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Abstract: The analysis of network structure is essential to many scientific areas ranging from biology
to sociology. As the computational task of clustering these networks into partitions, i.e., solving
the community detection problem, is generally NP-hard, heuristic solutions are indispensable. The
exploration of expedient heuristics has led to the development of particularly promising approaches
in the emerging technology of quantum computing. Motivated by the substantial hardware demands
for all established quantum community detection approaches, we introduce a novel QUBO-based
approach that only needs number-of-nodes qubits and is represented by a QUBO matrix as sparse
as the input graph’s adjacency matrix. The substantial improvement in the sparsity of the QUBO
matrix, which is typically very dense in related work, is achieved through the novel concept of
separation nodes. Instead of assigning every node to a community directly, this approach relies on the
identification of a separation-node set, which, upon its removal from the graph, yields a set of connected
components, representing the core components of the communities. Employing a greedy heuristic
to assign the nodes from the separation-node sets to the identified community cores, subsequent
experimental results yield a proof of concept by achieving an up to 95% optimal solution quality on
three established real-world benchmark datasets. This work hence displays a promising approach to
NISQ-ready quantum community detection, catalyzing the application of quantum computers for
the network structure analysis of large-scale, real-world problem instances.

Keywords: quantum computing; community detection; QUBO; NISQ

MSC: 68Q12

1. Introduction

In the era of digitization, the amount of collected data is rising rapidly. This poses
substantial problems in data analysis as the algorithms employed there typically have
superlinear and thus deficient runtime for many relevant datasets. In this article, we
investigate a new approach to cope with this problem in the domain of graph structure
analysis. Graphs are one of the central data structures used in information theory and
find application in a vast range of scientific disciplines [1–3]. The task of identifying the
inherent structure of a graph is known as community detection [4]. In practice, the use
of corresponding clustering methods allows the discovery of structural information from
real-world networks in domains ranging from social science to biology [5–7].

Although no exact definition has been agreed upon, a graph is typically said to inherit
a community structure if it can be partitioned in a way such that the number of edges within
the partitions is higher than the number of edges between the partitions [5]. While some
approaches exist that can provably find existing community structures, all of them are NP-
hard [8–11]. This indicates a general NP-hardness of community detection and hence poses
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a demand for efficient heuristics to acquire sufficiently good solutions in reasonable time.
Motivated by recent advancements and promising results in solving NP-hard problems
in the field of quantum computing (QC) [12–15], we investigate possible advantages in
building such heuristics by utilizing the more powerful algorithmic toolset available in QC.

In general, quantum computers allow the application of quantum mechanical effects to
perform computation. Based on the concepts of superposition and entanglement, quantum
computers can solve many computational problems provably faster than classical comput-
ers [16–18]. In the case of community detection, related work has shown promising results
using the popular modularity maximization approach [13,19]. Modularity is a measure for
the quality of a given partitioning based on comparing the edge distribution of the given
graph to the edge distribution of a graph with the same node degree but inheriting no
community structure [20]. The more these distributions differ, the higher the modularity,
indicating a clearer community structure. While this approach is provably optimal in the
sense that no other approach could detect a community structure when modularity maxi-
mization cannot [8], its implementation on a quantum computer is cumbersome, especially
for current quantum computers.

Present implementations of modularity maximization on quantum computers make
use of the quadratic nature of the modularity [13,19]. Simulating the time evolution of a
specific quantum physical system, i.e., typically the transverse field Ising Model under
adiabatic time evolution, a quantum heuristic solver for quadratic unconstraint binary
optimization (QUBO) problems (e.g., modularity maximization) can be implemented on a
quantum computer [13,21]. Even though no quantum speedups where proven for solving
NP-hard optimization problems with this approach yet, many cases of potential scaling
advantages have been identified, with modularity maximization being one of them [13–15].

A critical limitation of the established quantum modularity maximization approach
hindering its execution on near-term quantum hardware is the size of the search space in
optimization. Scaling linearly in the number of nodes and the number of communities,
the required amount of quantum bits (qubits) needed for representing a specific solution
quickly exceeds the number of qubits available in present noisy intermediate scale quantum
(NISQ) hardware [22].

Motivated by these results, we develop a novel approach to community detection:
Community Detection based on Separation-Node identification (CDSN). This approach is
specialized for (quantum heuristic) QUBO solving that uses a smaller search space than the
state-of-the-art quantum modularity maximization approach [13]. This objective led to the
sociologically inspired approach of defining a community by its extreme ends, similar to,
e.g., differentiating political parties by their position on the left–right spectrum. For graphs,
we translate this idea to the existence of what we later define as a bijective set of separation
nodes. The removal of the nodes contained in this set then yields connected components,
which represent the “cores” of the communities. We subsequently conduct experiments
that indicate that this essentially solves the computationally hard part of the community
detection problem, as the community assignment for the separation nodes can typically be
obtained using a greedy optimizer.

This idea allows for a quantum–classical hybrid detection of communities while
merely using one qubit for every node in the graph with a single call to a QUBO solver. We
show empirically that such a set of separation nodes can be found for graphs inheriting
community structure and introduce a quantum heuristic approach to find them, constituting
a proof of concept.

This paper is structured in the following way: In Section 2, we describe the current
state of the art of quantum community detection; in Section 3, the separation node set
approach to (quantum) community detection is introduced, which is then evaluated in
Section 4, and then the findings are concluded in Section 5.
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2. Background

With the advent of quantum optimization heuristics like quantum annealing, possible
quantum advantages have been explored for many optimization problems [23]. Easily al-
lowing for a binary encoding of solutions and showing promising performance, community
detection quickly became a popular problem in quantum optimization [24].

Representing community detection natively as a QUBO problem in the basic case of
partitioning into k = 2 communities, modularity maximization was the first approach used
in quantum-computing-based community detection [19]. For a given graph G = (V, E),
the modularity of a partitioning into V0 = {vi ∈ V | xi = 0} and V1 = {vi ∈ V | xi = 1}
according to x =

(
x1, . . . , x|V|

)
∈ {0, 1}|V| is given by

1
2|E|∑ij

(
aij −

didj

2|E|

)
xixj, (1)

where given node degrees d =
(

d1, . . . , d|V|
)

and aij denote the entries of the adja-
cency matrix A of G. Straightforward calculations yield the resulting QUBO matrix
Q = A− ddᵀ

2|E| which is sufficient to apply practically all currently available quantum
optimization heuristics.

This approach to can be generalized to k > 2 communities by introducing one-hot
encoding [13]. Here, the community assignment of a node vi ∈ V is encoded by a k-
dimensional bit string xi =

(
x(1)i , . . . , x(k)i

)
with x(l)i = 1 and x(m)

i = 0 ∀m 6= l if the node
vi is assigned to community l. The resulting optimization term is hence given by

1
2|E|∑ij

(
aij −

didj

2|E|

)(
∑

l
x(l)i x(l)j

)
. (2)

In order to formulate this as a QUBO problem, we have to add a suitably weighted penalty
term P(x) (for details, see [25]) to the optimization term to indirectly enforce the one-hot
encoding by P(x) = 0 if every node is assigned to exactly one community and P(x) > 0;
otherwise,

P(x) = ∑
i

(
1−∑

l
x(l)i

)2

. (3)

Apart from capitalizing on the inherent QUBO form of modularity maximization,
many other quantum-computing-based approaches to community detection like Quantum
Genetic Algorithms and Quantum Walks have been proposed in the recent literature [26,27].
A particularly promising approach for near-term application on large graphs is based on
exploiting the quadratic nature of regularity checking related to Szemeredi’s Regularity
Lemma (SRL) [28]. While similar to our approach, as the solved QUBO problems only
involve |V| qubits, it works fundamentally differently, as communities are identified
iteratively. In essence, the algorithm proposed in [28] executes the following steps:

1. Randomly split the given graph G = (V, E) into two equally sized partitions A∪̇B = V
and delete all edges inside the partitions to yield a bipartite graph.

2. Find subsets X ⊆ A and Y ⊆ B such that X = {vi ∈ A | si = 1} and

Y =
{

vj ∈ B | sj = 1
}

where s =
(

s1, . . . , s|V|
)

is the solution to the quadratic pro-
gram given by

arg min
s∈{0,1}|V|

∑
vi∈A
vj∈B

(
d(A, B)− aij

)
sisj. (4)

Here, d(V1, V2) denotes the link density of two disjoint sets V1, V2 given by e(V1,V2)
|V1||V2|

and e(V1, V2) represents the number of edges connecting V1 and V2.
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3. Identify C := X ∪ Y to be a community and repeat Steps 1 and 2 for the subgraph
induced on G by V \ C := {v ∈ V | v /∈ C}.

While this approach has a solid graph theoretic foundation, the high number of needed
solver calls and the dense QUBO matrix still pose nontrivial hardware execution challenges
in the NISQ era.

Aiming to minimize the demands to the QUBO solver, we propose a radically different
approach that only needs a single QPU call and whose QUBO matrix is topologically
identical to the adjacency matrix of the given graph and is thus equally sparse. The approach
presented in this work essentially purifies a solution of a relaxed community detection
problem, i.e., the final community structure is represented by the solution of a QUBO
problem which is based on classically computed, probabilistic community assignments for
each node. While we introduce a particularly efficient approach to calculate the needed
input for the QUBO problem, many other approaches to relaxed community detection have
been proposed in related work like semidefinite programming or convexification [29–32].

As derived in detail in the next section, our approach requires a solution for a novel
relaxation of the community detection problem as input to the QUBO problem formulation.
In essence, our approach demands an estimate value for each edge, specifying whether
it connects nodes belonging to different or the same communities. While such estimates
could in principle be computed based on the output of solvers for the relaxed community
detection problem by using, e.g., the KL-divergence of the community affiliations of neigh-
boring nodes, we introduce a specialized estimation method tailored to this task. Notably,
metrics like the edge betweenness centrality [33] also do not yield satisfactory results for
our approach, as the difference in values between separation and non-separation edges is
seemingly too small.

3. Proposed Model

In the following, we explore the idea of performing community detection based on
finding a suitable set of nodes separating the communities as defined in Definition 1 in a
rigorous mathematical manner. Meeting the demand from the derived QUBO formulation
for a separation edge estimator, we subsequently introduce a promising heuristic approach
based on the concept of modularity.

3.1. Separation-Node Sets

The approach presented in this paper consists of two steps:

(1) Identifying a set of nodes separating communities and thus revealing the fundamen-
tal community structure (see Sections 3.4 and 3.5).

(2) Classifying the community of each separation node to finalize community detection
(see Section 3.6).

Using either a trivial, greedy approach introduced in Section 3.6 or a slight adaptation of
the well-known QUBO-formulation of modularity maximization [34] to perform (2), the
main objective of this paper is the development of a QUBO-approach realizing (1). To
provide a more formal definition of (1), we now introduce the concept of separation-node
sets. In the following, we use S to denote the set of all separation-node sets.

Definition 1. For a graph G = (V, E) and a ground truth community structure C partitioning
V, we call S ⊆ V a set of separation nodes if the connected components Si partitioning the graph
induced by V \ S are distributed such that

{
Si
}

i is a refinement of C.

Equivalent to this definition, one could also demand the existence of a refinement
map φ : P(V) → P(V) mapping each connected component Si ⊆ V onto a community
φ
(
Si
)
= Cj ∈ C such that Si ⊆ Cj. Utilizing the notion of separation-node sets, (1) can be

formulated as finding the smallest set of separation nodes whose associated refinement map
φ is ideally bijective. An example of a set of separation nodes satisfying these conditions is
depicted in Figure 1b, which is part of Figure 1 displaying the proposed approach. As it
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becomes apparent in the evaluation, such well-behaved separation node sets can also be
found in real-world datasets.

(a) Exemplary graph consisting of three con-
nected cliques.

(b) Identification of a set of separation nodes
(marked in red).

(c) Removal of the set of identified separa-
tion nodes and identification of the resulting
connected components.

(d) Classification of the community of all
identified separation nodes.

Figure 1. Outline of the workflow for the proposed approach of community detection via separation-
node identification. The computationally expensive tasks of identifying a set of separation nodes
(b) and classifying the communities for these nodes (d) are performed using quantum computing,
while the computationally cheap tasks of removing the classified separation-nodes and identifying
the resulting connected components (c) are performed classically.

The surjectivity of φ ensures that each community becomes detected and its injectivity
ascertains that no communities are split. In the following, we call separation-node sets in-
jective, surjective or bijective if the respective refinement function satisfies these conditions.
In order to formulate a QUBO problem where the optimal solution represents the minimal
separation-node set, we start by stating an alternate, more convenient definition of minimal
separation-node sets.

Theorem 1. For an adequate penalty term P : {0, 1}|V| → R+
0 ensuring the separation-node set

properties, the following equation states an equivalent definition of the set containing all minimal
separation-node sets Smin:

Smin =


⋃

vi∈V
xi=0

vi

∣∣∣∣∣∣∣∣ x = arg min
x∈{0,1}|V|

2P(x)− ∑
vi∈V

xi

. (5)

Here, we used x ∈ {0, 1}|V| as a 0-flag for separation nodes, aij to denote the entries of the adjacency
matrix, c : V → C as a mapping of nodes to their ground truth community and the Kronecker
delta δxy. For a penalty term P ensuring the validity of the separation-node set definition by
penalizing incident node pairs from strictly different communities where neither node is element of
the sought-after separation-node set, the following definition is a viable option:

P(x) := ∑
(vi ,vj)∈V2

aij

(
1− δc(vi)c(vj)

)
xixj.
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Proof. See Section 3.2.

Therefore, the task of finding the smallest set of separation-nodes for any given graph
is native to the concept of QUBO. Its formulation can be reduced to approximating δc(vi)c(vj)
for incident node pairs vi, vj ∈ V. This can be understood as calculating the probability of
an edge being an interconnection of adjacent nodes belonging to different communities, or,
more formally, a separation edge.

Most interestingly, we can show that solving the QUBO problem stated in Equation (5)
is NP-hard for a specific estimator. To see this, we start by observing a substantial similarity
of our QUBO formulation with the QUBO formulation of the Max-Clique problem as stated
in [35],

arg min
x∈{0,1}|V|

2 ∑
(vi ,vj)∈V2

(
1− aij

)
xixj − ∑

vi∈V
xi (6)

for a given graph G = (V, E) and its corresponding adjacency matrix A with entries aij.
Choosing the estimator s : V ×V → {0, 1} by s

((
vi, vj

))
:= aij, it becomes apparent that

the QUBO formulations are identical if we specify the use of a complete graph of size |V|
as an input to our QUBO formulation. Leaving an extensive mathematical analysis of the
NP-hardness for more realistic estimators to future work, this shows that the problem of
finding a minimal separation-node set is NP-hard when treating the estimator as a variable.
This result supports the pursuit of the proposed approach of using quantum computing in
order to find a minimal separation-node set.

Returning to the initial goal of finding bijective separation-node sets, we now expedite
their surjectivity. A significant discovery regarding surjectivity is illustrated in Figure 2,
showing no-free-lunch when using Theorem 1 to find surjective separation-node sets. This
necessitates the addition of a penalty term to the QUBO formulation in order to ensure
surjectivity when building upon Theorem 1. For the formulation of a suitable penalty term,
see Section 3.3.

(a) A graph and its community
structure.

(b) Minimal separation-node
set consisting of all nodes
marked in red.

(c) Minimal surjective separa-
tion-node set consisting of all
nodes marked in red.

Figure 2. Counterexample proving no-free-lunch when using Theorem 1 to find surjective separation-
node sets.

As our formulation results in a PUBO (polynomial unconstrained binary optimization)
problem of degree O(log2 |V|), we conjecture that this constraint cannot be realized in a
QUBO form without the addition of ancillary variables. Using the standard quadratization
approach with the Rosenberg polynomial [36], a QUBO formulation of this term demands
superpolynomially many ancillary variables, i.e., O

(
|V|2 log2 log2|V|

)
. In the context of

quantum annealing, this scaling beyond a quadratic number of qubits makes the surjective
separation-node approach overly complex compared to the standard modularity maximiza-
tion. In the gate model, the QAOA can be used to solve PUBO problems in principle (see,
e.g., [37]), but as current hardware limitations prohibit adequate evaluation, we leave the
exploration of the surjectivity constraint to future work.
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As a consequence of not enforcing surjectivity, there exists a possibility that the number
of communities is incorrect after step (1) of detecting the fundamental community structure
by separation-node set identification. Modifying step (2) slightly, this could in principle
be compensated by iteratively increasing the number of possible communities until no
further improvement of the modularity can be achieved. A clever way to do this could be
the elbow method known in clustering [38]. For the alternative greedy approach for the
second step (2), the possibility of merging communities could be allowed.

Fortunately, the conducted experiments show that topological structures precluding
free lunch for property of surjectivity are scarce in practice. Therefore, further, we omit the
explicit demand for surjective separation-node sets.

Analog to the surjectivity, there exist graph topologies like the one displayed in
Figure 3 showing no-free-lunch when using Theorem 1 to find injective separation-node
sets. Hence, it appears necessary to ensure injectivity explicitly using a penalty term when
building upon Theorem 1 in principle, as well. The formulation of such a penalty term also
turns out to be rather tedious, as can be seen in Lemma 6 of Section 3.2. In this case, we end
up with an even higher-degree PUBO problem for the injectivity than for the surjectivity.
Luckily, compared to the surjectivity, the injectivity of a separation-node set is of less
importance, as the second step (2) could easily be adapted to cope with this. Analog to
the case of surjectivity, we observe such topological structures preventing free lunch quite
rarely in conducted experiments, resulting in the analog dismissal of an explicit demand
for the separation-node sets to be injective in practice.

(a) A graph and its community
structure.

(b) Minimal separation-node
set consisting of all nodes
marked in red.

(c) Minimal injective separa-
tion-node set consisting of all
nodes marked in red.

Figure 3. Counterexample indicating no-free-lunch when using Theorem 1 to find injective separation-
node sets.

In summary, the apparent infrequence of topological structures preventing free lunch
regarding bijectivity renders the QUBO formulation stated in Theorem 1 to be a well-
founded starting point for the proposition of QUBO-based community detection via
separation-node sets.

While this approach provides exact results for a perfect classification of separation
edges, it fully relies on a suitable estimation heuristic. Although many known measures
for various edge properties exist (as described in Section 2), none showed to be entirely
suitable for detecting separation edges according to pretesting conducted for this paper.
Consequently, we now motivate a novel approach tailored for exactly this task based on
the concept of modularity.
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3.2. Proving Theorem 1

In the following, we provide a proof for Theorem 1, which states equation

Smin =


⋃

vi∈V
xi=0

vi

∣∣∣∣∣∣∣∣ x = arg min
x∈{0,1}|V|

2P(x)− ∑
vi∈V

xi

 (7)

where, by definition, we have

Smin :=
{

S ∈ S | |S| ≤
∣∣S′∣∣ ∀S′ ∈ S

}
, (8)

P(x) := ∑
(vi ,vj)∈V2

aij

(
1− δc(vi)c(vj)

)
xixj. (9)

Aiming to prove “⊆” and “⊇” individually, we first prove some lemmata.

Lemma 1. All x ∈ {0, 1}|V| satisfying P(x) = 0 represent sets of separation nodes.

Proof. Let x be a binary vector such that P(x) = 0 and let S be the corresponding set of
nodes. In order to prove the desired statement by contradiction, assume S /∈ S , which is
equivalent to the existence of a connected component of the graph induced by V \ S not
being a subset of one community. Then, at least two nodes vi, vj ∈ V must exist that are
connected via a path and belong to different communities. On this path, there must exist
two adjacent nodes the belong to different communities with neither of them being an
element of S. Therefore, P(x) must be bigger than 0, yielding a contradiction.

Lemma 2. The following equation states an alternative definition of the set containing all sets of
separation nodes.

S =


⋃

vi∈V
xi=0

vi

∣∣∣∣∣∣∣∣ P(x) = 0

. (10)

Proof. Using Lemma 1 to show “⊇”, we now show “⊆”. Let S ∈ S be an arbitrary
separation-node set and x the corresponding binary vector 0 flagging the nodes belonging
to S. Assuming P(x) 6= 0, at least two adjacent nodes vi, vj ∈ V belonging to different
communities exist following the definition of P. These nodes subsequently belong to the
same connected component Si of the graph induced by V \ S implicating that no community
can exist that resembles a superset of the nodes inducing the connected component Si.
Therefore, S cannot be a set of separation nodes as the corresponding refinement map
cannot exist, yielding a contradiction and showing P(x) = 0.

Lemma 3. For every S ⊂ V satisfying P(x) > 0, there exists a superset S̃ ⊃ S such that
x̃TQx̃ < xTQx, with Q defined such that xTQx = 2P(x)−∑vi∈V xi and x̃ corresponding to S̃.

Proof. Let S ⊂ V be a set of nodes such that the corresponding penalty term P(x) is bigger
than zero. This implies the existence of a pair of incident nodes v, w ∈ V being part of
the same community while neither v ∈ S nor w ∈ S. Then, set S̃ := S ∪ {v} (without loss
of generality, we could also define S̃ := S ∪ {w} while achieving the same) has a smaller
QUBO value compared to S: with a decrement of at least 4 in the the penalty term (i.e.,
taking its weighting of 2 into account) and an increment in the cost function (i.e., the sum
of the xi’s) of 1, we obtain x̃TQx̃ ≤ xTQx− 1, completing the proof.
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Corollary 1. x = arg minx∈{0,1}|V| 2P(x)−∑vi∈V xi ⇒ P(x) = 0.

Proof. This result follows directly from the application of Lemma 3, as P(x) 6= 0 would
violate the minimality property of x.

With these lemmata, we are now ready to prove Theorem 1.

Proof. Let Q ∈ R|V|×|V| be defined such that

xTQx = 2P(x)− ∑
vi∈V

xi. (11)

We start by proving “⊆”. Let S ∈ Smin and x its corresponding 0-flag vector; then, we know
by Corollary 1 that P(x) = 0. Therefore, xTQx = |S| − |V| =: smin. It is sufficient to show
that smin = minx∈{0,1}|V| −∑vi∈V xi + 2P(x). For this, we assume that there exists an x̃ such

that x̃TQx̃ < smin. Now, as P maps onto N0, two possibilities exist:

1. P(x̃) = 0 and the separation-node set S̃ is smaller than S;
2. P(x̃) > 0 and the separation-node set S̃ is much smaller than S.

As we can see using Lemma 3, we can reduce the latter case to the former case by iteratively
eradicating all penalties. Now, using Corollary 1, S̃ is a separation-node set, and by
definition of S̃,

∣∣∣S̃∣∣∣ < s, yielding a contradiction to the minimality of Smin and thereby
proving “⊆”.

We now prove “⊇”. Let x∗ := arg minx∈{0,1}|V| 2P(x)−∑vi∈V xi and let S∗ be the node

set corresponding to x∗. As we can see using Lemma 3, P(x∗) must be zero, otherwise x∗

could not be minimal in the sense of satisfying its definition. Therefore, S∗ is a separation-
node set according to Lemma 2. Assuming S∗ /∈ Smin yields |S∗| 6= |S| for an arbitrary
S ∈ Smin, two cases are possible:

1. |S∗| < |S|;
2. |S∗| > |S|.
The former yields a contradiction to Smin being minimal and the latter yields a contradiction
to the minimality of x∗.

3.3. Constructing Penalty Terms for the In- and Surjectivity Constraints

In this section, we formulate penalty terms realizing the in- and surjectivity constraints
for separation-node sets. Instead of solving this seemingly non-straightforward task directly,
we realize the individual constraints with terms that are larger than 0 if the constraint is
satisfied and 0 otherwise. Exploiting the possibilities of PUBO, we show that the respective
terms can be used to build penalty functions using a moderate amount of ancillary variables.

Lemma 4. The separation-node set associated with the 0-flag vector x ∈ {0, 1}|V| is surjective if
∑vj∈V δc(vi)c(vj)

xj > 0 for all vi ∈ V.

Proof. This equivalence can be observed by recognizing that the sum is restricted to
yield non-negative terms, which are nonzero if at least one node belonging to the same
community as vi is not part of the separation node set associated with x for all vi.

As the heuristic approaches presented in this work only allow for the estimation
of δc(vi)c(vj)

for adjacent node pairs
(
vi, vj

)
∈ E, no direct estimation for δc(vi)c(vj)

seems
accessible. However, we can use the estimation of δc(vi)c(vj)

for adjacent node pairs to
estimate δc(vi)c(vj)

for non-adjacent node pairs:

δc(vi)c(vj)
= sgn ∑

p∈p(vi ,vj)

dim(p)−1

∏
k=1

δc(pk)c(pk+1)
. (12)
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Here, p(vi, vj) denotes a function that returns the set of all simple paths (vπ(1), . . . , vπ(l))
between vi and vj. To allow for this convenient notation, we introduce π : V → {1, . . . , |V|}
as the projection, mapping the indices of the path entries of the elements of p(vi, vj) to
their global indices from {v1, . . . , vn} ∈ V. In practice, these paths could be found using
techniques presented in [39].

The value inside the sign function resembles the number of simple, intracommunity
paths between vi and vj. A general upper bound for the number of paths with these
properties is 2|V|−2, i.e., the number of all subsets of V containing vi and vj. For practical
purposes, this term clearly is unsuitable, as small errors in the estimation of δc(vi)c(vj)

add
up very quickly. Neglecting applicability concerns for reasons described in Section 3.1, we
now show how to build a PUBO penalty function associated to the surjectivity term used
in Lemma 4.

Lemma 5. Given function f : {0, 1}n → {0, . . . , m} for arbitrary n, m ∈ N representing a
constraint via f (x) > 0, the following penalty terms can be used to ensure that f (x) > 0 in PUBO:

P1(x, y) :=

 f (x)−
dlog2(m)e

∑
i=0

2iyi

2

=

0 if y :=
dlog2(m)e

∑
i=0

2iyi = f (x)

> 0 otherwise.

(13)

P2(y) :=
dlog2(m)e

∏
i=0

(1− yi)

=

{
1 if y = 0
0 otherwise, i.e., y > 0.

(14)

Proof. Clearly, minx,yP1(x, y) + P2(y) = 0 ⇐⇒ f (x) > 0 and thus P1(x, y) + P2(y) > 0
⇐⇒ f (x) = 0.

When denoting the surjectivity constraint from Lemma 4 as f (x), we can see that
f (x) < |V| for every vi ∈ V. Therefore, we can use Lemma 5 to formulate a penalty term
for the surjectivity constraint at the expense of at most |V|dlog2|V|e ancillary qubits.

With these results, we are now ready to formulate the following PUBO penalty term
for injectivity.

Lemma 6. σij(x) is positive for every vi ∈ V and vj ∈ c(vi) \ {vi} not contained in the separation-

node set if the separation-node set associated with the 0-flag vector x ∈ {0, 1}|V| is injective, and 0
otherwise.

σij(x) := ∑
p∈p(vi ,vj)

dim(p)−1

∏
k=1

δc(pk)c(pk+1)
xπ(pk)

xπ(pk+1)
. (15)

Proof. Here, σij(x) is positive if a simple path p ∈ p(vi, vj) between vi and vj exists that
consists exclusively of nodes assigned to the community of vi which are not part of the
separation-node set, and 0 otherwise.

Analogously to Lemma 4, we can observe that σij(x) ≤ 2|V|−2. Thus, we can use
Lemma 5 at the expense of less than dlog2|V|e ancillary qubits for every single node
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pair vi ∈ V and vj ∈ c(vi) \ {vi}. As injectivity demands the positiveness of σij(x)
for all node pairs vi ∈ V and vj ∈ c(vi) \ {vi}, |V|2dlog2|V|e ancillary qubits suffice
to construct a penalty term for injectivity. The selection of appropriate node pairs vi ∈ V
and vj ∈ c(vi) \ {vi} can be performed using the term xixjδc(vi)c(vj)

.

3.4. Modularity-Based Separation Edge Estimation

Motivated by the proven optimality of modularity and by the fact that at its core,
modularity is based on essentially estimating whether each node pair is likely to belong
to the same or different communities, we start by showing how this idea can be used to
estimate δc(vi)c(vj)

. For this, recall the definition of the entries of the modularity matrix:

mij :=
aij −E

[
Jij
]

|E| . (16)

As before, aij denotes the entries of the respective adjacency matrix while E
[
eij
]

denotes
the expected value of the number of edges between vi and vj, Jij. Upon closer inspection,
we observe two main cases:

• mij > 0, if less connectivity between vi and vj was to be expected, indicating that vi
and vj likely belong to the same community;

• mij < 0, if more connectivity between vi and vj was to be expected, indicating that vi
and vj likely belong to different communities.

As the matrix entries mij are normalized to the interval of [−1, 1] by the division with |E|,
we can see that using proper rescaling to the interval of [0, 1], i.e., via 2

(
mij + 1

)
, this allows

for an estimation of the term δc(vi)c(vj)
in principle.

In practice, however, this approach yields extremely bad estimations, as only the
entries mij of the modularity matrix are relevant that correspond to a given edge

(
vi, vj

)
∈ E.

For these, it quickly becomes apparent that mij is typically larger than 0, making this exact
approach infeasible in practice. However, these considerations motivate an adaptation of
modularity for the estimation of separation edges as proposed further.

3.5. Separation Edge Estimation Based on Edge Neighborhood Connectivity

Exploiting the mathematical structure of modularity for a straightforward separation
edge estimation, we now introduce a promising generalization of the previous approach
which we name the neighborhood connectivity of an edge. Instead of merely taking the direct
connection between two nodes into account (i.e., an edge), the neighborhood connectivity
of an edge considers connections between the neighborhoods of the nodes. In this context,
the neighborhood Nr(v) of a node v ∈ V is defined as the set of nodes with the shortest
path of length r to v.

Based on this idea, we can rephrase the basic case of our generalization, i.e., modularity,
as merely counting the number of unique edges on paths of length 1 between the 0-
neighborhoods N0(vi) and N0

(
vj
)

of the respective nodes vi and vJ . The here-proposed
generalization introduces the following two new notions:

(1) Consider connections between r-neighborhoods with radius r ≥ 0;
(2) Consider paths of length 2.

Stating this more precisely in mathematical form, we now define the neighborhood connec-
tivity ν

(l)
r of an edge given a path length l, and a neighborhood size r:

ν
(l)
r :=

a(l)r −E
(

a(l)r

)
n(l)

r

. (17)

In this definition, a(l)r denotes the number of unique edges contained in paths of length l
connecting the r-neighborhoods of the given nodes which do not involve nodes or edges
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contained by the (r− 1)-neighborhoods (as this would result in possible double counting
of edges). Analogously to the definition of modularity, E

(
a(l)r

)
denotes the expected value

corresponding to a(l)r , and n(l)
r acts as a normalization factor denoting the highest possible

number a(l)r can assume. Note that we use brackets to differentiate our superscript notation
x(y) from the standard notation for exponents xy.

These values can be calculated based on a simple breadth-first search with depth r
iterating of the neighborhood layers while choosing vi and vj as starting nodes. As for
the expected value calculation, the configuration model [40] has shown to be an adequate
choice (which is in line with modularity). For details on this, we refer to our implementation
freely available upon request to the authors.

Our preferred method of combining the results into the neighborhood connectivity
ν of a given edge based on all ν

(l)
r is the dot product with a weight vector w with entries

w(l)
r ∈ R+

0 such that their sum equals 1:

ν :=
d

∑
r=1

w(1)
r ν

(1)
r +

d−1

∑
r=0

w(2)
r ν

(2)
r . (18)

As we know that the standard modularity value is of little use, we choose w(1)
0 = 0. We

consider the remaining weights as hyperparameters, for which w(2)
0 = 0.5 = w(1)

1 have
proven to be suitable values according to a conducted hyperparameter search.

3.6. Assigning the Separation Nodes to Communities

As stated in Section 3.1, we propose two different approaches to assigning the separation
nodes to communities, i.e., (1) a greedy strategy and (2) modularity maximization. In
the experiments conducted in this paper, the greedy strategy was employed for most
experiments. It works as follows:

(1) Count the number of edges to every identified community for each separation node.
(2) Assign the node with the most edges to a single community to that community. In

case of a tie, the community that reached the highest number of edges first during
the iteration over all adjacent nodes is selected.

(3) Update the counts for every neighboring separation node.
(4) Repeat steps two and three until every separation node is properly assigned to a

community.

This algorithm has a runtime of the number of separation nodes S times the number of
communities |C|, O(S · |C|) and hence runs very efficiently.

As the results calculated based on the edge neighborhood connectivity did not always
show reasonable quality to use this greedy optimizer sensibly, we chose to use standard
modularity maximization for these special cases. Fortunately, the well-known QUBO
approach to this [19] can be easily adapted to our situation, i.e., by clamping the values of
the known community assignments, where clamping is to be understood in the same way
as it is used in quantum Boltzmann machines [41]. This yields a QUBO problem of size
O(S · |C|), which often can be solved a lot quicker than the original problem, as S < |V|
in practice.

4. Evaluation

The evaluation aims at the examination of the validity of the following two claims:

(1) The assignment of separation nodes to their communities is computationally easy
given a good enough estimator, i.e., it can be executed accurately in linear runtime
with respect to the number of communities for each separation node.

(2) Neighborhood connectivity constitutes a suitable estimator for separation edges, i.e.,
it can be employed to identify an adequate separation-node set in the here-proposed
approach to conduct community detection in practice.
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As we show in the following, both claims appear to be valid according to the conducted
experiments. Subsequently, we evaluate the concept of edge neighborhood connectivity
and the proposed separation-node assignment approaches individually to explore the
performance of the employed subroutines in greater detail.

In the following sections, we measure performance using the following units:

• Modularity. For the comparability between different datasets, we use the approxima-
tion ratio based on the best known solution. This yields values between 0 (bad) and
1 (good).

• NMI score. The NMI score is used to compare the community assignments with
known ground truth. It yields values between 0 (bad) and 1 (good).

• R2 score. This score is used to estimate predictive performance of the separation edge
classification. It yields values between 0 (bad) and 1 (good).

Extending this summary, we provide an overview of all utilized datasets in Table 1.

Table 1. Summary of all employed datasets. Note that five different SBM graphs were utilized, each
with the same number of nodes and communities, but with varying probabilites of edges being inside
communities. For details on all datasets, see the following sections.

No. of Nodes No. of Communities Intra Prob

SBM graphs 250 7 [0.75, 0.625, 0.5, 0.4, 0.3]

Karate Club 24 2 cannot be specified

Dolphins 62 4 cannot be specified

Miserables 77 5 cannot be specified

Protein 83 9 cannot be specified

Books 105 3 cannot be specified

4.1. Evidence That Separation-Node Assignment is Computationally Cheap

For investigating claim (1), we propose to check if the greedy separation-node assign-
ment as described in Section 3.6 is sufficient to assign the nodes of well-behaved separation
nodes to the correct communities. If this approach is indeed sufficient to obtain (nearly)
perfect solutions, we reason that the claim is most likely valid.

In order to eliminate the possibility of an insufficient separation-node set, we use a
synthetic dataset with a known community structure, allowing for the use of a perfect
estimator for the separation edges. To find a sufficiently good separation-node set, we
utilize a simple simulated annealing approach to solve the associated QUBO as defined
in Equation (5). Regarding the synthetic dataset, we choose the stochastic block model
(SBM) [42] which is a widely used tool for benchmarking in the realm of community
detection. As described in [42], the SBM allows us the generation of ground truth data
for a given number of nodes, communities and a specified probability of an edge being
inside a community, rather than between different communities. These parameters fully
determine the difficulty of the problem instance according to the phase transition of the
community detection problem [10]. Aiming to achieve realistic results, we use a graph of
size |V| = 250 structured into seven equally sized communities with varying intra- and
interconnections between the communities resembling three different difficulties according
to the phase transition of community detection on SBMs (for details on the phase transition,
see [10]). As it becomes apparent in the corresponding Figure 4, the greedy separation-node
assignment indeed yields optimal or at least close to optimal results, indicating the validity
of claim (1).
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(a) Our approach. (b) SA-based modularity maximization.

Figure 4. This figure shows the Normalized Mutual Information (NMI) score of the presented
approach for 50 different graphs each based on ground truth and a perfect separation edge estimator
coupled with the greedy separation-node assignment. The NMI score as defined in [43,44] was used,
as it resembles a well-proven measure for the accuracy of a community given the ground truth [45].
The different probabilities for intra-community edges in the chosen SBM model resemble different
difficulties according to the phase transition known for this model. The lower the stated probability,
the harder the problem. The probabilities were chosen such that the hardest graphs barely differed
from a null model inheriting no measurable structure up to the hardest that still allowed perfect NMI
scores. For this dataset, the phase transition can be calculated to be at a probability of 0.2865 for the
intra-community edges. As modularity maximization has been shown to perform very well up until
the sharp phase transition (which is not reached here), the constantly good results for the SA based
approach appear to be reasonable. Additional tests show a sharp performance drop off to NMI values
at around 0.5 for smaller intra-probabilities such as 0.23.

4.2. Neighborhood Connectivity Constitutes a Suitable Estimator for Separation Edges

Having seen solid results for the optimal estimator, we now want to investigate the
performance of the here-presented “neighborhood connectivity” approach for real-world
data and hence explore claim (2). For this, we choose the greedy separation-node assign-
ment so that the separation-node identification displays the only non-trivial task capable
of solving the problem instances. By choosing standard real-world benchmark graphs
of varying size, we can observe stable results for most datasets in Figure 5, while often
achieving 90 to 95% optimal results. Choosing the state-of-the-art approach of modularity
maximization (in this case, based on simulated annealing) as a baseline, we can find that
while our approach typically performs slightly worse, there also exist problem instances
such as the “miserables” graph in which our approach matches the chosen baseline.

4.3. Evaluating the Performance of Edge Neighborhood Connectivity

Motivated by these proof-of-concept results, we now investigate the performance of
the proposed estimator (edge neighborhood connectivity) in order to explore its optimal
mission scenario. For this, we again resort to equally formed SBM benchmark graphs with
slightly higher intra-community connection probabilities as they offer the comparison with
ground truth information. Concretely, we choose these probabilities to be 0.75 for the easy
case, 0.625 for the medium case and 0.5 for the hard case, which was the easiest case for the
experiments conducted with the perfect estimator (and picked previously as the hardest
case to yield perfect results still).

Analogously to the perfect estimator, the identified separation-node sets were all valid
and bijective in a small test run on 10 graphs. Switching to the main optimization goal, we
now examine the size of the identified separation-node sets for graphs of different difficulty,
as displayed in Figure 6. Here, we can see that the sizes of the separation-node sets found
are substantially larger than the best-known solution. This becomes especially apparent
for easy problem instances. Interestingly, the performance quality increases for harder
problems in relative perspective, showing promising scaling behavior.
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(a) Our approach with greedy separation-
node assignment.

(b) Simulated annealing-based modularity maxi-
mization.

Figure 5. This box plot displays the fraction of the achieved modularity score by the best known
solution for selected standard benchmark datasets: (1) the social network of a karate club [46],
(2) the social interactions between dolphins [47], (3) the collectively appearing characters in the
book “Les Miserables” [48], (4) protein–protein interactions [49] and (5) jointly bought political
books [50]. Each graph was analyzed 10 times using simulated annealing. Our approach clearly does
not work well for the karate club network. Closer inspections yield the result signifying that the
connected components resulting from the found separation-node sets often only consist of single
nodes, indicating suboptimality in using neighborhood connectivity for this relatively small dataset.
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Figure 6. The y-axis depicts the deviation factor from the best-known separation-node set in size.
Notably, the absolute sizes of the identified separation-node sets are typically similar over the different
difficulties, while they rise slightly for larger graphs.

In order to put the results of the developed separation edge estimator based on edge
neighborhood connectivity into perspective with an optimal estimator, we now investigate
its R2 score in Figure 7. Interestingly, the worse performance for larger datasets has no
impact on the validity and bijectivity of the subsequently identified separation-node set,
which is very promising regarding scaling.

4.4. Evaluating the Separation-Node Assignment

Although the separation-node sets found are well behaved, the combination with the
greedy separation-node assignment to communities does yield substantially worse results
than the perfect estimator. Detailed results to this are displayed in Figure 8.
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Figure 7. R2 score of the edge-neighborhood-connectivity-based separation edge estimator. In
practice, an R2 score of 30% implies that merely 30% of the variability of the ground truth has been
accounted for. A strict trend towards worse results for harder datasets is clearly visible. This shows
that the performance of the estimator decreases for harder problem instances as to be expected while
still yielding somewhat accurate results.
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(a) Our approach with greedy separation-
node assignment.
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(b) Simulated annealing-based modularity maxi-
mization.

Figure 8. This figure depicts the normalized mutual information score of the selected SBM benchmark
graphs using the greedy assignment of separation nodes to communities. A substantial drop off
in performance can be observed for the harder datasets. Meanwhile, as all problem instances are
significantly above the phase transition for modularity maximization in these datasets (an intra-prob
of 0.2865), our classical baseline easily identifies close to optimal solutions. Notably, however, it is
promisingly slightly outperformed by our approach in the case of the easiest dataset.

Subsequent experiments show that the performance of the medium and hard datasets
can be improved significantly by exchanging the greedy approach of a simulated annealing-
based one, as depicted in Figure 9.

As described in the caption of Figure 9, the employed simulated annealing approach
using the QUBO formulation described in Section 3.6 seems to be a suboptimal choice to
assign separation nodes to communities. We suspect that the reason for this resides in
the large size of the search space for the given problem instances due to the employed
one-hot encoding. As identified separation-node sets are typically sized up to 200 nodes
(compared to the roughly 120 nodes for the perfect estimator), the search space for the
problem instances thus contains roughly (200 · 7)! = 1400! possible solutions, as seven
different communities exist. While this case study does not generally rule out the effective
applicability of simulated annealing for this problem, it displays first evidence of its
suboptimal performance for an important class of problem instances. Analogously to the
behavior of other meta heuristics for arbitrary problem instances, one can expect simulated
annealing to yield better results for smaller datasets and worse results for larger datasets
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in principle. We suggest the development of a more sophisticated heuristic to solve this
problem, as the proposed greedy heuristic already shows viable performance.
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Figure 9. This figure depicts the normalized mutual information score of the selected SBM benchmark
graph using a simulated annealing-based approach of assigning the separation nodes to communities.
The worse performance for the easy dataset clearly indicates that the chosen simulated annealing
approach based on the QUBO as described in Section 3.6 is suboptimal in general.

5. Conclusions

Having set out with the goal of developing a quantum community detection approach
that allows for the analysis of large graphs in the NISQ era, we introduced the idea of iden-
tifying communities via their borders. The derived separation-node-set-based approach
CDSN was shown to yield (close to) optimal results depending on the accuracy of the
classical separation edge estimator. The therefore proposed an heuristic approach based
on the introduced concept of edge neighborhood connectivity enabled for proof-of-concept
results on real-world data. In particular, as our approach merely requires |V| qubits and
as the corresponding QUBO is as sparse as the input graph G = (V, E), separation-node-
based community detection resembles the least hardware demanding quantum computing
approach to community detection to the best of our knowledge. The underlying trade-off
necessary for this accomplishment is the more demanding classical part of this hybrid
approach (i.e., the separation edge estimation). We firmly encourage future work on this
heuristic while conjecturing the incorporation of solutions to the relaxed community detec-
tion problem as highly beneficial. Expanding the exploration of the proposed approach, a
more extensive investigation of the chosen neighborhood setting and the corresponding
hyperparameters should help in improving the employed heuristic assumptions and clarify
the sensitivity of neighborhood connectivity to different hyperparameters. Furthermore, the
exploration of adaptations of similar known metrics like edge betweenness centrality [51]
also seem very interesting. Finally, we conclude our approach to be highly promising for
accelerating the possibility of solving real-world community detection problems using
quantum computers and thus opening up a path towards network structure analysis in
big data.
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