
Citation: Almagro-Blanco, P.;

Sancho-Caparrini, F.; Borrego-Díaz, J.

Logical–Mathematical Foundations

of a Graph Query Framework for

Relational Learning. Mathematics

2023, 11, 4672. https://doi.org/

10.3390/math11224672

Academic Editors: Jie Meng, Xiaowei

Huang, Minghui Qian and

Zhixuan Xu

Received: 18 September 2023

Revised: 8 November 2023

Accepted: 11 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Logical–Mathematical Foundations of a Graph Query
Framework for Relational Learning
Pedro Almagro-Blanco, Fernando Sancho-Caparrini and Joaquín Borrego-Díaz *

Departamento Ciencias de la Computación e Inteligencia Artificial, E. T. S. Ingeniería Informática,
Universidad de Sevilla, 41012 Sevilla, Spain; palmagro@us.es (P.A.-B.)
* Correspondence: jborrego@us.es

Abstract: Relational learning has attracted much attention from the machine learning community
in recent years, and many real-world applications have been successfully formulated as relational
learning problems. In recent years, several relational learning algorithms have been introduced that
follow a pattern-based approach. However, this type of learning model suffers from two fundamental
problems: the computational complexity arising from relational queries and the lack of a robust and
general framework to serve as the basis for relational learning methods. In this paper, we propose an
efficient graph query framework that allows for cyclic queries in polynomial time and is ready to
be used in pattern-based learning methods. This solution uses logical predicates instead of graph
isomorphisms for query evaluation, reducing complexity and allowing for query refinement through
atomic operations. The main differences between our method and other previous pattern-based
graph query approaches are the ability to evaluate arbitrary subgraphs instead of nodes or complete
graphs, the fact that it is based on mathematical formalization that allows the study of refinements
and their complementarity, and the ability to detect cyclic patterns in polynomial time. Application
examples show that the proposed framework allows learning relational classifiers to be efficient in
generating data with high expressiveness capacities. Specifically, relational decision trees are learned
from sets of tagged subnetworks that provide both classifiers and characteristic patterns for the
identified classes.

Keywords: graph pattern matching; graph query; node classification; relational machine learning;
subgraph classification; symbolic artificial intelligence

MSC: 03B70; 68P15; 68P20

1. Introduction

Typically, machine learning algorithms take as input a set of objects, each described
by a vector of numerical or categorical attributes, and produce (learn) a mapping from the
input to the output predictions: a class label, a regression score, an associated cluster, or a
latent representation, among others. In relational learning, relationships between objects are
also taken into account during the learning process, and data are represented as graphs com-
posed of nodes (entities) and links (relationships), both with possible associated properties.

The fact that relational learning methods can learn from the connections between
data makes them very powerful in different domains [1–4]. Learning to classify profiles in
social networks based on their relationships with other objects [5,6], characterizing proteins
based on functional connections that arise in organisms [7], and identifying molecules or
molecular fragments with the potential to produce toxic effects [8] are some prominent
examples of relational machine learning applications.

There are two basic approaches to relational learning, the latent feature or connectionist
approach and the graph pattern-based approach or symbolic approach [9]. The connectionist
approach has proven its effectiveness in many different tasks [10–15]. In comparison,
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the pattern-based approach has been less successful. Two of the most important reasons for
this fact are the computational complexities arising from relational queries and the lack of
robust and general frameworks that serve as the basis for this kind of symbolic relational
learning method. On the one hand, most existing relational query systems are based on
graph isomorphisms, and their computational complexity is NP-complete, which affects
the efficiency of learning methods using them [16]. On the other hand, most existing query
systems do not allow for atomic operations to expand queries in a partitioned manner,
preventing learning systems from efficiently searching the query space [17].

The novel graph query framework presented in this paper attempts to solve these two
fundamental problems. The goal is to obtain a query system that allows graph pattern
matching with controlled complexity and provides stepwise pattern expansion using well-
defined operations. A framework that satisfies these requirements is suitable for use in
relational machine learning techniques because, combined with appropriate exploration
techniques, it allows the automatic extraction of characteristic relational patterns from data.

The computational capacity needed to assess the performance of graph query methods
is significant. Our study focuses on formalizing an efficient graph query system and
defining a set of operations to refine queries. However, we do not conduct an extensive
analysis of performance or efficiency in comparison to other methods. The primary result
of our study is a mathematical formalization of a graph query system. The graph query
system must fulfill three characteristics: (1) Conduct atomic operations (refinements) to
expand queries in a partitioned manner, (2) assess any substructure in a graph (beyond
isolated nodes or complete graphs), and (3) evaluate cyclic patterns in polynomial time.
To the best of our knowledge, no other approach meets these requirements.

The paper is structured as follows. Section 2 provides an overview of related research.
Section 3 introduces a novel graph query framework, outlining its main definitions and
properties that guarantee its utility. Representative query examples and an analysis of the
computational complexity arising from the model are also presented. Section 4 describes
the implementation of the framework in performing relational machine learning. Finally,
Section 5 presents the conclusions that can be drawn from this investigation and identifies
potential avenues for future research.

2. Related Work

A common approach to executing relational queries entails developing patterns in an
abstract representation of data and searching for their occurrences in actual datasets. This
working method falls under the scope of graph pattern matching, an area of study that
has been actively researched for more than three decades. Depending on various aspects
to consider, there are customary distinctions in pattern-matching methods. (a) Structural,
semantic, exact, inexact, optimal, and approximate are distinctions that can be made in
matching relations between patterns and subgraphs [18]. Additionally, graph pattern
matching can be based on isomorphisms, graph simulation, and bounded simulation,
among other methods [19–21]. While systems for querying based on graph isomorphism
present NP complexity, those based on simulations present polynomial complexity [22,23].
However, both types are based on relations between the set of elements in the query and
the set of elements in the graph data, which prevents the evaluation of the non-existence of
elements. Our proposal is within the scope of semantic, exact, and optimal graph pattern
matching implemented with an approach similar to simulations.

As stated above, there are two fundamentally different types of relational learning
models [24]. The first type, known as ’the latent feature approach’, is founded upon
latent feature learning, for example, tensor factorization and neural models, and gener-
ally performs well when handling uncertainty via probabilistic approximation [3,25,26].
The second approach, known as the graph-pattern-based approach, automatically extracts
relational patterns, also called observable graph patterns, from data [27,28]. Since this work
pertains to the second approach, our focus in the subsequent discussion will be on the



Mathematics 2023, 11, 4672 3 of 22

review of relational learning techniques that utilize the graph-pattern-based approach and
the query systems upon which they rely.

Most of the pattern-based relational learning methods are derived from Inductive
Logic Programming (ILP) [29]. ILP does not inherently offer relational classifiers, though it
does permit the automatic creation of logical decision trees capable of managing relational
predicates, provided that data relationships have been properly transformed into logical
predicates. Binary decision trees are logical decision trees, in which all tests in internal
nodes are expressed as conjunctions of literals of a prefixed first-order language. TILDE
(Top-down Induction of Logical Decision Trees) is one of the representative algorithms that
can learn this type of decision tree from a given set of examples [30]. TILDE provides a
framework for generating logical decision trees that can be further adapted for relational
decision trees. Nevertheless, it does not cater to relational learning and, therefore, fails to
offer certain operations for refining relational queries. We refer to atomic operations as
those that bring about minor structural modifications to the query (typically the addition
or deletion of a node or an edge, or some of their characteristics).

Multi-relational decision tree learning (MRDTL [28]) is a learning algorithm for rela-
tionships and is supported by selection graphs [17], a graph representation of SQL queries
that selects records from a relational database based on certain constraints. Selection graphs
enable atomic operations to enhance queries, but they lack the ability to distinguish be-
tween query elements that constitute the query result and those that relate to objects that
should or should not be linked to the query result. Consequently, queries performed using
selection graphs yield records that satisfy the given selection graph conditions but cannot
identify subgraphs. The refinement operations presented on the selection graphs are as
follows: adding positive conditions, adding negative conditions, adding present edges and opening
nodes, and adding absent edges and closing nodes. This set of operations does not allow for the
construction of cyclic patterns.

Another noteworthy pattern-based method for relational learning is graph-based
induction of decision trees (DT-GBI [31]), which is a decision tree construction algorithm
for learning graph classifiers using graph-based induction (GBI), a data mining technique
for extracting network motifs from labeled graphs by connecting pairs of nodes. In DT-GBI,
the attributes (referred to as patterns or substructures) are generated during the execution
of the algorithm [27].

As we have seen, some pattern-based approaches are able to learn to classify complete
graphs, and some others construct node classifiers; our proposal supports learning from
general subgraphs as base cases. Moreover, our technique can execute cyclic queries, hence
allowing for the extraction of cyclic patterns from data during the learning process.

3. Graph Query Framework

In graph pattern matching, precise definitions are fundamental for research. They
create a shared terminology, whilst theorems illustrated by mathematical proofs reveal
essential characteristics and direct the development of algorithms. This paper presents
a mathematical tool for conducting graph pattern matching. We will do this by utilizing
these mathematical tools.

We are exploring graph queries that enable atomic specializations. We aim to produce
pattern specializations that select only a particular subset of elements by utilizing a set of
elements that satisfy a specific relational pattern. Selection Graphs serves as an instance of
this query tool and has been developed for use in relational learning procedures. However,
it has a fundamental limitation, as its patterns are unable to include cycles. Furthermore,
when dealing with high relational data, incorporating a graphical representation of SQL
queries can lead to efficiency issues. Our proposal draws inspiration from this method
while bypassing its possible constraints.

When searching for query specialization, we aim to also create complementary queries
to cover new conditions. Exploring the pattern space and characterizing elements in a
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top-down method would be helpful. In particular, we seek a group of specialized queries
that create embedded partitions of a single query.

We would like to emphasize that our primary aim is to offer formalization and ex-
amples of how the model can be applied, with the added goal of producing a real im-
plementation that is practical for use (https://github.com/palmagro/ggq, accessed on 1
September 2023).

3.1. Preliminaries

This passage presents preliminary concepts for defining graph queries. For a more
complete review, refer to [32].

We will begin with a graph definition that encompasses several common types found
in the literature, such as directed/undirected graphs, multi-relational graphs, and hyper-
graphs. This definition serves as a foundational basis for general graph dataset structures
and queries.

Definition 1. A Graph is a tuple G = (V, E, µ), where

• V and E are sets, called, respectively, the set of nodes and set of edges of G.
• µ associates each node/edge in the graph with a set of properties µ : (V ∪ E)× R→ J, where

R represents the set of keys for properties, and J represents the set of values.

Furthermore, it is necessary to have a distinct key for the edges of the graph, called incidences
and denoted by γ, which associates each edge in E with a set of vertices in V.

The domain of µ is the Cartesian product of the sets V ∪ E and R. Generally, we denote
α(x) instead of µ(x, α) for each x ∈ V ∪ E and α ∈ R, treating properties as maps from
nodes/edges to values. Unlike standard definitions, the items in E are symbols that indicate
the edges, rather than pairs of elements from V. Additionally, gamma is the function that
matches each edge to the group of nodes—ordered or otherwise—that it connects.

We will use γ(v) to denote the edges in which node v ∈ V participates. The neighbor-
hood of v is the set of nodes, including itself, connected to it; that is, N (v) =

⋃
e∈γ(v) γ(e).

For instance, we could depict a binary social graph G, which encompasses a set of
nodes V, a set of edges E, and a function µ that associates each node/edge in the graph with
a set of properties R. Our social graph would comprise the attribute τ ∈ R that may assume
the values person and photo for the nodes and f ollows and like for edges. The attribute
gamma ∈ R would be responsible for associating a pair of nodes in V with each edge.
Furthermore, nodes and edges may possess additional attributes, such as age for nodes
with τ = person or date for edges with τ = like.

We need to provide an understanding of the position of a node in an edge. We offer a
basic definition of position, but a more comprehensive one can be provided to distinguish
between directed and undirected edges:

Definition 2. If e ∈ E and γ(e) = (v1, . . . , vn) ∈ Vn, then we define the position of each
vi ∈ γ(e) in e as orde(vi) = i. We denote u ≤e v to indicate orde(u) ≤ orde(v).

From this ordering of the nodes on an edge, we can establish paths within a graph.

Definition 3. Given a graph G = (V, E, µ), we define the set of paths in G as PG, which is the
smallest set that satisfies the conditions:

1. If e ∈ E and u, v ∈ γ(e) with u ≤e v, then ρ = u e→ v ∈ PG. We will say that ρ connects

the nodes u and v of G, and we will denote it by u
ρ
 v.

2. If ρ1, ρ2 ∈ PG, with u
ρ1 v and v

ρ2 w then ρ1 · ρ2 ∈ PG, with u
ρ1·ρ2 w.

Some useful notations are as follows:

• If u
ρ
 v, then we write ρo = u and ρi = v.

https://github.com/palmagro/ggq
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• We denote the paths through u, starting in u, and ending in u, respectively, by:

Pu(G) = {ρ ∈ P(G) : u ∈ ρ},

P o
u(G) = {ρ ∈ P(G) : ρo = u},

P i
u(G) = {ρ ∈ P(G) : ρi = u}.

For example, for a graph G with V = {v1, v2, v3} and E = {e1, e2}, γ(e1) = {v1, v2}
and γ(e2) = {v2, v3}, the set of paths comprises PG = {v1

e1 v2, v2
e2
 v3, v1

e1·e2
 v3} with

P o
v1
(G) = {v1

e1
 v2, v1

e1·e2 v3}, and P i
v1
(G) = ∅ . The concept of a subgraph is acquired

by employing the customary procedure of enforcing that the features are sustained within
the intersecting elements.

Definition 4. A subgraph of G = (V, E, µ) is defined as a graph S = (VS, ES, µS) where VS is a
subset of V, ES is a subset of E, and µS is a subset of µ|VS∪ES

. We denote S ⊆ G.

An instance of a subgraph from the graph stated earlier could be constituted by
VS = {v1, v2}, ES = {e1}, and γ|VS ∪ ES.

3.2. Graph Queries

As mentioned previously, our graph query framework aims to enable the generation
of complementary queries based on a given query. This entails ensuring that if a subgraph
does not comply with a query, it must always comply with one of its complements. How-
ever, since projection hinders the evaluation of non-existent elements, which is necessary for
achieving complementarity, we propose the use of logical predicates instead of projections.

In the following, we examine a graph that is prefixed, denoted by G = (V, E, µ). We
will provide a brief formalization of our understanding of a predicate for G. More details
on this topic can be found in [33].

Consider a collection of function, predicate, and constant symbols, called Θ, which
includes all the properties in µ, together with constants associated with elements of G,
and possibly some additional symbols (for example, metrics defined in G, such as degree).
We can use Θ as a set of non-logical symbols in the first-order language with equality,
L. In this scenario, a predicate in G is an element of the set of first-order formulas of L
(Form(L)). The binary predicates on G are indicated as Form2(L).

Definition 5. A query for G is a graph, specifically Q = (VQ, EQ, µQ), possessing α and θ
properties in µQ, and satisfying the following conditions:

• α : VQ ∪ EQ → {+,−}.
• θ : VQ ∪ EQ → Form2(L).

Formally, Q depends on L and G, but since we consider L and G as prefixed, we write
Q ∈ Q (instead of Q ∈ Q(L, G)) to denote that Q is a query on G using L. Note that once a
query is defined, it can be applied to multiple graphs using the same language.

Intuitively, when examining a query, we utilize the second input of binary predicates
to place limitations on the membership of subgraphs within G. Conversely, the first input
should receive elements of the corresponding type with which it is associated.

For example, if a, b ∈ VQ and e ∈ EQ, we will denote θx := θ(x):

θa(v, S) := v ∈ S,

θb(v, S) := ∃z ∈ S (z v),

θe(ρ, S) := ∃y, z(y
ρ
 z ∧ y /∈ S ∧ z ∈ S).
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The node-based θa(v, S) is defined to check whether the subgraph evaluation of S
contains v ∈ V. The node-based θb(v, S) is verified only when a path in G connects a node
of S with v ∈ G. Lastly, the path-based θe(ρ, S) is defined to verify if the evaluated path
ρ ∈ PG connects S with its outward in G.

Given a query under the stated conditions, x+ (resp. x−) is used to denote α(x) = +
(resp. α(x) = −), and V+

Q /V−Q (resp. E+
Q /E−Q ) represent the set of positive/negative nodes

(resp. edges). If θx is not explicitly defined for an element, it is assumed to be a tautology.
According to the following definition, positive elements impose constraints on the

presence of queries, while negative elements impose constraints on their absence. To be
more specific, each positive/negative node in a query requires the existence/non-existence
of a node in G that satisfies its conditions (imposed by θx and its edges):

Definition 6. Given S ⊆ G, and Q ∈ Q, we say that S matches Q (S � Q), if the following
formula holds:

Q(S) =
∧

n∈VQ

Qα(n)
n (S)

where, for each node, n ∈ VQ:

Q+
n = Qn, Q−n = ¬Qn,

Qn(S) = ∃v ∈ V

 ∧
e∈γ(n)

Qα(e)
e∗ (v, S)


and, for each edge, e ∈ EQ, ∗ ∈ {o, i}:

Q+
e∗ = Qe∗ , Q−e∗ = ¬Qe∗ ,

Qeo (v, S) = ∃ρ ∈ P o
v (G)

(
θe(ρ, S) ∧ θeo (ρo, S) ∧ θei (ρi, S)

)
,

Qei (v, S) = ∃ρ ∈ P i
v(G)

(
θe(ρ, S) ∧ θeo (ρo, S) ∧ θei (ρi, S)

)
.

A generic query example is shown in Figure 1.

1 2

3 4

5

Figure 1. Graph query example.

Unlike other previous graph query systems, this system can efficiently satisfy the
following requirements: (1) The ability to contain cycles; (2) the capability to evaluate sub-
graphs; (3) projecting edges in the query onto paths in the graph; (4) evaluating structural
and/or semantic characteristics; and (5) the added benefit of specialization through atomic
operations (as will be discussed in the next section).

3.3. Refinement Sets

To properly characterize the elements within a graph, it is crucial to utilize compu-
tationally effective methods when constructing queries based on basic operations. This



Mathematics 2023, 11, 4672 7 of 22

section will introduce a query construction method optimized for use in relational learning
tasks. To begin, let us first define the concept of relative refinements between queries.

Definition 7. Given Q1, Q2 ∈ Q, we say:

1. Q1 refines Q2 in G (Q1 �G Q2) if: ∀S ⊆ G (S � Q1 ⇒ S � Q2).
2. They are equivalent in G (Q1 ≡G Q2) if: Q1 �G Q2 and Q2 �G Q1.

Two queries are deemed equivalent when they are confirmed to be exactly the same
by identical subgraphs. From this definition, it is straightforward the following result is
straightforward (the proof of which may be omitted):

Theorem 1. �G is a partial order in Q. That is, for every Q1, Q2, Q3 ∈ Q:

1. Q1 �G Q1.
2. Q1 �G Q2 ∧ Q2 �G Q1 ⇒ Q1 ≡G Q2.
3. Q1 �G Q2 ∧ Q2 �G Q3 ⇒ Q1 �G Q3.

Next, we examine the relationship between the topological structure of a query and
its functionality as a predicate on subgraphs. Generally, extracting the logical properties
of the predicate from the structural properties of the graph that represents it is difficult.
However, we can obtain useful conditions to manipulate the structures and modify the
query’s semantics in a controlled manner.

Definition 8. Given Q1, Q2 ∈ Q, we say that Q1 is a Q−-conservative extension of Q2
(Q2 ⊆− Q1) if:

1. Q2 ⊆ Q1.
2. ∀n ∈ V−Q2

∀e ∈ γQ1(n) ∃e′ ∈ γQ2(n) (Qe ≡ Qe′).

Figure 2 illustrates an example of a Q−-conservative extension. The novel element in
the right query mandates fresh constraints on the positive node, but it does not introduce
any additional constraints to the negative one.

+

+

++

+

+

− −

Figure 2. Q−-conservative extension.

Since negative nodes introduce non-existence constraints to subgraph verification, Q−-
conservative extensions guarantee that no new constraints are added to them. Therefore,

Theorem 2. If Q2 ⊆− Q1 then Q1 � Q2.

Proof. Since predicates associated with edges are solely based on the information within
the edge itself (which takes into account the value of θ in its incident nodes, irrespective of
their α value), we can assert that:
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∀e ∈ EQ2 (Q1
α(e)
e = Q2

α(e)
e )

Considering this fact, we examine the behavior of predicates associated with the nodes
for both queries:

• If n ∈ V−Q2
, since Q2 ⊆− Q1, then Q1

−
n = Q2

−
n .

• If n ∈ V+
Q2

, then Q1
+
n → Q2

+
n , because (γ1, γ2 are the incidence functions of Q1 and

Q2, respectively):

Q1
+
n = ∃v ∈ V

 ∧
e∈γ1(n)

Q1
α(e)
e


= ∃v ∈ V

 ∧
e∈γ1(n)∩EQ2

Q1
α(e)
e ∧

∧
e∈γ1(n)rEQ2

Q1
α(e)
e


= ∃v ∈ V

 ∧
e∈γ2(n)∩EQ2

Q2
α(e)
e ∧

∧
e∈γ1(n)rEQ2

Q1
α(e)
e


→ Q2

+
n

Hence,

Q1 =
∧

n∈VQ1

Q1
α(n)
n =

∧
n∈VQ2

Q1
α(n)
n ∧

∧
n∈VQ1

rVQ2

Q1
α(n)
n

=
∧

n∈V+
Q2

Q1
α(n)
n ∧

∧
n∈V−Q2

Q1
α(n)
n ∧

∧
n∈VQ1

rVQ2

Q1
α(n)
n

→
∧

n∈V+
Q2

Q2
α(n)
n ∧

∧
n∈V−Q2

Q2
α(n)
n ∧

∧
n∈VQ1

rVQ2

Q1
α(n)
n

=
∧

n∈VQ2

Q2
α(n)
n ∧

∧
n∈VQ1

rVQ2

Q1
α(n)
n

→ Q2

Previous results suggest that a query can be refined by adding nodes (of any sign) and
edges to the existing positive nodes, but because of the (negated) interpretation of predicates
associated with negative nodes, care must be taken to maintain their neighborhood to be
sure that adding more edges does not weaken the imposed conditions (which, consequently,
will not provide refined predicates).

To achieve controlled methods of query generation, we will outline processes for
refining queries through unit steps. We will accomplish this by defining the cloning
operation, whereby existing nodes are duplicated, and all incident edges (including those
between the nodes) on the original graph are also cloned:

Definition 9. Given G = (V, E, µ), and W ⊆ V, we define the clone of G by duplication of W,
ClW

G , as:

ClW
G = (V ∪W ′, E ∪ E′, µ ∪ {(n′, µ(n))}n∈W ∪ {(e′, µ(e))}e′∈E′)

where W ′ = {n′ : n ∈ W} are new cloned nodes from W, and E′ is a set of new edges obtained
from incident edges on nodes of W, where nodes of W are replaced by copies of W ′ (edges connecting
original nodes with cloned nodes and edges connecting cloned nodes are cloned).
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Figure 3 shows an example of a cloned graph by duplicating two nodes (in the original
graph, left side, the node set to be duplicated is highlighted).

Figure 3. Clone of a graph by duplication.

The next result indicates that duplicating positive nodes does not change the meaning
of the queries.

Theorem 3. If W ⊆ V+
Q , then ClW

Q ≡ Q.

Proof. Let us denote Q1 = ClW
Q . Then:

Q1 =
∧

n∈VQ1

Q1
α(n)
n =

∧
n∈VQ

Q1
α(n)
n ∧

∧
n∈W

Q1
α(n′)
n′

=
∧

n∈VQrγQ(W)

Q1
α(n)
n ∧

∧
n∈γQ(W)

Q1
α(n)
n ∧

∧
n∈W

Q1
α(n′)
n′

=
∧

n∈VQrγQ(W)

Qα(n)
n ∧

∧
n∈γQ(W)

Qα(n)
n ∧

∧
n∈W

Qα(n)
n

= Q

When refining a query to find complementary sets of selected subgraphs, we define
the concept of a refinement set as central:

Definition 10. Given Q ∈ Q, R ⊆ Q is a refinement set of Q in G if:

1. ∀ Q′ ∈ R (Q′ �G Q).
2. ∀ S ⊆ G (S � Q⇒ ∃! Q′ ∈ R (S � Q′)).

Let us now introduce refinement sets to enhance simpler queries for expressiveness.
Q ∈ Q is prefixed, and > represents a tautology:

Theorem 4. (Add new node) If m /∈ VQ, the set Q + {m}, formed by:

Q1 = (VQ ∪ {m}, EQ, αQ ∪ (m,+), θQ ∪ (m,>)),
Q2 = (VQ ∪ {m}, EQ, αQ ∪ (m,−), θQ ∪ (m,>))
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is a refinement set of Q in G (Figure 4).

Proof. We must verify the two necessary conditions for refinement sets:

1. Since Q ⊆− Q1 and Q ⊆− Q2, thus Q1 � Q and Q2 � Q.
2. Given S ⊆ G such that S � Q. Then:

Q1 = Q ∧ Qm,

Q2 = Q ∧ ¬Qm

where Qm = ∃v ∈ V (>).
If G 6= ∅, then S � Q1 and S 2 Q2.
If G = ∅, then S 2 Q1 and S � Q2.

Since G 6= ∅ (usually), Q1 ≡ Q. However, although we obtain an equivalent query,
this operation is beneficial for adding new nodes and restrictions in the future.

+ −

Figure 4. The add node refinement.

The second refinement allows for the establishment of edges between query nodes
that already exist. To obtain a valid refinement set, the inclusion of edges is limited to
positive nodes. Subsequently, the nodes marked with a positive/negative sign represent
cloned nodes whose α property has been designated as positive/negative.

Theorem 5. (Add a new edge between + nodes) If n, m ∈ V+
Q , the set Q + {n e∗−→ m} (∗ ∈

{+,−}), formed by:

Q1 = (VQ′ , EQ′ ∪ {n+ e∗−→ m+}, θQ′ ∪ (e,>)),

Q2 = (VQ′ , EQ′ ∪ {n+ e∗−→ m−}, θQ′ ∪ (e,>)),

Q3 = (VQ′ , EQ′ ∪ {n−
e∗−→ m+}, θQ′ ∪ (e,>)),

Q4 = (VQ′ , EQ′ ∪ {n−
e∗−→ m−}, θQ′ ∪ (e,>))

(where Q′ = Cl{n,m}
Q ) is a refinement set of Q in G (Figure 5).

Proof.

1. Since Q′ is a clone of Q, then Q ≡ Q′. In addition, Q′ ⊆− Q1, Q2, Q3, Q4, thus
Q1, Q2, Q3, Q4 � Q′ ≡ Q.

2. Let us consider the predicates:

Pn = ∃v ∈ V

 ∧
a∈γ(n)

Qα(a)
a ∧Qα(e)

eo

,

Pm = ∃v ∈ V

 ∧
a∈γ(m)

Qα(a)
a ∧Qα(e)

ei

.
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If S � Qn and S � Qm, then we have four mutually complementary options:

• S � Pn ∧ S � Pm ⇒ S � Q1
• S � Pn ∧ S 2 Pm ⇒ S � Q2
• S 2 Pn ∧ S � Pm ⇒ S � Q3
• S 2 Pn ∧ S 2 Pm ⇒ S � Q4

+ +

+ + +

+ −

+

− +

+ +

− −

Figure 5. The add edge refinement (simplified).

Next, an additional predicate is added to an existing edge through the following
operation, limited to positive edges connecting positive nodes.

Theorem 6. (Add predicate to + edge between + nodes) If n, m ∈ V+
Q , with n e+−→ m, and ϕ ∈

Form2(L), the set Q + {n e∧ϕ−→ m}, formed by:

Q1 = (VQ′ , EQ′ ∪ {n+ e′−→ m+}, θQ′ ∪ (e′, θe ∧ ϕ)),

Q2 = (VQ′ , EQ′ ∪ {n+ e′−→ m−}, θQ′ ∪ (e′, θe ∧ ϕ)),

Q3 = (VQ′ , EQ′ ∪ {n−
e′−→ m+}, θQ′ ∪ (e′, θe ∧ ϕ)),

Q4 = (VQ′ , EQ′ ∪ {n−
e′−→ m−}, θQ′ ∪ (e′, θe ∧ ϕ))

(where Q′ = Cl{n,m}
Q ) is a refinement set of Q in G (Figure 6).

Proof. The proof is similar to the previous ones.

+ +

+ +

−

+ +

−

+ + + +

− −

Figure 6. The add the predicate to edge refinement (simplified).

Finally, the last step involves adding predicates to existing nodes. This operation
is only permitted when the affected nodes are positive, including the node where the
predicate is added and those connected to it.
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Theorem 7. (Add predicate to + node with + neighborhood) If ϕ ∈ Form2(L), and n ∈ V+
Q with

NQ(n) ⊆ V+
Q , then the set Q + {n ∧ ϕ} formed by:

{Qσ = (VQ′ , EQ′ , αQ′ ∪ σ, θQ′ ∪ (n′, θn ∧ ϕ)) : σ ∈ {+,−}NQ(n)}

(where Q′ = Cl
NQ(n)
Q , and {+,−}NQ(n) is the set of all possible assignments of signs to elements

in NQ(n)) is a refinement set of Q in G (Figure 7).

Proof. The proof resembles earlier ones. It is important to consider that modifying node n
not only alters the associated predicate but also those of its neighboring nodes. Additionally,
the set of functions {+,−}NQ(n) encompasses all feasible sign assignments for the nodes
within the neighborhood.

...
+

+

+

+

+

+

−

−

−

+

+

+

Figure 7. The add the predicate to node refinement (simplified).

Also note that simplified versions of the refinement sets are shown in Figures 4–7.
Section 3.4 explains how to obtain these simplifications.

Obtaining a complementary query from the structure is a challenging task. Nonethe-
less, graph analyses often require sequences of queries to verify properties related to
refinement and complementarity. To bridge this gap, this section introduces refinement
operations. These operations facilitate the construction of an embedded partition tree,
where nodes are labeled as illustrated in Figure 8:

• The root node is labeled with Q0 (some initial query).
• If a node on the tree is labeled with Q, and R = {Q1, . . . , Qn} is a set that refines Q,

then the child nodes will be labeled with the elements of R.
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Q

Q1

 
Q1m

 
Q11

Qn

 
QnkQn1

... ... ... ... ... ... ... ...

...

... ...

... ... ... ...

Figure 8. Refinement tree.

Refinement sets presented herein offer one approach, rather than the sole approach.
For example, we could consider refinements that, instead of adding constraints to positive
elements, lighten the conditions over negative elements, for example, by using disjunction
of predicates instead of conjunction of them.

3.4. Simplified Refinement Sets

Let us simplify a query into an equivalent one by applying certain operations.

Definition 11. We define Q′ ⊆ Q as redundant in Q if Q ≡ Q−Q′. Here, Q−Q′ represents
the subgraph of Q given by

(VQ r VQ′ , EQ r (EQ′ ∪ {γ(n) : n ∈ VQ′}), µQ)

One initial finding that enables the acquisition of simplified versions of a query by
eliminating superfluous nodes is as follows (note that from the following two results, we
only give an idea of the proof, which can be very laborious but straightforward from the
above constructions):

Theorem 8. Given a query Q, and n, m ∈ VQ verifying:

• α(n) = α(m)
• θn ≡ θm
• For each e ∈ γ(n), exists e′ ∈ γ(m), with α(e) = α(e′), θe ≡ θe′ and γ(e) r {n} =

γ(e′)r {m}
Then, n is redundant in Q.

Proof. A query (Q) comprises nodes and their relationships. Each query node imposes
constraints on the subgraph that is evaluated, including the presence or absence of nodes
and the paths in which they participate. These restrictions should be considered during the
evaluation. If there are two nodes, n, m ∈ VQ, with α(n) = α(m) and θn ≡ θm, and for each
e ∈ γ(n), there exists e′ ∈ γ(m), with α(e) = α(e′), θe ≡ θe′ and γ(e)r {n} = γ(e′)r {m},
both nodes apply identical restrictions to the subgraph being evaluated. Therefore, deleting
one of them will not change the assessment on the subgraph.

In particular, m is a duplicate of n, but potentially with additional connected edges.
A comparable outcome for the edges can be achieved:

Theorem 9. Given a query Q, and two edges, e, e′ ∈ EQ, such that α(e) = α(e′), n e−→ m and

n e′−→ m with n, m ∈ V+
Q . If θe → θe′ then e′ is redundant in Q.
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Proof. Following the same reasoning as the previous theorem, if there are two edges, e
and e′, in EQ, which connect the same two nodes in a query and α(e) = α(e′) and θe → θe′ ,
the constraint imposed by e implies the constraint imposed by e′. Therefore, eliminating e′

would maintain the set of matching subgraphs.

From these two findings, we can streamline the refinement sets that were established
in Section 3.3 by removing redundant elements in succession after cloning.

3.5. Graph Query Examples

For illustrative purposes, this section presents a series of queries on a toy graph
dataset. Figure 9 illustrates a segment of the Star Wars graph (http://console.neo4j.org/
?id=StarWars, accessed on 1 September 2023).
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Figure 9. Section of the Star Wars graph.

To streamline query and graph representation, we will convert τ, a property denoting
node and edge types, into labels for edges or icons for nodes. Additionally, the node
properties denoted by name will be written on them, and the undirected edges will be
represented by bidirectional arrows. The property α will be represented directly on the
query elements using +/− symbols, and we will write the binary predicate θ directly
on the elements (except for tautologies). When expressions such as τ(ρ) = X are in the
predicate of an edge, X is written directly and interpreted as a regular expression to be
verified by the sequence of τ properties of the links in the associated graph path.

Query 1 (Figure 10) can be interpreted as follows: Two characters are connected by a
TEACHES relationship, where the master is over 500 years old and both are devoted to the Jedi.
This query utilizes structural constraints through the presence of edges and predicates with
properties such as τ, name, and age. For example, in Figure 9, the subgraph comprising
Yoda, Luke, and their TEACHES relationship satisfies this query.

http://console.neo4j.org/?id=StarWars
http://console.neo4j.org/?id=StarWars
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+

ρ ∈ S ∧ τ(ρ) = TEACHES

+

DEVOTED_TO

+

DEVOTED_TO

 

v ∈ S ∧ τ(v) = character ∧

age(v) > 500
 

v ∈ S ∧ τ(v) = character

 

τ(v) = clan ∧ name(v) = Jedi

+ +

+

Figure 10. Query 1.

Query 2 (Figure 11) outlines a cyclic query that utilizes the FRIENDS relationships. It
can be verified on any subgraph containing three characters who are friends with each
other (for example, the subgraph formed by Han Solo, Chewbacca, Princess Leia, and
the FRIENDS relationships in Figure 9).

 

 

v ∈ S ∧

τ(v) = character

 

 

v ∈ S ∧

τ(v) = character

 

 

v ∈ S ∧

τ(v) = character

+

ρ ∈ S ∧ τ(ρ) = FRIENDS

+

ρ ∈ S ∧ τ(ρ) = FRIENDS

+

ρ ∈ S ∧ τ(ρ) = TEACHES

+

+

+
FRIENDS

Powered by TCPDF (www.tcpdf.org)

FRIENDS

Powered by TCPDF (www.tcpdf.org)

Figure 11. Query 2.

Query 3 (Figure 12) can be interpreted as follows: A character with more than three outgo-
ing relationships, not belonging to the Sith clan, connected through a path consisting of any number
of FRIENDS and TEACHES relationships with an individual from Alderaan. In this scenario,
a regular expression is employed to denote a path consisting of an unspecified amount
of FRIENDS and TEACHES relationships. Additionally, an auxiliary function, grs(v) ∈ L, is
utilized to reference the outgoing degree of node v. This query will be validated by any
subgraph that contains Luke or Obi-Wan Kenobi.
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+

(TEACHES|FRIENDS)∗
+

 

BORN_IN

+

 

DEVOTED_TOText

 

 

v ∈ S ∧ τ(v) = character ∧

g (v) > 3rs

 

 

τ(v) = character

 

 

τ(v) = PLANET ∧

name(v) = Alderaan
τ(v) = clan ∧ name(v) ≠ Sith

+

++

+

Figure 12. Query 3. Where (a|b)∗ denotes any number of edges of type a or b.

3.6. Computational Complexity

Query systems based on graph isomorphisms (most of the existing ones) face NP-
complete complexity [34,35].

The preceding section presented our graph query framework that is reliant on logical
predicates. In this section, we will demonstrate that the assessment of queries is polynomial,
even in the case of cyclic queries. This is achievable by imposing two constraints. First,
the length of paths that are illustrated by links in the query is restricted by the constant k,
and second, the complexity of the predicates used in nodes and edges is polynomial.

To verify S |= Q, it is necessary to examine each predicate Qn(S) linked to all nodes
n ∈ VQ. Furthermore, each predicate Qn(S) linked to a node in Q requires assessing one
Qe(v, S) predicate for every link e ∈ γQ(n). Thus, initially, we focus on evaluating the
computational complexity linked with the link predicates Qe(v, S). Subsequently, we will
examine the complexity associated with the node predicates Qn(S). Ultimately, we will
show that the query complexity is polynomial.

As previously defined, the computational complexity of evaluating predicates at-
tributed to both nodes and edges within a query (Q) is polynomial, denoted by O(p).
The predicates Qe(v, S) related to edges in a query verify the existence of a path ρ in the
graph G starting/ending in v that satisfies its own predicate θe(ρ, S) and with the source
and destination nodes that satisfy the predicates θeo (ρo, S) and θei (ρi, S), respectively. Thus,
the complexity involved in evaluating a particular path is O(3p) = O(p).

The computational complexity to verify the existence of a path beginning or ending at
a node v in V, satisfying the aforementioned criteria, is O(p× |V|k). Here, |V|k denotes the
number of paths that start or end at v under the condition that they are no longer than k in
length. As the number of links commencing or ending at a node n ∈ VQ is bound by |EQ|,
the computational complexity involved in the node predicate Qn(S) is O(p× |V|k × |EQ|).

Finally, if the query consists of |VQ| nodes, the complexity of checking the query Q(S) is
O(p× |V|k× |EQ| × |VQ|). It is evident that the constant k (path length bound) significantly
impacts the execution of such queries, as it determines the exponent of the complexity.

The efficient operation of a graph query framework is crucial when dealing with large-
scale datasets that are commonly found in real-world applications. Notably, when such
a system is employed as the kernel of relational machine learning algorithms, as we will
demonstrate in the following section, the ability to perform query operations in polynomial
time, even for cyclic queries, is fundamental.

4. Relational Machine Learning

In this section, we will leverage the advantages of the framework presented to acquire
relational classifiers on graph datasets. To elaborate, we will initiate from a labeled sub-
graph set within a graph dataset and then develop a pattern search technique founded on
information gain to obtain typical patterns for each subgraph class.
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4.1. Information-Gain Pattern Mining

To obtain characteristic patterns of subgraph classes using the previous graph query
framework, a top-down decision tree induction will be conducted to explore the pattern
space. Within the trees’ internal nodes, graph queries will serve as test tools. The best
refinement sets will be identified during the tree construction process, resulting in queries
that define classes within the graph dataset.

The training set, L, consists of pairs (Si, yi), where Si denotes a subgraph of G, and yi
represents its associated class. Every node (n) in the resulting decision tree is linked to:

• A subset of the training set: Ln ⊆ L;
• A query Qn, such that: ∀S ∈ Ln(S � Qn).

The tree learning procedure is standard: A tree is initialized comprising one node
(the root) linked to the entire set of training, L. The initial query, Q0, corresponds to
all its constituents (∀S ∈ L, S � Q0). The subsequent stage involves determining which
refinement set generates the maximum information gain while separating L, and applying
it to Q0. For each query in the refinement set, a corresponding child node is created, and L
samples are transmitted through it. A child with a matching associated query is guaranteed
to exist since it is a refinement set of Q0. The recursive process continues for each new
node until a stop condition is met. At that point, the node becomes a leaf associated with a
class. Note that the decision trees derived from this approach are not predominantly binary,
unlike the prevalent trees in the literature.

4.2. Relational Tree Learning Examples

Here, we introduce some practical instances to demonstrate the process of performing
relational learning by using the query framework and refinement sets. The refinement
operations will be as mentioned in Section 3.3. A critical factor is that all subgraphs in
a decision node belong to the same class, which we require as the stopping condition.
Initially, we will focus on node classification problems before proceeding to classify more
intricate structures.

Consider the small social network illustrated in Figure 13, portraying users and items
in a graph. The objective is to classify the nodes based on the patterns extracted from
the dataset.

♠
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♠
item 6

♠
item 4

♠
item 1

♠
item 2

♠
item 3

X
user 7

X 
user 6

୰
user 2

X
user 1

LIKES

LIKESPUBLISH

♠

୰

Item

User Type A

୰
user 4

୰
user 5

X
user 3

୰
user 8PUBLISH

LIKES

LIKES

PUBLISH

LIKESPUBLISH

LIKES

PUBLISH

LIKES

PUBLISH

FOLLOWS

FOLLOWS

FOLLOWS

FOLLOWS
X User Type B

Figure 13. Social network toy.
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Beginning with a training set composed of all nodes in the graph, Figure 14 displays
the relational decision tree acquired through the process elucidated in Section 4.1. Negative
nodes/edges are identified with a cross, while nodes with predicate θ(v, S) := v ∈ S are
larger and white in hue. This tree accurately assigns types (User A, User B, or Item) to all
nodes in the graph by exploiting relational information from the network. Furthermore,
on the leaves of the tree, distinctive patterns are acquired for each node type, which can be
used to directly assess nodes and clarify future classifications.

Item

PUBLISH

Type B

PUBLISH

Type A 

PUBLISH

Type B 

PUBLISH

PUBLISH

Figure 14. Node type classifier.

Similarly, by utilizing each character node in the Star Wars toy graph (Figure 9) and the
corresponding species property as a training dataset, the relational decision tree shown in
Figure 15 categorizes and explains each character’s species in the graph. The leaf patterns
of the tree characterize each species: human characters are born friends of Luke, droids are
unborn friends of Luke, Wookiees are those born in Kashyyyk, etc.
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Figure 15. Character species classifier.

5. Conclusions and Future Work

This paper’s main contribution consists of a novel framework for graph queries that
permits the polynomial cyclic assessment of queries and refinements based on atomic
operations. The framework’s ability to apply refinements in relational learning processes
was also demonstrated. In addition, the presented framework fulfills several essential
requirements. The system utilizes consistent grammar for both queries and evaluated
structures. It allows the assessment of subgraphs beyond individual nodes and supports
cyclic queries within polynomial time (where the length of the query path is limited).
The system offers a controlled and automated query construction via refinements, and the
refinement sets constitute embedded partitions of the evaluated structure set, making them
effective tools for top-down learning techniques.

Graph isomorphism-based query systems exhibit exponential complexity when pre-
sented with cyclic queries. Additionally, if a projection is necessary for pattern verification,
evaluating the non-existence of specific elements becomes difficult or even impossible.
However, the query graph framework offered here assesses the existence/non-existence
of paths and nodes in a graph rather than demanding isomorphisms, thus enabling the
evaluation of cyclic patterns in polynomial time.

After conducting an initial and fully functional proof-of-concept implementation,
the graph query framework’s capabilities have been demonstrated through experimen-
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tation. This methodology has been explicitly applied in relational learning procedures,
as demonstrated in Section 4.2, and the results of these experiments have shown that
interesting patterns can be extracted from relational data. This is of great significance in
both explainable learning and automatic feature extraction tasks. The results’ graphs were
obtained via our proof-of-concept implementation on a graph database and by employing
the matplotlib library [36].

Despite the presented query definition utilizing binary graph datasets (rather than
hypergraphs), it can be implemented on hypergraph data as well. This is due to the fact
that the concept of a path, which connects pairs of nodes, is independent of the edge arity
involved. For the sake of simplicity, and due to the absence of true hypergraph databases,
our queries are limited to the binary case. Nevertheless, they can be adapted to more
universal cases once the usage of hypergraphs becomes more widespread.

Also, in Section 3.3, a basic and reliable set of refinement operations is provided.
However, these operations should not be considered as the most suitable solution for all
types of learning tasks. To achieve complex queries and to prevent plateaus in the pattern
space, more complex refinement families can be established. For example, it is possible
to combine the add edge and adding property to an edge operations into one step, thereby
reducing the number of steps required. If executed properly, unifying the refinements
based on the frequency of structural occurrences in a graph, for instance, can lead to
faster versions of learning algorithms at the expense of covering a broader query space.
This work provides theoretical tools to support the accuracy of new refinement families.
Future research will focus on developing automated methods to generate refinement
sets based on a given learning task and the specific characteristics of the graph dataset.
Extracting statistics from the graph data for the automatic generation of such sets can result
in significant optimizations.

It is concluded that establishing effective techniques for matching graph patterns
and learning symbolic relationships is feasible, resulting in a systematic exploration of
the pattern space, a high degree of expressiveness in queries, and computational costs of
implementations kept within reasonable order.

Patterns associated with the leaves in obtained decision trees can be used to character-
ize subgraph categories. Moreover, the path from the root node to the corresponding leaf
of the decision tree for a particular input can be used to justify decisions; this is a beneficial
feature in various sensitive applications, such as decision trees. In addition, patterns ob-
tained from the graph learning procedure presented can serve as features in other machine
learning methods. Once the patterns are acquired, they can serve as Boolean features for
subgraph modeling, enabling non-relational machine learning methods to learn from them.

Learning of relational decision trees can be utilized by ensemble methods (such as
random forest), and although the explanatory power is diluted when multiple trees are
combined, their predictive power can be greatly enhanced. Therefore, it is essential to
investigate the probabilistic amalgamation of queries to generate patterns that can be
interpreted as probabilistic decision tools.

Furthermore, while a relational decision tree learning technique has been employed,
additional machine learning algorithms can be evaluated alongside this query framework
to investigate more opportunities for relational learning.
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