spreads it. Moreover, the
densities satisfy I1(t) + I2(t) + S1(t) + S2(t) + Q(t) + R(t) = 1.

Based on the mention above, the following detailed assumptions are presented before
we establish the rumor-spreading model on OSNs with a multilingual environment:

(1) Assume that the immigration rates are denoted by Bi(i = 1, 2) for the first and
second groups, respectively. The removed rate is represented by d.

(2) In the process of rumor spreading, I1(t)(or I2(t)) will turn into S1(t) (or S2(t)) with
conversion rate α1 (or α2). In addition, S1 will change to S2 with a certain probability ρ to
expand the spread range of the rumor.

(3) When I1(t) (or I2(t)) glance over a rumor, they will choose to disbelieve the rumor
and transform into R(t) with probability µ1(or µ2) because of the level of their education
(identifying the rumor) or not being interested in the rumor. After spreading the rumor for
a period of time, S1(t) (or S2(t)) will change into R(t) with probability β1 (or β2) on account
of losing interest or other factors. Similarly, the Q(t) will turn into R(t) with probability c
after passing the compulsory prohibition.

(4) When a rumor spreads on OSNs, the network regulatory authorities will prohibit
the propagation of the rumor according to the number of communicators with a certain
proportion. We describe it by a quarantine function hi(Si) = riSi(t)

σi+Si(t)
, (i = 1, 2), where

ri > 0 is the probability of partition, and σi > 0 is a half-saturation constant that measures
the isolation delay index. If σi is small, then the efficiency is high.

On the basis of these facts, B1, B2, α1, α2, µ1, µ2, β1, β2, d are all positive constants. The
process of rumor spreading is shown in Figure 1. The dynamics of the rumor-propagation
model in a multilingual environment is established as follows:

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t),

dI2(t)
dt

= B2 − 〈k〉α2 I2(t)S2(t)− µ2 I2(t)− dI2(t),

dS1(t)
dt

= 〈k〉α1 I1(t)S1(t)−
r1S1(t)

σ1 + S1(t)
− β1S1(t)− ρS1(t)− dS1(t),

dS2(t)
dt

= 〈k〉α2 I2(t)S2(t) + ρS1(t)−
r2S2(t)

σ2 + S2(t)
− β2S2(t)− dS2(t),

dQ(t)
dt

=
r1S1(t)

σ1 + S1(t)
+

r2S2(t)
σ2 + S2(t)

− cQ(t)− dQ(t),

dR(t)
dt

= β1S1(t) + β2S2(t) + µ1 I1(t) + cQ(t) + µ2 I2(t)− dR(t),

(1)
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where 〈k〉 = ∑n
k=1 kP(k) denotes the average degree of the individual, P(k) stands for

the probability of an individual with degree k and satisfies ∑n
k=1 P(k) = 1. The initial

conditions satisfy

I1(0) ≥ 0, I2(0) ≥ 0, S1(0) > 0, S2(0) > 0, Q(0) ≥ 0, R(0) ≥ 0.

Thus, according to the above conditions, the positive invariant set of system (1) is

Ω = {(I1, I2, S1, S2, Q, R) ∈ R+
6 : I1 + I2 + S1 + S2 + Q + R = 1}.

Since Q(t) and R(t) do not affect other equations of system (1), we simplify system (1)
as follows:

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t),

dI2(t)
dt

= B2 − 〈k〉α2 I2(t)S2(t)− µ2 I2(t)− dI2(t),

dS1(t)
dt

= 〈k〉α1 I1(t)S1(t)−
r1S1(t)

σ1 + S1(t)
− β1S1(t)− dS1(t)− ρS1(t),

dS2(t)
dt

= 〈k〉α2 I2(t)S2(t) + ρS1(t)−
r2S2(t)

σ2 + S2(t)
− β2S2(t)− dS2(t),

(2)

with the initial conditions I1(0) ≥ 0, I2(0) ≥ 0, S1(0) > 0, and S2(0) > 0.
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Figure 1. The state transition diagram of 2I2SQR model.

Remark 1. Although some rumor-spreading models on OSNs have been proposed in [19–21,34,35],
they are only used to describe the spread of rumors in a single language environment. In this paper,
an new multilingual rumor propagation model is established. In particular, when I1(t) = S1(t) = 0
in system (1), it will be simplified into a language rumor propagation model. Therefore, the model
proposed in this paper has a wider application.

2.2. Existence of Equilibria

It is easily to verify that system (2) always has a rumor-free equilibrium, which is
given by

E0 =

{
B1

d + µ1
,

B2

d + µ2
, 0, 0

}
.

By using the next generation matrix method [37], we calculate the basic reproduction
number <0, which is defined as

<0 = max{<01,<02}, (3)
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where <01 =
〈k〉α1B1σ1

(d + µ1)[r1 + (β1 + ρ + d)σ1]
, <02 =

〈k〉α2B2σ2

(d + µ2)[r2 + (β2 + d)σ2]
.

Next, we will determine the existence of a rumor equilibrium. Supposing that
E∗ = (I∗1 , I∗2 , S∗1 , S∗2) is a rumor equilibrium, then it satisfies

B1 − 〈k〉α1 I∗1 S∗1 − µ1 I∗1 − dI∗1 = 0,

B2 − 〈k〉α2 I∗2 S∗2 − µ2 I∗2 − dI∗2 = 0,

〈k〉α1 I∗1 S∗1 −
r1S∗1

σ1 + S∗1
− β1S∗1 − dS∗1 − ρS∗1 = 0,

〈k〉α2 I∗2 S∗2 + ρS∗1 −
r2S∗2

σ2 + S∗2
− β2S∗2 − dS∗2 = 0.

Therefore, it has

I∗1 =
B1

〈k〉α1S∗1 + µ1 + d
, I∗2 =

B2

〈k〉α2S∗2 + µ2 + d
.

Moreover, S∗1 and S∗2 are determined by the following equations:

a2(S∗1)
2 + a1S∗1 + a0 = 0, (4)

b3(S∗2)
3 + b2(S∗2)

2 + b1S∗2 + b0 = 0, (5)

where

a0 = (µ1 + d)[r1 + σ1(β1 + d + ρ)](1−<01),

a1 = r1α1〈k〉+ α1σ1(β1 + d + ρ)〈k〉+ (µ1 + d)(β1 + d + ρ)− B1α1〈k〉,
a2 = α1(β1 + d + ρ)〈k〉,
b0 = ρ(µ2 + d)σ2S∗1 ,

b1 = [r2 + (β2 + d)σ2](µ2 + d)(<02 − 1) + [ρα2σ2〈k〉+ ρ(µ + d)]S∗1 ,

b2 = α2B2〈k〉+ α2ρS∗1〈k〉 − α2〈k〉[r2 + (β2 + d)σ2]− (β2 + d)(µ2 + d),

b3 = −〈k〉α2(β2 + d).

Firstly, we will solve the positive solutions of Equation (4) with respect to S∗1 . For
convenience, we denote

<̂01 = 1− [(r1 − B1)α1〈k〉+ (α1σ1〈k〉+ µ1 + d)(β1 + d + ρ)]2

4α1〈k〉(β1 + d + ρ)(µ1 + d)[r1 + σ1(β1 + d + ρ)]
.

By simple calculation, the following results can be obtained.

(i). If <01 > 1, Equation (4) has a positive solution.

(ii). If <01 = 1, Equation (4) is transformed into

a2(S∗1)
2 + a1S∗1 = 0. (6)

Obviously, S∗1 = 0 or S∗1 = − a1
a2

> 0 if a1 < 0.
(iii). If <01 < 1 and a1 < 0, the following results can be easily verified.

(1). If <01 > <̂01, Equation (4) has two positive roots.
(2). If <01 = <̂01, Equation (4) has two equal positive roots − a1

2a2
.

(3). If <01 < <̂01, Equation (4) has no positive root.

Next, we will consider the positive solutions of Equation (5) with respect to S∗2 .
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Case (1). It is clear that b0 = 0 when S∗1 = 0, then Equation (5) is transformed into

b3(S∗2)
3 + b̃2(S∗2)

2 + b̃1S∗2 = 0, (7)

where b̃1 = [r2 + (β2 + d)σ2](µ2 + d)(<02 − 1), b̃2 = α2B2〈k〉 − α2〈k〉[r2 + (β2 + d)σ2] −
(β2 + d)(µ2 + d), b3 = −〈k〉α2(β2 + d).

Apparently, S∗2 = 0 or b3(S∗2)
2 + b̃2(S∗2) + b̃1 = 0. Let us discuss the solutions of the

following equation:

b3(S∗2)
2 + b̃2(S∗2) + b̃1 = 0. (8)

By calculation, it has

b̃1 > 0⇔ <02 > 1, b̃1 = 0⇔ <02 = 1, b̃1 < 0⇔ <02 < 1.

We denote

<̂02 = 1− [α2B2〈k〉 − α2〈k〉[r2 + (β2 + d)σ2]− (β2 + d)(µ2 + d)]2

4〈k〉α2(β2 + d)[[r2 + (β2 + d)σ2](µ2 + d)]
.

Then, the following conclusions are obtained.

(i). If <02 > 1, Equation (8) has a positive solution.

(ii). If <02 = 1, Equation (8) has a solution S∗2 = 0 or S∗2 = − b̃2
b3

> 0 if and only if b̃2 > 0.

(iii). If <02 < 1 and b̃2 > 0, one of the following three cases holds
(1). If <02 > <̂02, Equation (8) has two positive roots.
(2). If <02 = <̂02, Equation (8) has two identical positive roots S∗2 = − b̃2

2b3
.

(3). If <02 < <̂02, Equation (8) does not have a positive root.

Case (2). When S∗1 > 0, it has b0 > 0. We denote

G(S∗2) = b3(S∗2)
3 + b2(S∗2)

2 + b1S∗2 + b0 = 0. (9)

Then, the discriminant of the cubic polynomial G(S∗2) is given by

D = b2
1b2

2 + 18b0b1b2b3 − 4b0b3
2 − 4b2

1b3 − 27b2
0b2

3.

By simple calculation, G(S∗2) has one real root and two complex roots if D < 0. G(S∗2) has
three real roots (at least two of which are equal) if D = 0, and G has three distinct real roots
if D > 0. In order to analyze the roots of Equation (5), the following lemmas are given:

Lemma 1. Suppose that α2σ2〈k〉 > µ2 + d, then b2 < 0 if b1 < 0.

Proof. According to α2σ2〈k〉 > µ2 + d, we have

b2 = α2B2〈k〉+ α2ρS∗1〈k〉 − α2〈k〉[r2 + (β2 + d)σ2]− (β2 + d)(µ2 + d)

= α2B2〈k〉+ α2ρS∗1〈k〉 − α2r2〈k〉 − (β2 + d)(σ2α2〈k〉+ µ2 + d),

b1 = α2σ2B2〈k〉 − [r2 + (β2 + d)σ2](µ2 + d) + [ρα2σ2〈k〉+ ρ(µ + d)]S∗1
= α2σ2B2〈k〉 − r2(µ2 + d)− σ2(β2 + d)(µ2 + d) + ρσ2α2〈k〉S∗1 + ρ(µ + d)S∗1
≥ σ2[α2B2〈k〉 − r2α2〈k〉 − (β2 + d)(µ2 + d) + ρα2S∗1〈k〉] + ρ(µ + d)S∗1
≥ σ2[α2B2〈k〉 − r2α2〈k〉 − (β2 + d)(α2σ2〈k〉+ µ2 + d) + ρα2S∗1〈k〉] + ρ(µ + d)S∗1
≥ σ2b2.

Since σ2 > 0, it is easy to obtain that b2 < 0 if b1 < 0.
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Lemma 2. If α2σ2〈k〉 > µ2 + d holds, Equation (9) has one positive root.

Proof. By deriving Equation (5), we can obtain

G(S∗2)
′
= 3b3(S∗2)

2 + 2b2S∗2 + b1.

Denote the roots of G(S∗2)
′
= 0 by x±, then one of the following three cases holds:

(i). D < 0. Using the fact that G(0) = b0 > 0 and limS∗2→∞ G(S∗2) = −∞, it follows that
the real root is positive.

(ii). D = 0. Solving the roots x+ and x−, we find that Equation (5) has one positive root.
(iii). D > 0. The analysis method is similar to (ii), and Equation (5) has one positive root.

Note that there is only one positive root in the previous three cases. Therefore,
Equation (5) only has one positive solution S∗2 if α2σ2〈k〉 > µ2 + d and b0 > 0.

Based on the above analysis, the following theorem is given to ensure the existence of
the rumor equilibria.

Theorem 1. For system (2), <01 and <02 are defined as Equation (3). The following conclusions
about the existence of the rumor equilibria are presented.

(1). For the case of b0 > 0 and α2σ2〈k〉 > µ2 + d:
If <01 > 1, there is a unique rumor equilibrium point E∗1 .
If <01 = 1 and a1 < 0, system (2) admits a unique rumor equilibrium point E∗1 .
If <̂01 < <01 < 1 and a1 < 0, there are two rumor equilibrium points E∗1 and E∗2 in system

(2), and no rumor equilibrium point when a1 ≥ 0.
If <̂01 = <01 < 1 and a1 < 0 , system (2) admits a unique rumor equilibrium point E∗1 , and

no rumor equilibrium point when a1 ≥ 0.
If <01 < <̂01 < 1, system (2) has no rumor equilibrium point. (2). For the case of S∗1 =

0(b0 = 0):
If <02 > 1, there is a unique rumor equilibrium point E∗1 in system (2).
If <02 = 1 and b̃2 > 0, system (2) admits a unique rumor equilibrium points E∗1 .
If <̂02 < <02 < 1 and b̃2 > 0, there are two rumor equilibria E∗1 and E∗2 in system (2), and no

rumor equilibrium point when b̃2 ≤ 0.
If <̂02 = <02 < 1 and b̃2 > 0, system (2) admits a unique rumor equilibrium point E∗1 , and

no rumor equilibrium point when b̃2 ≤ 0.
If <02 < <̂02 < 1, system (2) has no rumor equilibrium.

We find that the conditions for the existence of a rumor equilibrium are very compli-
cated. Under different conditions, system (2) may have different equilibria. Based on the
above theorem, it can be seen that there exist rumor equilibria in system (2) when <01 < 1
and <02 < 1. For instance, when <̂01 = 0.89 and <̂02 = 0.86, the backward bifurcation
graph of the system (2) is shown in Figure 2.
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Figure 2. (a) The backward bifurcation graph of S∗1 and the basic reproduction number <01. (b) The
backward bifurcation graph of S∗2 and the basic reproduction number <02.
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2.3. Stability and Hopf Bifurcation of the Equilibria

In order to study the evolution tend of the solution of system (2), we need to analyze the
stability of the equilibrium. Based on Theorem 1, system (2) may have multiple equilibria.
It is very difficult to analyze the global stabilities of the rumor-free and rumor equilibria.
Therefore, we will discuss the local stability and Hopf bifurcation of the equilibria.

Theorem 2. For system (2), the rumor-free equilibrium E0 is locally asymptotically stable when
<0 < 1 and unstable when <0 > 1.

Proof. The Jacobian matrix of system (2) at E0 is given as

J (E0) =


−(µ1 + d) 0 − α1B1〈k〉

d+µ1
0

0 −(µ2 + d) 0 − α2B2〈k〉
d+µ2

0 0 α1B1〈k〉
d+µ1

− [r1+σ1(β1+d+ρ)]
σ1

0

0 0 ρ α2B2〈k〉
d+µ2

− [r2+σ2(β2+d)]
σ2

.

Then, the characteristic equation is equivalent to[
λ− [r1 + σ1(β1 + d + ρ)]

σ1
(<01 − 1)

][
λ− [r2 + σ2(β2 + d)]

σ2
(<02 − 1)

]
× (λ + µ1 + d)(λ + µ2 + d) = 0.

Thus, λ1 = −(µ1 + d), λ2 = −(µ2 + d), λ3 = [r1+σ1(β1+d+ρ)]
σ1

(<01− 1), λ4 = [r2+σ2(β2+d)]
σ2

×(<02 − 1). Since <0 < 1, it has λ3 < 0 and λ4 < 0. Based on the stability theory, we can
conclude that E0 is locally asymptotically stable. Otherwise, E0 is unstable if <0 > 1.

Lemma 3 ([40]). For any a > 0 and b > 0, if dx(t)
dt ≥ b− ax(t) for t ≥ 0 and x(0) > 0, it has

limt→+∞ inf x(t) ≥ b
a ; if dx(t)

dt ≤ b− ax(t) for t ≥ 0 and x(0) > 0, it has limt→+∞ sup x(t) ≤ b
a .

Theorem 3. For system (2), the rumor-free equilibrium E0 is globally asymptotically stable if
<01 +

r1
(1+σ1)[r1+σ1(β1+ρ+d)] < 1 and <02 +

r2
(1+σ2)[r2+σ2(β2+d)] < 1.

Proof. Based on system (2), it has

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t)

≤B1 − (µ1 + d)I1(t).

By Lemma 3, one can obtain that

lim
t→+∞

sup I1(t) ≤
B1

µ1 + d
. (10)

Hence, for any ε1 > 0, there exists t1 > 0 such that I1(t) ≤ B1
µ1+d + ε1 for t > t1. Then, when

t > t1, one has
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dS1(t)
dt

≤
(
〈k〉α1(

B1

µ1 + d
+ ε1)− (

r1

σ1 + 1
+ β1 + ρ + d)

)
S1(t)

=
r1 + (β1 + d + ρ)σ1

σ1

[
<01 − 1 +

r1

(1 + σ1)[r1 + σ1(β1 + ρ + d)]

+
σ1〈k〉α1ε1

r1 + (β1 + d + ρ)σ1

]
S1(t).

Denote ω(ε1) = <01 − 1 + r1
(1+σ1)[r1+σ1(β1+ρ+d)] +

σ1〈k〉α1ε1
r1+(β1+d+ρ)σ1

. According to comparison
theorem, one can obtain that

S1(t) ≤ S1(0) exp
{

r1 + (β1 + d + ρ)σ1

σ1
ω(ε1)t

}
.

Because <01 +
r1

(1+σ1)[r1+σ1(β1+ρ+d)] < 1 and ε1 > 0 is an arbitrarily small real number, we
can chose ε1 > 0 such that ω(ε1) < 0. Therefore, limt→+∞ S1(t) = 0.

Next, we prove that limt→+∞ S2(t) = 0. Similarly, for any ε2 > 0, there exists t2 > 0
such that I2(t) ≤ B2

µ2+d + ε2 and S2(t) ≤ ε2 for t > t2. Then, for t > t2, it follows that

dS2(t)
dt

≤
(
〈k〉α2(

B2

µ2 + d
+ ε2) + ρε2 − (

r2

σ2 + 1
+ β2 + d)

)
S2(t)

=
r2 + (β2 + d)σ2

σ2

[
<02 − 1 +

r2

(1 + σ2)[r2 + σ2(β2 + d)]

+
σ2(〈k〉α2 + ρ)ε2

r2 + (β2 + d)σ2

]
S2(t).

Denote v(ε2) = <02 − 1 + r2
(1+σ2)[r2+σ2(β2+d)] +

σ2(〈k〉α2+ρ)ε2
r2+(β2+d)σ2

. By using comparison theorem,
one can obtain that

S2(t) ≤ S2(0) exp
{

r2 + (β2 + d)σ2

σ2
v(ε2)t

}
.

Since <02 +
r2

(1+σ2)[r2+σ2(β2+d)] < 1 and ε2 > 0 is an arbitrarily small real number, then we
can chose ε2 > 0 such that v(ε2) < 0. Therefore, limt→+∞ S2(t) = 0.

Due to limt→+∞ S1(t) = 0, then for any ε3 > 0, there exists t3 > 0 such that S1(t) ≤ ε3
for t > t3. Therefore, it has

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t)

≥B1 − (〈k〉α1ε3 + µ1 + d)I1(t).

By Lemma 3, one can get that limt→+∞ I1(t) ≥ B1
〈k〉α1ε3+µ1+d . Let ε3 → 0, it follows that

lim
t→+∞

inf I1(t) ≥
B1

µ1 + d
. (11)

In combination with (10) and (11), it is clear that limt→+∞ I1(t) = B1
µ1+d . Similar to the

analysis of I1(t), we can obtain that limt→+∞ I2(t) =
B2

µ2+d . This proves that the equilibrium
E0 is globally asymptotically stable.
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In order to facilitate the subsequent analysis process, we denote

H1(S∗1) = α1S∗1〈k〉+
r1σ1

(σ1 + S∗1)
2 + Θ1 + Θ3 − α1 I∗1 〈k〉,

G1(S∗1) = (
r1σ1

σ1 + S∗1
+ Θ1)(α1S∗1〈k〉+ Θ3)− α1 I∗1 Θ3〈k〉,

H2(S∗2) = α2S∗2〈k〉+
r2σ2

(σ2 + S∗2)
2 + Θ2 + Θ4 − α2 I∗2 〈k〉,

G2(S∗2) = (
r2σ2

σ2 + S∗2
+ Θ2)(α2S∗2〈k〉+ Θ4)− α2 I∗2 Θ4〈k〉,

where Θ1 = β1 + d + ρ, Θ2 = β2 + d, Θ3 = µ1 + d, and Θ4 = µ2 + d.

Theorem 4. Suppose that E∗1 is the rumor equilibrium of system (2). If Hi(S∗i ) > 0 and Gi(S∗i ) >
0, for i = 1, 2, then E∗1 is locally asymptotically stable. Otherwise, E∗1 is unstable.

Proof. The Jacobian matrix of system (2) at E∗1 is expressed as

J (E∗1 ) =


−α1S∗1〈k〉 −Θ3 0 −α1 I∗1 〈k〉 0

0 −α2S∗2〈k〉 −Θ4 0 −α2 I∗2 〈k〉
α1S∗1〈k〉 0 α1 I∗1 〈k〉 −

r1σ1
(σ1+S∗1 )

2 −Θ1 0

0 α2S∗2〈k〉 ρ α2 I∗2 〈k〉 −
r2σ2

(σ2+S∗2 )
2 −Θ2

.

The characteristic equation for matrix J (E∗1 ) is as follows:

(λ2 + H1(S∗1)λ + G1(S∗1))(λ
2 + H2(S∗2)λ + G2(S∗2)) = 0. (12)

Denote

λ2 + H1(S∗1)λ + G1(S∗1) = 0, (13)

λ2 + H2(S∗2)λ + G2(S∗2) = 0. (14)

According to the Routh–Hurwitz criterion, the rumor equilibrium E∗1 is locally asymptoti-
cally stable when Hi(S∗i ) > 0 and Gi(S∗i ) > 0, i = 1, 2. Otherwise, it is unstable.

Remark 2. In Theorem 4, we give a criterion for the local stability of the rumor equilibrium E∗1 .
From Theorem 1, it can be seen that there are many cases above the rumor equilibrium in system (2).
In either case, the criterion of Theorem 4 is applicable since it is of a general form. When system (2)
has two equilibria, each point may be locally stable under different conditions. Therefore, it is very
meaningful to give the threshold from stable to unstable for the equilibrium of system (2).

Based on the definition of Hi(S∗i ) and Gi(S∗i ), i = 1, 2, we let

r̂1 =
(α1 I∗1 〈k〉 − α1S∗1〈k〉 −Θ1 −Θ3)(σ1 + S∗1)

2

σ1
,

ř1 = (
α1 I∗1 〈k〉Θ3

α1S∗1〈k〉+ Θ3
−Θ1)

(σ1 + S∗1)
σ1

,

r̂2 =
(α2 I∗2 〈k〉 − α2S∗2〈k〉 −Θ2 −Θ4)(σ2 + S∗2)

2

σ2
,

ř2 = (
α2 I∗2 〈k〉Θ4

α2S∗2〈k〉+ Θ4
−Θ2)

(σ2 + S∗2)
σ2

,

and

r̄1 = max{r̂1, ř1}, r̄2 = max{r̂2, ř2}.
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Then, the following theorem is given.

Theorem 5. For system (2), the following conclusions are true.
(1). If r1 > r̄1 and r2 > r̄2, the rumor equilibrium E∗1 is locally asymptotically stable,

otherwise, E∗1 is unstable.
(2). System (2) has a Hopf bifurcation at r1 = r̄1 or r2 = r̄2.

Proof. Let Hi(S∗i ) = 0 for i = 1, 2, then one can get ri = r̂i. By simple calculation, we can
obtain that Hi(S∗i ) > 0 if ri > r̂i. Similarly, let Gi(S∗i ) = 0 for i = 1, 2, then it follows ri = ři,
and Gi(S∗i ) > 0 if ri > ři.

For the case of r̂1 > ř1, consider r1 in the neighborhood of r̂1, then Equation (13) has
two positive roots, which are given by

λ1,2 =
−H1(S∗1)± (H1(S∗1)

2 − 4G1(S∗1))
1
2

2
.

The derivative of r1 can be obtained:

dλ1,2

dr1
= − σ1

2(σ1 + S∗1)
2 ±

1

4
√

H1(S∗1)
2 − 4G1(S∗1)

[2H1(S∗1)
σ1

(σ1 + S∗1)
2 − 4

σ1(α1S∗1〈k〉+ Θ3)

σ1 + S∗1
].

When r1 = r̂1, one has

dλ1,2

dr1
= − σ1

2(σ1 + S∗1)
2 ±

1

2i
√

G1(S∗1)

σ1(α1S∗1〈k〉+ Θ3)

σ1 + S∗1
.

Obviously,

dRe(λ1,2)

dr1
|r1=r̂1 = Re(

dλ1,2

dr1
|r1=r̂1) = −

σ1

2(σ1 + S∗1)
2 6= 0.

Therefore, there is a Hopf bifurcation at r1 = r̂1.
Similarly, for the case of r̂2 > ř2, we can obtain

dRe(λ3,4)

dr2
|r2=r̂2 = Re(

dλ3,4

dr2
|r2=r̂2) = −

σ2

2(σ2 + S∗2)
2 6= 0.

Hence, there is a Hopf bifurcation at r2 = r̂2.
For the case of ř1 > r̂1, consider r1 in the neighborhood of ř1, so Equation (13) has one

positive root, which is presented as follows:

λ5 =
−H1(S∗1) + (H1(S∗1)

2 − 4G1(S∗1))
1
2

2
.

The derivative of r1 can be obtained:

dλ5

dr1
= − σ1

2(σ1 + S∗1)
2 +

1

4
√

H1(S∗1)
2 − 4G1(S∗1)

[2H1(S∗1)
σ1

(σ1 + S∗1)
2 − 4

σ1(α1S∗1〈k〉+ Θ3)

σ1 + S∗1
].

When r1 = ř1, one has G1(S∗1) = 0, H1(S∗1) > 0,

dλ5

dr1
|r1=ř1 = − σ1

H1(S∗1)(σ1 + S∗1)
(α1S∗1〈k〉+ Θ3) 6= 0.

Hence, there exists a Hopf bifurcation at r1 = ř1.
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Similarly, for the case of ř2 > r̂2, we can obtain

dλ6

dr2
|r2=ř2 = − σ2

H2(S∗2)(σ2 + S∗2)
(α2S∗2〈k〉+ Θ4) 6= 0.

Therefore, there exists a Hopf bifurcation at r2 = ř2.

Remark 3. In this paper, we introduce the isolation mechanism to the rumor-spreading model
and study the local stability of the equilibrium. Our purpose is to give the condition of rumor
extinction by choosing the control parameters. As we all know, the basic reproduction number <0 is
an important reference index. However, we find that system (2) may contain a rumor equilibrium
and it is locally stable when <0 < 1. Therefore, it is difficult to give the criterion of rumor extinction
under any initial condition.

3. Optimal Control Model

In system (2), the isolation mechanism is applied to suppress the spread of rumor,
in which the isolation rates r1 and r2 are constants. In this section, we will consider the
time-varying isolation mechanism. In order to reduce the control cost and achieve the
desired control effect, we use the optimal control method to optimize the control cost. The
model with the isolation mechanism is as follows:

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t),

dI2(t)
dt

= B2 − 〈k〉α2 I2(t)S2(t)− µ2 I2(t)− dI2(t),

dS1(t)
dt

= 〈k〉α1 I1(t)S1(t)−
r1(t)S1(t)
σ1 + S1(t)

− β1S1(t)− dS1(t)− ρS1(t),

dS2(t)
dt

= 〈k〉α2 I2(t)S2(t) + ρS1(t)−
r2(t)S2(t)
σ2 + S2(t)

− β2S2(t)− dS2(t),

dQ(t)
dt

=
r1(t)S1(t)
σ1 + S1(t)

+
r2(t)S2(t)
σ2 + S2(t)

− cQ(t)− dQ(t),

dR(t)
dt

= β1S1(t) + β2S2(t) + µ1 I1(t) + cQ(t) + µ2 I2(t)− dR(t),

(15)

where the control r1(t) and r2(t) are isolation rates of the social platform. Considering the
number of rumor spreaders and control cost, the following objective function is established:

J(r1(t), r2(t)) =
∫ T

0
[u1S1(t) + u2S2(t) + u3r2

1(t) + u4r2
2(t)]dt. (16)

where µ1, µ2, µ3 and µ4 are positive numbers, which are trade-off parameters among these
items. T is the expected control time.

The feasible region of r1(t) and r2(t) is U = {(r1(t), r2(t))|0 ≤ r1(t) ≤ 1, 0 ≤
r2(t) ≤ 1, t ∈ (0, T]}. Optimal control r∗1 and r∗2 satisfy J(r∗1 , r∗2) = min{J(r1(t), r2(t)) :
(r1(t), r2(t)) ∈ U}.

In order to obtain the optimal control, we construct the Lagrangian function:

L(S1(t), S2(t), r1(t), r2(t)) = u1S1(t) + u2S2(t) + u3r2
1(t) + u4r2

2(t).

The Hamiltonian function is defined as

H(Ii(t), Si(t), Q(t), R(t), ri(t), λj(t)) = L(Si(t), ri(t)) + λ(t)P(Ii(t), Si(t), Q(t), R(t), ri(t)),

where i = 1, 2, j = 1, 2, . . . , 6. λ(t) = (λ1(t), λ2(t), . . . , λ6(t))T ,P(Ii(t), Si(t), Q(t), R(t),
ri(t)) = (dI1(t)

dt , dI1(t)
dt , dI1(t)

dt , dI2(t)
dt , dS1(t)

dt , dS2(t)
dt )T .

Using Pontryagin’s maximum principle, the following theorem is given.
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Theorem 6. Let Î1, Î2, Ŝ1, Ŝ2, Q̂ and R̂ be the optimal states of system (15) under the optimal
control (r∗1 , r∗2). Then, there exist adjoint variables λj(t), j = 1, · · · , 6 satisfying

dλ1(t)
dt

= λ1(t)(〈k〉α1Ŝ1 + µ1 + d)− λ3(t)〈k〉α1Ŝ1 − λ6(t)µ1,

dλ2(t)
dt

= λ2(t)(〈k〉α2Ŝ2 + µ2 + d)− λ4(t)〈k〉α2Ŝ2 − λ6(t)µ2,

dλ3(t)
dt

= − u1 + λ1〈k〉α1 Î1 − λ3(t)[〈k〉α1 Î1 −
r1(t)σ1

(σ1 + Ŝ1)2
− d− β1 − ρ]

− λ4(t)ρ− λ5(t)
r1(t)σ1

(σ1 + Ŝ1)2
− λ6(t)β1,

dλ4(t)
dt

= − u2 + λ2〈k〉α2 Î2 − λ4(t)[〈k〉α2 Î2 −
r2(t)σ2

(σ2 + Ŝ2)2
− β2 − d]

− λ5(t)
r2(t)σ2

(σ2 + Ŝ2)2
− λ6(t)β2,

dλ5(t)
dt

= λ5(t)(c + d)− λ6(t)c,

dλ6(t)
dt

= λ6(t)d,

with the transversality conditions λj(T) = 0. Optimal control r∗1 and r∗2 are given by

r∗1 = max{min{ (λ3 − λ5)Ŝ1

2u3(σ1 + Ŝ1)
, 0}, rmax

1 },

r∗2 = max{min{ (λ4 − λ5)Ŝ2

2u4(σ2 + Ŝ2)
, 0}, rmax

2 }.

Proof. Let I1(t) = Î1, I2(t) = Î2, S1(t) = Ŝ1, S2(t) = Ŝ2, Q(t) = Q̂ and R(t) = R̂, using
Pontryagin’s maximum principle [41], we obtain the following adjoint equations:

dλ1(t)
dt

= − ∂H
∂I1(t)

=λ1(t)(〈k〉α1Ŝ1 + µ1 + d)− λ3(t)〈k〉α1Ŝ1 − λ6(t)µ1,

dλ2(t)
dt

= − ∂H
∂I2(t)

=λ2(t)(〈k〉α2Ŝ2 + µ2 + d)− λ4(t)〈k〉α2Ŝ2 − λ6(t)µ2,

dλ3(t)
dt

= − ∂H
∂S1(t)

=− u1 + λ1〈k〉α1 Î1 − λ3(t)[〈k〉α1 Î1 −
r1(t)σ1

(σ1 + Ŝ1)2
− d− β1 − ρ]

− λ4(t)ρ− λ5(t)
r1(t)σ1

(σ1 + Ŝ1)2
− λ6(t)β1,

dλ4(t)
dt

= − ∂H
∂S2(t)

=− u2 + λ2〈k〉α2 Î2 − λ4(t)[〈k〉α2 Î2 −
r2(t)σ2

(σ2 + Ŝ2)2
− β2 − d]

− λ5(t)
r2(t)σ2

(σ2 + Ŝ2)2
− λ6(t)β2,

dλ5(t)
dt

= − ∂H
∂Q(t)

=λ5(t)(c + d)− λ6(t)c,

dλ6(t)
dt

= − ∂H
∂R(t)

=λ6(t)d.
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By the optimality condition, the derivative of the Hamiltonian function with respect
to r1(t) and r2(t) is as follows:

∂H
∂r1(t)

|r1(t)=r∗1
= 2u3r1(t) +

(λ5(t)− λ3(t))Ŝ1

σ1 + Ŝ1
= 0,

∂H
∂r2(t)

|r2(t)=r∗2
= 2u4r2(t) +

(λ5(t)− λ4(t))Ŝ2

σ2 + Ŝ2
= 0.

Then, we obtain the optimal control

r∗1 =
(λ3(t)− λ5(t))Ŝ1

2u3(σ1 + Ŝ1)
, r∗2 =

(λ4(t)− λ5(t))Ŝ2

2u4(σ2 + Ŝ2)
.

By combining the properties of bounded set U, the interval of r∗1 and r∗2 are shown in the
following form:

r∗1 = max
{

min{ (λ3(t)− λ5(t))Ŝ1

2u3(σ1 + Ŝ1)
, 0}, rmax

1

}
,

r∗2 = max
{

min{ (λ4(t)− λ5(t))Ŝ2

2u4(σ2 + Ŝ2)
, 0}, rmax

2

}
.

Remark 4. In the optimal control, the control r1(t) and r2(t) are time-varying and associated with
objective function (14). For different expected control time T and objective function, the control
rates r1(t) and r2(t) may be different. This can be verified by the simulation in the later section.

4. 2I2SQR Rumor Model with Time-Delays
4.1. Model Formulation

In general, when the influence of rumor becomes greater, the social platform will take
control measures to isolate the rumor disseminators. Because it takes a certain time to search
for rumor disseminators on the network platform, the implementation of this measure
sometimes lags behind the rumor-spreading process. Therefore, system (1) incorporating
time-delays is formulated as follows:

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t),

dI2(t)
dt

= B2 − 〈k〉α2 I2(t)S2(t)− µ2 I2(t)− dI2(t),

dS1(t)
dt

= 〈k〉α1 I1(t)S1(t)−
r1S1(t− τ1)

σ1 + S1(t− τ1)
− β1S1(t)− dS1(t)− ρS1(t),

dS2(t)
dt

= 〈k〉α2 I2(t)S2(t) + ρS1(t)−
r2S2(t− τ2)

σ2 + S2(t− τ2)
− β2S2(t)− dS2(t),

dQ(t)
dt

=
r1S1(t− τ1)

σ1 + S1(t− τ1)
+

r2S2(t− τ2)

σ2 + S2(t− τ2)
− cQ(t)− dQ(t),

dR(t)
dt

= β1S1(t) + β2S2(t) + µ1 I1(t) + cQ(t) + µ2 I2(t)− dR(t).

(17)

where τ1, τ2 > 0 represent the time delays, and other parameters and variables are consis-
tent with the explanation in system (1). The initial conditions of system (17) are given by

Ii(θ) > 0, Si(θ) > 0, Q(θ) ≥ 0, R(θ) ≥ 0, θ ∈ [−τ, 0], i = 1, 2,

where τ = max{τ1, τ2}.
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Similar to the previous analysis, we simplify system (17) as follows:

dI1(t)
dt

= B1 − 〈k〉α1 I1(t)S1(t)− µ1 I1(t)− dI1(t),

dI2(t)
dt

= B2 − 〈k〉α2 I2(t)S2(t)− µ2 I2(t)− dI2(t),

dS1(t)
dt

= 〈k〉α1 I1(t)S1(t)−
r1S1(t− τ1)

σ1 + S1(t− τ1)
− β1S1(t)− dS1(t)− ρS1(t),

dS2(t)
dt

= 〈k〉α2 I2(t)S2(t) + ρS1(t)−
r2S2(t− τ2)

σ2 + S2(t− τ2)
− β2S2(t)− dS2(t).

(18)

Because the equilibria of system (18) are the same as that of system (2), which does not
depend on the time delays, then Theorem 1 is still established in this section. Hence, we
omit the theoretical analysis of the existence of equilibria.

4.2. Stability and Hopf Bifurcation of Equilibria

In this subsection, we will first discuss the stability and Hopf bifurcation of rumor-free
equilibrium E0, and then analyze the dynamics of the rumor equilibrium.

The Jacobian matrix of system (18) at E0 is expressed as follows:

J (E0) =


−(µ1 + d) 0 − α1B1〈k〉

d+µ1
0

0 −(µ2 + d) 0 − α2B2〈k〉
d+µ2

0 0 − r1e−λτ1
σ1
− A1 0

0 0 ρ − r2e−λτ2
σ2
− A2

,

where A1 = (β1 + d + ρ)− α1B1〈k〉
d+µ1

, A2 = β2 + d− α2B2〈k〉
d+µ2

. Accordingly, the characteristic
equation is

(λ + µ1 + d)(λ + µ2 + d)(λ + A1 +
r1

σ1
e−λτ1)(λ + A2 +

r2

σ2
e−λτ2) = 0. (19)

It is clear that λ1 = −(µ1 + d) < 0, λ2 = −(µ2 + d) < 0, and other eigenvalues are
determined by the following equations:

λ + A1 +
r1

σ1
e−λτ1 = 0, λ + A2 +

r2

σ2
e−λτ2 = 0.

Let

f (λ) = λ + A1 +
r1

σ1
e−λτ1 = 0, (20)

g(λ) = λ + A2 +
r2

σ2
e−λτ2 = 0. (21)

By Theorem 2, we know that all solutions of Equation (19) are negative when τ1 = τ2 = 0
and <0 < 1. When τ1, τ2 > 0, assume that λ = iω(ω > 0) is a solution of (19). Substituting
λ = iω into (19), the following two cases are discussed:
Case (1). If f (λ) = 0, then it yields

iω + A1 +
r1

σ1
(cos ωτ1 − i sin ωτ1) = 0.

Separating the real parts and imaginary parts, one has

A1 +
r1

σ1
cos ωτ1 = 0, ω− r1

σ1
sin ωτ1 = 0.
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Squaring and adding the above equations gives

ω2 = (
r1

σ1
)2 − A2

1 =
r1 + σ1(β1 + d + ρ)

σ1
(1−<01)

(
r1

σ1
+
〈k〉α1B1

d + µ1
− (β1 + d + ρ)

)
. (22)

Assume that r1
σ1

+ 〈k〉α1B1
d+µ1

> β1 + d + ρ, then there exist a positive real number ω10 such
that Equation (20) has purely imaginary roots λ = ±iω10(ω10 > 0). Then, according to the
above analysis, we have

cos(ω10τ1) = −
A1σ1

r1
=

σ1

r1

[
〈k〉α1B1

d + µ1
− (β1 + d + ρ)

]
,

and τ1i =
1

ω10
arccos( σ1

r1
[ 〈k〉α1B1

d+µ1
− (β1 + d + ρ)]) + 2πi

ω10
, i = 0, 1, 2, · · · .

Additionally, the derivative of Equation (20) with respect to τ1 yields

(
dλ

dτ1
)−1 =

1
λ r1

σ1
e−λτ1

− τ1

λ
=

1
−λ(λ + A1)

− τ1

λ
. (23)

Taking λ = iω10, τ1 = τ10 into (23), and separating the real part and the imaginary part,
one has

Re(
dλ

dτ1
)−1
∣∣∣∣
λ=iω10,τ1=τ10

=
1

A2
1 + ω2

10
> 0.

Case (2). If g(λ) = 0, the analysis process is similar to Case (1). Hence, we obtain that

ω2 = (
r2

σ2
)2 − A2

2 =
r2 + σ2(β2 + d)

σ2
(1−<02)

(
r2

σ2
+
〈k〉α2B2

d + µ2
− (β2 + d)

)
. (24)

When r2
σ2

+ 〈k〉α2B2
d+µ2

> β2 + d, based on (24), there exists a positive real number equation ω20

such that Equation (21) has a purely imaginary root λ = iω20. Through the analysis, it has

τ2j =
1

ω20
arccos

(
σ2

r2

[
〈k〉α2B2

d + µ2
− (β2 + d)

])
+

2π j
ω20

, j = 0, 1, 2, · · · . (25)

and

Re(
dλ

dτ2
)−1
∣∣∣∣
λ=iω20,τ2=τ20

=
1

A2
2 + ω2

20
> 0.

In summary, the following theorem is given.

Theorem 7. For system (18), if <0 < 1, r1
σ1

+ 〈k〉α1B1
d+µ1

> β1 + d + ρ and r2
σ2

+ 〈k〉α2B2
d+µ2

> β2 + d
are satisfied, the following statements hold.

(1). When τ1 ∈ [0, τ10) and τ2 ∈ [0, τ20), the rumor-free equilibrium E0 is locally asymptoti-
cally stable.

(2). When τ1 > τ10 or τ2 > τ20, the rumor-free equilibrium E0 is unstable. Moreover,
system (16) has a Hopf bifurcation at E0 when τ1 = τ10 or τ2 = τ20.

Next, we will discuss the stability and Hopf bifurcation of the rumor equilibrium E∗1 .
The Jacobian matrix of system (18) at E∗1 is given as follows:
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J (E∗1 ) =


−Ω1 0 −α1 I∗1 〈k〉 0

0 −Ω2 0 −α2 I∗2 〈k〉
α1S∗1〈k〉 0 −Ω3 − r1σ1e−λτ1

(σ1+S∗1 )
2 0

0 α2S∗2〈k〉 ρ −Ω4 − r2σ2e−λτ2

(σ2+S∗2 )
2

,

where Ω1 = α1S∗1〈k〉+ µ1 + d, Ω2 = α2S∗2〈k〉+ µ2 + d, Ω3 = −α1 I∗1 〈k〉+ (β1 + d + ρ), and
Ω4 = −α2 I∗2 〈k〉+ (β2 + d).

The characteristic equation for matrix J (E∗1 ) is expressed as(
λ2 + (Ω1 + Ω3)λ + C + (λ + Ω1)U1e−λτ1

)
×
(

λ2 + (Ω2 + Ω4)λ + D + (λ + Ω2)U2e−λτ2

)
= 0,

where C = (α1S∗1〈k〉+ µ1 + d)(β1 + d+ ρ)− α1 I∗1 〈k〉(µ1 + d), D = (α2S∗2〈k〉+ µ2 + d)(β2 +
d)− α2 I∗2 〈k〉(µ2 + d), U1 = r1σ1

(σ1+S∗1 )
2 , U2 = r2σ2

(σ2+S∗2 )
2 . The stability of the matrix J (E∗1 ) is

determined by the solution of the following equations

λ2 + (Ω1 + Ω3)λ + C + (λ + Ω1)U1e−λτ1 = 0, (26)

λ2 + (Ω2 + Ω4)λ + D + (λ + Ω2)U2e−λτ2 = 0. (27)

For the case of τ1 = τ2 = 0, according to the proof of Theorem 4, the rumor equilibrium
E∗1 is locally asymptotically stable under the conditions of Hi(S∗i ) > 0 and Gi(S∗i ) > 0.

For the case of τ1, τ2 > 0, assuming that the solutions of Equations (26) and (27) are
λ = iω1 and λ = iω2, respectively. Then, separating the real part and the imaginary part of
Equations (26) and (27), the following equations can be obtained:{

ω1U1 sin ω1τ1 + Ω1U1 cos ω1τ1 = ω2
1 − C,

ω1U1 cos ω1τ1 −Ω1U1 sin ω1τ1 = −(Ω1 + Ω3)ω1,
(28)

{
ω2U2 sin ω2τ2 + Ω2U2 cos ω2τ2 = ω2

2 − D,

ω2U2 cos ω2τ2 −Ω2U2 sin ω2τ2 = −(Ω2 + Ω4)ω2.
(29)

By adding the squares of the two equations in Equations (28) and (29), and letting x = ω2
1

and y = ω2
2 , it has

x2 + M1x + M2 = 0, (30)

y2 + L1y + L2 = 0, (31)

where M1 = (Ω1 + Ω3)
2 − 2C − U2

1 , M2 = C2 − Ω2
1U2

1 , L1 = (Ω2 + Ω4)
2 − 2D − U2

2 ,
L2 = D2 −Ω2

2U2
2 . Denote G(x) = x2 + M1x + M2, W(y) = y2 + L1y + L2.

For Equation (30), the following conclusions are true:
(H1). If M2 < 0, Equation (30) has a positive root.
(H2). If M2 ≥ 0, and M1 ≥ 0, Equation (30) does not have any positive roots.
(H3). If M2 > 0, M1 < 0, and M2

1 − 4M2 ≥ 0, Equation (30) has two positive roots.
(H4). If M2 > 0, M1 < 0, and M2

1 − 4M2 < 0, Equation (30) does not have any
positive roots.

Similar to Equation (31), the following conclusions are true:
(K1). If L2 < 0, Equation (31) has a positive root.
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(K2). If L2 > 0, and L1 < 0, and L2
1 − 4L2 < 0, Equation (31) does not have any

positive roots.
(K3). If L2 > 0, L1 < 0, and L2

1 − 4L2 ≥ 0, Equation (31) has two positive roots.
(K4). If L2 ≥ 0, and L1 ≥ 0, Equation (31) does not have any positive roots.
For the case of (H1), Equation (30) has a positive root x0 = ω2

10. By Equation (28),
we have

cos(ω1τ1) =
ω2

1 − C− (Ω1 + Ω3)ω1

(ω1U1 + Ω1U1)
,

then

τ
j
H10

=
1

ω10
arccos(

ω2
10 − C− (Ω1 + Ω3)ω10

ω10U1 + Ω1U1
) +

2π j
ω10

, (32)

where j = 0, 1, 2, . . .,±ω10 is a pair of pure imaginary roots of Equation (30). Further, taking
the derivative of Equation (26) with respect to τ1, we have

(
dλ

dτ1
)−1 =

2λ + Ω1 + Ω3

−[λ2 + (Ω1 + Ω3)λ + C]λ
+

1
λ(λ + Ω1)

− τ1

λ
.

Then

Re(
dλ

dτ1
)−1|λ=iω10,τ1=τ0

H10
=

2(ω10)
2 − 2C + (Ω1 + Ω3)

2 −U2
1

(ω2
10 + Ω2

1)U
2
1

=
G(ω10)

(ω2
10 + Ω2

1)U
2
1

. (33)

Since M2 < 0, x0 = ω2
10 > 0 is a positive root of (30), it has G(ω10) > 0. Hence

Re(
dλ

dτ1
)−1
∣∣∣∣
λ=iω10,τ1=τ0

H10

=
G(ω10)

(ω2
10 + Ω2

1)U
2
1
> 0.

Similarly, for the case of (K1), if L2 < 0, Equation (31) has a positive root y0 = ω2
20.

Then, we can obtain

τ
j
K10

=
1

ω20
arccos(

ω2
20 − D− (Ω2 + Ω4)ω20

ω20U2 + Ω2U2
) +

2π j
ω20

, j = 0, 1, 2, · · · , (34)

Re(
dλ

dτ2
)−1
∣∣∣∣
λ=iω20,τ2=τ0

K10

=
2(ω20)

2 − 2D + (Ω2 + Ω4)
2 −U2

2
((ω20)2 + Ω2

2)U
2
2

=
W(ω20)

((ω20)2 + Ω2
2)U

2
2

. (35)

Similar to the analysis of (H1), one has

Re(
dλ

dτ2
)−1|λ=iω20,τ2=τ0

K10
=

W(ω20)

((ω20)2 + Ω2
2)U

2
2
> 0.

Therefore, the following theorem is given.

Theorem 8. For system (18), if Hi(S∗i ) > 0 and Gi(S∗i ) > 0, i = 1, 2, the following results
are satisfied.

(1). If one of (Hi) and one of (Ki) for i = 2, 4 are satisfied, the rumor equilibrium point E∗1 is
locally asymptotically stable for all τ1, τ2 ≥ 0.

(2). If (H1) and (K1) are satisfied, the rumor equilibrium point E∗1 is locally asymptotically
stable when τ1 ∈ [0, τ0

H10
) and τ2 ∈ [0, τ0

K10
), and the rumor equilibrium point E∗1 is unstable when

τ1 > τ0
H10

or τ2 > τ0
K10

. Therefore, system (18) has a Hopf bifurcation at E∗1 when τ1 = τ0
H10

or
τ2 = τ0

K10
.
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For the case (H3), when L2 ≥ 0, L1 ≥ 0, and L2
1 − 4L2 ≥ 0, Equation (30) has two

positive roots, defined by x1 = ω2
11, x2 = ω2

12, and x1 > x2. Choose ω11 > 0, ω12 > 0 then
ω11 > ω12, G(ω11) > 0, G(ω12) < 0. According to Equation (32), we obtain that

τν
H3m =

1
ω1m

arccos
(

ω2
1m − C− (Ω1 + Ω3)ω1m

ω1mU1 + Ω1U1

)
+

2πν

ω1m
, ν = 0, 1, · · · , m = 1, 2. (36)

Let τ∗1 = τ0
H3m

= min{τν
H3m

: m = 1, 2, ν = 0, 1, 2, · · · } and assume that λ11 =
v11 + iω11, λ12 = v12 + iω12, then

Re(
dλ

dτ1
)−1|λ=iω11,τ1=τν

H31
> 0, ν = 0, 1, 2, · · · .

Re(
dλ

dτ1
)−1|λ=iω12,τ1=τν

H32
< 0, ν = 0, 1, 2, · · · .

Similarly, for the case of (K3), defined y1 = ω2
21, y2 = ω2

22, and y1 > y2, then
ω21 > ω22,W(ω21) > 0,W(ω22) < 0. According to (36), it has

τ
p
K3m =

1
ω2m

arccos
(

ω2
2m − D− (Ω2 + Ω4)ω2m

ω2mU2 + Ω2U2

)
+

2πp
ω2m

, p = 0, 1, · · · , m = 1, 2 (37)

and assume that λ21 = v21 + iω21, λ22 = v22 + iω22, then

Re(
dλ

dτ2
)−1|λ=iω21,τ2=τ

p
K31

> 0, p = 0, 1, 2, · · · .

Re(
dλ

dτ2
)−1|λ=iω22,τ2=τ

p
K32

< 0, p = 0, 1, 2, · · · .

Lemma 4. If 2ω1Bi + αi〈k〉Bi I∗i > (Bi)
2 I∗i + αi〈k〉(µi + d), and ωi1 > ωi2 for i = 1, 2, then

τν
H31

< τν
H32

and τν
K31

< τν
K32

, ν = 1, 2, · · · .

Proof. Define

g(ω) =
ω2

1 − C− (Ω1 + Ω3)ω1

(ω1U1 + Ω1U1)
, ḡ(ω) = arccos g(ω), Ḡ(ω) =

1
ω

ḡ(ω).

Then, the derivative of g(ω) is

g
′
(ω) =

(ω2
1 + 2ω1Ω1 − (Ω1 + Ω3)Ω1 + C)U1

(ω1U1 + Ω1U1)2

=
[ω2

1 + (2ω1 − B1 I∗1 + α1 I∗1 〈k〉)B1 I∗1 − α1 I∗1 〈k〉(µ1 + d)]U1

(ω1U1 + Ω1U1)2

≥
[2ω1B1 + α1 I∗1 〈k〉B1 − (B1)

2 I∗1 − α1〈k〉(µ1 + d)]I∗1
U1(ω1 + Ω1)2

> 0.

Since g(ω) is always an increasing function about ω, it is obtained that ḡ(ω) = arccos g(ω)
is a decreasing function about ω. Therefore, we can obtain that

Ḡ
′
(ω) = − 1

ω2 ḡ(ω) +
1
ω

ḡ
′
(ω) < 0.
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By conclusion, τν
H31

< τν
H32

when ω11 > ω12. Similarly, we obtain that τν
K31

< τν
K32

for
ω21 > ω22, where ν = 1, 2, · · · . Hence, the following theorem is given.

Theorem 9. For system (18), if Lemma 4 and Hi(S∗i ) > 0, Gi(S∗i ) > 0 for i = 1, 2, are satisfied,
the following results can be obtained:

(1). If both (H3) and (K3) are satisfied, the rumor equilibrium point E∗1 is locally asymptoti-
cally stable for τ1 ∈ [0, τ0

H31
) and τ2 ∈ [0, τ0

K31
), and unstable for τ1 > τ0

H31
or τ2 > τ0

K31
. Hence,

system (18) has a Hopf bifurcation at E∗1 when τ1 = τ0
H31

or τ2 = τ0
K31

.
(2). If (H1) and (K3) are satisfied, the rumor equilibrium point E∗1 is locally asymptotically

stable for τ1 ∈ [0, τ0
H10

) and τ2 ∈ [0, τ0
K31

), and unstable for τ1 > τ0
H10

or τ2 > τ0
K31

. Therefore,
system (18) has a Hopf bifurcation at E∗1 when τ1 = τ0

H10
or τ2 = τ0

K31
.

(3). If (H3) and (K1) are satisfied, the rumor equilibrium point E∗1 is locally asymptotically
stable when τ1 ∈ [0, τ0

H31
) and τ2 ∈ [0, min{τ0

K10
), and the rumor equilibrium point E∗1 is unstable

when τ1 > τ0
H31

or τ2 > τ0
K10

. Therefore, system (18) has a Hopf bifurcation at E∗1 when τ1 = τ0
H31

or τ2 = τ0
K10

.
(4). If one of (Hi)(i = 1, 3) and one of (Kj)(j = 2, 4) are satisfied, the rumor equilibrium

point E∗1 is locally asymptotically stable for τ1 ∈ [0, τ0
Hi0

), and unstable for τ1 > τ0
Hi0

. Hence,
system (18) has a Hopf bifurcation at E∗1 when τ1 = τ0

Hi0
.

(5). If one of (Hi)(i = 2, 4) and one of (Kj)(j = 1, 3) are satisfied, the rumor equilibrium
point E∗1 is locally asymptotically stable for τ2 ∈ [0, τ0

Kj0
), and unstable for τ2 > τ0

Kj0
. Hence,

system (18) has a Hopf bifurcation at E∗1 when τ2 = τ0
Kj0

.

Remark 5. From the proof of the above theorems, we can see that the stability analysis of rumor
equilibrium in the model with time delay is more complex than that in the model without time delays.
This shows that the dynamic behavior of the rumor equilibrium is affected by the time delay.

Remark 6. In existing works [36–39], some rumor-spreading models were proposed on OSNs in
a multilingual environment. In these models, the isolation mechanism, immune mechanism and
time delay were not considered. However, in this paper, we comprehensively consider these factors
and propose a new rumor-spreading model on OSNs. The dynamic behavior is carefully studied.
Moreover, the optimal control method is applied to suppress the spreading of the rumor.

5. Numerical Simulations

In this section, we verify the effectiveness of the theoretical results by selecting different
parameters. In Table 1, based on the range of parameters in the model, we randomly select
seven groups of parameters to simulate the evolution of the rumor under different threshold
conditions, and verify the correctness of the theoretical results.

5.1. The Stability of Rumor-Free Equilibrium

Example 1. For system (1) with the parameters in Set 1, we obtain <01 = 0.61 < 1 and
<02 = 0.25 < 1. Then, it has a unique rumor-free equilibrium E0 = (0.48, 0.2, 0, 0, 0, 0.32).
According to Theorem 2, E0 is locally asymptotically stable. For different initial values, the
dynamics of system (1) is shown in Figure 3. In Figure 3a, we can see that S1(t) and S2(t) will
converge asymptotically to 0 under different initial values. In Figure 3b, Q(t) gradually tends to
0. I1(t), I2(t) and R(t) converge to 0.48, 0.2 and 0.32, respectively. It can be verified that E0 is
locally asymptotically stable. In other words, the rumor will disappear automatically. According
to the expression of E0, one can find that the stable states of I1(t) and I2(t) are B1

d+µ1
and B2

d+µ2
,

respectively. In Set 1, we choose B1 = B2, then the main factor affecting I1(t) and I2(t) are the
parameters µ1 and µ2. Because µ1 = 0.01 and µ2 = 0.3, the stable value of I1(t) is greater than the
stable value of I2(t) in the numerical simulation. Moreover, as µ2 > µ1, the descending speed and
amplitude of I2(t) are greater than I1(t). In addition, the evolutionary processes of I1(t) and I2(t)
are different under different initial values.
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Table 1. The set of parametric values for simulation.

Parameters Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

B1 0.1 0.11 0.11 0.11 0.09 0.03 0.1
B2 0.1 0.1 0.1 0.1 0.13 0.18 0.1
α1 0.27 0.25 0.25 0.23 0.2 0.32 0.23
α2 0.26 0.14 0.25 0.15 0.25 0.25 0.15
µ1 0.01 0.01 0.01 0.01 0.01 0.01 0.01
µ2 0.3 0.01 0.01 0.01 0.01 0.3 0.01
β1 0.13 0.13 0.13 0.13 0.24 0.08 0.13
β2 0.12 0.15 0.15 0.14 0.15 0.08 0.14
c 0.1 0.1 0.1 0.1 0.1 0.1 0.1
σ1 0.003 0.52 0.52 0.41 0.5 0.58 0.5
σ2 0.0028 0.51 0.51 0.4 0.52 0.5 0.5
r1 0.001 0.02 0.02 0.05 0.1 0.1 0.06
r2 0.001 0.05 0.03 0.05 0.08 0.0005 0.06
d 0.2 0.21 0.21 0.21 0.21 0.21 0.2
ρ 0.08 0.03 0.03 0.08 0.05 0.08 0.08
〈k〉 3.5 7 7 7 7 3.5 7
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Figure 3. The dynamics of system (1) with <0 < 1. (a) The trajectories of S1(t) and S2(t). (b) The
trajectories of I1(t), I2(t), Q(t) and R(t).

For the case with time delays, we can verify that the conditions of Theorem 7 hold. By
calculation, τ10 = 4.38 and τ20 = 5.12. As shown in Figure 4, we find that the time-delay
affects the convergence rate and the stability of the rumor-free equilibrium point. When
τ1 ∈ [0, τ10) and τ2 ∈ [0, τ20), E0 is locally asymptotically stable. When τ1 > τ10 or τ2 > τ20,
E0 is unstable. This is consistent with the results of Theorem 7.
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Figure 4. (a) The trajectories of S1(t) with different time delays. (b) The trajectories of S2(t) with
different time delays.
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In the analysis of Theorem 7, based on (22), we find that the ratios of ri to σi, i = 1, 2
have an important influence on the threshold condition of the time delay. From Figure 5,
one can find that with the increase in the ratio, the time-delay threshold decreases, and
they are inversely proportional.
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Figure 5. (a) The evolution between τ10 and r1
σ1

. (b) The evolution between τ20 and r2
σ2

.

However, the Hopf bifurcation exists at E0 when the time delay is greater than the
threshold in theoretical. In Figure 4, it is easy to find that there exist S1(t) < 0 and S2(t) < 0.
This is inconsistent with the reality. In real life, Si(t) ≥ 0 for i = 1, 2. Therefore, the Hopf
bifurcation will not exist. We redrew the dynamic behavior of Si(t) in combination with
Si(t) ≥ 0 for i = 1, 2. It can be seen from Figure 6 that the time delay will inhibit the spread
of the rumor.
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Figure 6. (a) The trajectories of S1(t) with different time delays. (b) The trajectories of S2(t) with
different time delays.

5.2. The Stability of Rumor Equilibrium

Example 2. Consider system (1) with parameters in Set 2 of Table 1. It can be obtained that
<01 = 2.14 > 1 and <02 = 0.97 < 1, α2σ2〈k〉 = 0.26 > µ2 + d = 0.22, then system (1) has a
unique rumor equilibrium E∗1 . As shown in Figure 7, rumor equilibrium E∗1 is locally asymptotically
stable. By calculating the parameters in Set 3 of Table 1, the results of <01 = 2.14 > 1 and
<02 = 1.9 > 1, α2σ2〈k〉 = 0.26 > µ2 + d = 0.22 are gained. Figure 8 shows that the system (1)
achieves local asymptotic stability. Similarly, Figure 9 shows the locally asymptotically stability
of the equilibrium point E∗1 drawn with the parameters in Set 4 of Table 1. By comparing with
the results, we find that when <01 > 1, the value of S2 at the equilibrium point increases with
the increase in <02. Figure 10 describes the asymptotical stability of the equilibrium E∗1 . These
simulation results show that when <01 > 1, the rumor in the network will continue to prevail in
both languages.
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Figure 7. The dynamics of system (1) with <01 = 2.14 > 1 and <02 = 0.97 < 1. (a) The trajectories of
S1(t) and S2(t). (b) The trajectories of I1(t), I2(t), Q(t) and R(t).
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Figure 8. The dynamics of system (1) with <01 = 2.14 > 1 and <02 = 1.9 > 1. (a) The trajectories of
S1(t) and S2(t). (b) The trajectories of I1(t), I2(t), Q(t) and R(t).
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Figure 9. The dynamics of system (1) with <01 = 1.48 > 1 and <02 = 1. (a) The trajectories of S1(t)
and S2(t). (b) The trajectories of I1(t), I2(t), Q(t) and R(t).

(a) (b) (c)

Figure 10. The phase diagram of S1(t) + S2(t) and I1(t) + I2(t). (a) <01 = 2.14 > 1 and <02 =

0.97 < 1. (b) <01 = 2.14 > 1 and <02 = 1.9 > 1. (c) <01 = 1.48 > 1 and <02 = 1.

Furthermore, Figure 11 shows the states of S1(t) and S2(t) with parameters in Set 5
and Set 6 of Table 1, respectively. One can find that when <01 < 1, the rumor will only
continue to spread in the official language.
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Figure 11. The dynamics of S1(t) and S2(t). (a) <01 = 0.95 < 1 and <02 = 1.5. (b) <01 = 0.28 < 1
and <02 = 1.

5.3. The Hopf Bifurcation of Rumor Equilibrium

Example 3. In order to verify the influence of time delays on rumor spreading, we select the
parameters in Set 7 of Table 1 in model (15). By calculating, we can obtian that (H1) and (K1) are
satisfied. In particular, if τ1 = τ2 = τ, it has min{τ0

10, τ0
20} = 11.2549. As shown in Figure 12,

S1(t) and S2(t) are locally asymptotically stable if τ < 11.2549, and Figure 13 shows that S1(t)
and S2(t) are unstable when τ = 11.264. Figure 14 describes the phase diagram of the equilibrium
E∗1 . Therefore, it can be seen that the equilibrium E∗1 becomes unstable as the time delay increasing.
When the time delay is greater than the threshold, the stability of the equilibrium will disappear.
This means that the rumor disseminator will exist continuously, and the density of the disseminator
will fluctuate within a certain range over time.
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Figure 12. (a) The trajectories of S1(t) with τ = 11 and τ = 11.25. (b) The trajectories of S2(t) with
τ = 11 and τ = 11.25.
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Figure 13. (a) The trajectory of S1(t) with τ = 11.264. (b) The trajectory of S2(t) with τ = 11.264.



Mathematics 2022, 10, 4556 25 of 29

0.6 0.65 0.7 0.75 0.8 0.85

I
1
(t)+I

2
(t)

0.1

0.15

0.2

S
1
(t

)+
S

2
(t

)

=11

(a)

0.6 0.65 0.7 0.75 0.8 0.85

I
1
(t)+I

2
(t)

0.05

0.1

0.15

0.2

S
1
(t

)+
S

2
(t

)

=11.26

(b)

Figure 14. (a) The phase diagram of S1(t) + S2(t) with τ = 11. (b) The phase diagram of S1(t) + S2(t)
with τ = 11.26.

In model (15), when τ1 6= τ2 > 0, the parameters are selected as the ones in Set 7 of
Table 1. Through verification, (H1) and (K1) are satisfied in Theorem 8, and τ0

H10
= 11.5,

τ0
K10

= 9.5. Figures 15–17 show the densities of S1(t) and S2(t) with different time delays.
We observe that the system is stable at the rumor equilibrium if the time delays are less
than their threshold values in Figure 15. However, the system undergoes Hopf bifurcation
when the time delays are equal to their threshold values. This situation can be seen in
Figure 16. In addition, the system is unstable at the rumor equilibrium if the time delays
are great than their threshold values, shown in Figure 17.
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Figure 15. (a) The trajectory of S1(t) with τ1 = 11. (b) The trajectory of S2(t) with τ2 = 9.
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Figure 16. (a) he trajectory of S1(t) with τ1 = 11.5. (b) The trajectory of S2(t) with τ2 = 9.5.
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Figure 17. (a) The trajectory of S1(t) with τ1 = 11.6. (b) The trajectory of S2(t) with τ2 = 9.8.

5.4. Feasibility of Optimal Control

Example 4. For optimal control system (15), the parameters are shown in Set 3 of Table 1. In the
objective function (16), the parameters are u1 = 3, u2 = 2, u3 = 5 and u4 = 1, respectively. In
order to explore the influence of optimal control on the system (15), the trajectories of the system
(15) with and without optimal control are simulated, as shown in Figure 18. Through observation,
we find that the values of Si(t)(i = 1, 2) and R(t) will decrease under the optimal control, and the
densities of Ii(t)(i = 1, 2) and Q(t) will be more under optimal control.
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Figure 18. Densities of individuals with and without optimal control.

In (16), we choose T = 10, then the control strength r1(t) and r2(t) are shown in
Figure 19a. It can be observed that the control r1(t) and r2(t) decreases with time and
gradually tends to 0 at t = 10. Figure 19b shows the performance of the objective function.
It can be seen that J(t) is monotone and nondecreasing. Obviously, in a certain period
of time, the control intensity of the system gradually decreases to 0, while the control
consumption gradually increases to the maximum.
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Figure 19. (a) The trajectories of ri(t) i = 1, 2. (b) The trajectory of control cost J(t).
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In order to facilitate the control, the control time in the optimal control will be given in
advance. In the specific simulation, we give the trajectories of r1(t) and r2(t) when T = 2,
T = 5, T = 8 and T = 10, as shown in Figure 20a. Figure 20b shows the consumption at
T = 2, T = 5, T = 8 and T = 10, respectively. Through observation, we find that the larger
the given time T, the greater the consumption of J(t). Figure 20c shows the trajectories
of J(t) under different control forces. We found that among all these controls, r1 = 1 and
r2 = 1 have the largest consumption, while the consumption of optimal control is minimal.
That means that the optimal control proposed in this paper not only can control the rumor
within the specified time, but also consumes the least resources.

0 2 4 6 8 10t

0

0.2

0.4

0.6

0.8

1

O
p

ti
m

a
l 
c
o

n
tr

o
l

r
1
(t),T=10

r
2
(t),T=10

r
1
(t),T=8

r
2
(t),T=8

r
1
(t),T=5

r
2
(t),T=5

r
1
(t),T=2

r
2
(t),T=2

(a)

0 0.5 1 1.5 2
t

0

0.5

1

1.5

2

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

J(t), T=10

J(t), T=8

J(t), T=5

J(t), T=2

(b)

5 6 7 8 9 10
t

0

10

20

30

40

50

60

70

Ob
jev

tiv
e f

un
cti

on
 J(

t)

optimal control

without control

constant control with r
1
=r

2
=1

constant control with r
1
=0,r

2
=1

constant control with r
1
=1,r

2
=0

constant control with r
1
=r

2
=0.5

constant control with r
1
=0.8,r

2
=0.2

(c)

Figure 20. (a) The trajectories of optimal control ri(t) i = 1, 2. (b) The objective function. J(t) with
T = 2, 5, 8, 10. (c) The consumption of J(t) under different ri(t), i = 1, 2.

6. Conclusions

In this paper, we studied the modeling, dynamic analysis and control of rumor prop-
agation with quarantine control on multilingual OSNs. Firstly, we proposed a 2I2SQR
rumor-spreading model without considering propagation delay. We gave the rumor-free
equilibrium and calculated the basic reproduction number by using the next generation
matrix method. Based on backward bifurcation theory, we discussed the existence of a
rumor equilibrium, which is somewhat more complicated. It was found that the number of
rumor equilibria is different under different parameters, including no rumor equilibrium,
only one rumor equilibrium and the case with two rumor equilibria. By using the Jacobian
matrix method and a differential inequality lemma, the local and global asymptotic stabili-
ties of rumor free-equilibrium were proved. The local stability and bifurcation of the rumor
equilibrium were discussed, and some related theorems were given. Secondly, in order to
suppress the spreading of rumor with the lowest cost in an expected period, a continuous
optimal control measure was proposed to curb the propagation of rumor. According to
Pontryagin’s maximum principle, an optimal isolation strength was obtained. Moreover,
considering the time delays from rumor spreading to isolation control, we proposed a
2I2SQR rumor propagation model with time delays on multilingual OSNs. The local sta-
bility of rumor-free and rumor equilibria was investigated. It was found that, different
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from the model without delay, both the rumor-free equilibrium and the rumor equilibrium
are unstable and have Hopf bifurcations when the propagation delay is greater than some
certain threshold conditions. Finally, the theory results were verified by some numerical
simulations. In this research, the uniform network structure was considered in the model,
and a continuous control strategy was proposed. In our future work, we will explore a
more general heterogeneous network structure and propose some new control strategies to
suppress the spread of rumors.
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