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1. Supplemental Notes 

Parameter setup and versions of the clustering methods 

Seven popular single-cell clustering algorithms were applied for performance comparison, 

including SC3 (version 1.24.0), Seurat (Version 4.1.1), Soup (version 0.0.0.9000), CIDR 

(version 0.1.5), pcaReduce (version 1.0), SIMLR (version 1.22.0), and tSNE+kmeans (Rtsne 

version 0.16). All the parameters of the methods are utilized with their default values. 

Moreover, the number of clusters for all methods except Seurat is set to the number of true 

cell types derived from the raw datasets. For the tSNE+k-means algorithm, we apply the 

tSNE method 50 times, and then k-means clustering is performed on the tSNE results with the 

smallest Kullback‒Leibler divergence value.  

 

2. Supplemental Methods 

Consensus clustering 

Combining multiple clustering results can improve the reliability and robustness of the final 

clustering results (Strehl and Ghosh, 2002). Consensus clustering (Kiselev et al., 2017)aims 

to integrate multiple clustering results obtained by different algorithms through a probabilistic 

strategy. For one clustering result, consensus clustering converts it into a binary matrix and 

the dimension of this binary matrix is  N × N (N is the total number of cells). 

 Given clustering result R={r1, r2,…, rN}, assuming that the i-th cell and j-th cell belong 

to the same cluster, then the value in the i-th row and j-th column of the corresponding binary 

matrix is 1; if not, the corresponding value in the binary matrix is 0. 
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where ri and rj respectively represent the clustering labels of the i-th cell and j-th cell in the 

clustering result R={r1, r2,…, rN}. 

Assuming that we have m clustering results, the final consensus matrix Y is obtained by 

averaging these binary matrices corresponding to these m clustering results. 
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where wi is the binary matrix corresponding to the i-th clustering result. 

The values in the consensus matrix Y are in the range of [0,1], representing the 

probability that the i-th cell and the j-th cell are clustered into the same cluster. The larger the 

value of Y, the greater the probability that the two cells belong to the same cluster. Therefore, 

to some extent, this value can be regarded as the similarity coefficient between the i-th and j-

th cells. 

 

3. Supplemental Tables 

Table S1. 10 Datasets used for validations.  

Dataset Tissue Cells Genes Cell types 

Biase(Blase et al., 2014) Mouse Embryos 56 25734 4 

Darmanis (Darmanis et al., 2015) Human Brain 466 20214 9 

Deng (Deng et al., 2014) Mouse Embryos 268 22431 6 

Muraro (Muraro et al., 2016) Human Pancreas 2122 19140 10 

Usoskin (Usoskin et al., 2015) Mouse Embryo 622 25334 4 

Romanov (Romanov et al., 2017) Mouse Brain 2881 24341 7 

Zeisel (Zeisel et al., 2015) Mouse Brain 3005 19972 9 

Lake (Lake et al., 2016) Human Brain 3042 25123 16 

Buettner (Buettner et al., 2015) Mouse Embryos 182 8989 3 

Baron-mouse (Baron et al., 2016) Mouse Pancreas 1886 14878 13 

 

4. Supplemental Figures 

 

Figure S1. The Visualization of the clustering results on Usoskin dataset. Each panel 



represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 

Figure S2. The Visualization of the clustering results on Darmanis dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 



Figure S3. The Visualization of the clustering results on Biase dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 

Figure S4. The Visualization of the clustering results on Buettner dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 



Figure S5. The Visualization of the clustering results on Muraro dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 

Figure S6. The Visualization of the clustering results on Baron-mouse dataset. Each 

panel represents a algorithm. The first panel represents the true labels annotated by the dataset 

author. 

 



Figure S7. The Visualization of the clustering results on Lake dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 

Figure S8. The Visualization of the clustering results on Romanov dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author.  

 



Figure S9. The Visualization of the clustering results on Deng dataset. Each panel 

represents a algorithm. The first panel represents the true labels annotated by the dataset 

author. 

 

Figure S10. Heatmap of the optimal consensus matrix on Biase dataset. 

 

Figure S11. Heatmap of the optimal consensus matrix on Darmanis dataset. 



 

Figure S12. Heatmap of the optimal consensus matrix on Deng dataset. 

 

Figure S13. Heatmap of the optimal consensus matrix on Muraro dataset. 



 

Figure S14. Heatmap of the optimal consensus matrix on Usoskin dataset. 

 

Figure S15. Heatmap of the optimal consensus matrix on Romanov dataset. 



 

Figure S16. Heatmap of the optimal consensus matrix on Zeisel dataset. 

 

Figure S17. Heatmap of the optimal consensus matrix on Lake dataset. 



 

Figure S18. Heatmap of the optimal consensus matrix on Buettner dataset. 

 

Figure S19. Heatmap of the optimal consensus matrix on Baron-mouse dataset. 
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