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Abstract: In this paper, a combined Laplace transform (LT) and boundary element method (BEM)
is used to find numerical solutions to problems of anisotropic functionally graded media that are
governed by the transient diffusion–convection–reaction equation. First, the variable coefficient
governing equation is reduced to a constant coefficient equation. Then, the Laplace-transformed
constant coefficients equation is transformed into a boundary-only integral equation. Using a BEM,
the numerical solutions in the frame of the Laplace transform may then be obtained from this integral
equation. Then, the solutions are inversely transformed numerically back to the original time variable
using the Stehfest formula. The numerical solutions are verified by showing their accuracy and
steady state. For symmetric problems, the symmetry of solutions is also justified. Moreover, the
effects of the anisotropy and inhomogeneity of the material on the solutions are also shown, to
suggest that it is important to take the anisotropy and inhomogeneity into account when performing
experimental studies.
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1. Introduction

Insights on flow in porous media may be obtained from [1–4]. Over the last ten years,
functionally graded materials (FGMs) have become a popular research topic, and many
studies have been conducted on FGMs for various applications. FGMs are defined by
authors as materials that are inhomogeneous and have properties such as thermal conduc-
tivity, hardness, toughness, ductility, and corrosion resistance, which change spatially in
a continuous manner. Commonly, the properties of the considered material for a specific
application are represented by the coefficients of the governing equation. In this case, the
coefficients should be constant if—and only if—the material is homogeneous.

The diffusion convection reaction (DCR) equation is usually used as the governing
equation for many applications in engineering, medicine, biology, and ecology. Several
studies have been conducted to find numerical solutions to the DCR equation. These
studies include Fendoğlu et al. [5] in 2018, Wang and Ang [6] in 2018, Sheu et al. [7] in 2000,
Xu [8] in 2018, and AL-Bayati and Wrobel [9] in 2019, who considered the DCR equation
with constant coefficients. Samec and Škerget [10] in 2004, Rocca et al. [11] in 2005, and
AL-Bayati and Wrobel [12,13] in 2018 studied the DCR equation with variable velocity.
Martinez et al. [14] in 2013 used nonstandard finite difference schemes based on Green’s
function formulations for reaction–diffusion–convection systems. Only a limited number
of studies on the steady-state equation of variable coefficients have been performed (see,
for example, [15]).

This paper is aimed at studying problems that are governed by a DCR equation
with variable coefficients. Specifically, this paper will extend the recently published work
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of [15] on the steady-state DCR equation to the unsteady-state DCR equation of variable
coefficients (for anisotropic functionally graded materials) of the form

∂

∂xi

[
dij(x)

∂c(x, t)
∂xj

]
− ∂

∂xi
[vi(x)c(x, t)]− k(x)c(x, t) = α(x, t)

∂c(x, t)
∂t

(1)

The continuously varying coefficients dij, vi, k, α in (1) represent the anisotropic dif-
fusivity, velocity, decay reaction, and change rate coefficients of the medium of interest,
respectively. Therefore, Equation (1) is relevant for FGMs. Equation (1) covers a wider
class of problems since it applies to anisotropic and inhomogeneous media, nonetheless
including the case of isotropic diffusion taking place when d11 = d22, d12 = 0 as well as the
case of homogeneous media that appear when the coefficients dij(x), vi(x), k(x) and α(x, t)
are constant.

2. The Governing Equation, Initial and Boundary Conditions

Referring to the Cartesian frame Ox1x2, we will discuss the initial boundary value
problems governed by (1) where x = (x1, x2). The coefficient

[
dij
]
(i, j = 1, 2) is a real

positive definite symmetrical matrix. Moreover, in (1), the summation convention for
repeated indices applies, so (1) can explicitly be written as

∂

∂x1

(
d11

∂c
∂x1

)
+

∂

∂x1

(
d12

∂c
∂x2

)
+

∂

∂x2

(
d12

∂c
∂x1

)
+

∂

∂x2

(
d22

∂c
∂x2

)
− ∂

∂x1
(v1c)− ∂

∂x2
(v2c)− kc = α

∂c
∂t

(2)

By knowing the coefficients of dij(x), vi(x), k(x), α(x, t), solutions c(x, t) to (1) and its
derivatives will be sought within the time interval t ≥ 0 and region Ω in R2, with boundary
∂Ω consisting of a finite number of piecewise smooth curves. On ∂Ω1, the dependent
variable c(x, t) is specified, and

F(x, t) = dij(x)
∂c(x, t)

∂xi
nj (3)

is specified on ∂Ω2, where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n =(n1, n2) represents the outward
pointing normal to ∂Ω. The initial condition is

c(x, 0) = 0 (4)

3. Derivation of an Integral Equation

We restrict the coefficients dij, vi, k, α to be of the form

dij(x) = d̂ij h(x) (5)

vi(x) = v̂i h(x) (6)

k(x) = k̂ h(x) (7)

α(x, t) = α̂(t)h(x) (8)

where h(x) is a differentiable function; d̂ij, v̂i, k̂ are constants; and α̂(t) is a function of time
t. The substitution of (5)–(8) into (1) gives

d̂ij
∂

∂xi

(
h

∂c
∂xj

)
− v̂i

∂(hc)
∂xi

− k̂hc = α̂h
∂c
∂t

(9)

Assume
c(x, t) = h−1/2(x)ψ(x, t) (10)
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Therefore, using (5) and (10) in (3) gives

F(x, t) = −Fh(x)ψ(x, t) + h1/2(x)Fψ(x, t) (11)

where

Fh(x) = d̂ij
∂h1/2(x)

∂xj
ni Fψ(x, t) = d̂ij

∂ψ(x, t)
∂xj

ni (12)

Moreover, Equation (9) can be written as

d̂ij
∂

∂xi

h
∂
(

h−1/2ψ
)

∂xj

− v̂i

∂
(

h1/2ψ
)

∂xi
− k̂h1/2ψ = α̂h

∂
(

h−1/2ψ
)

∂t
(13)

That is,

d̂ij
∂

∂xi

[
h

(
h−1/2 ∂ψ

∂xj
+ ψ

∂h−1/2

∂xj

)]
− v̂i

(
h1/2 ∂ψ

∂xi
+ ψ

∂h1/2

∂xi

)
− k̂h1/2ψ = α̂h

(
h−1/2 ∂ψ

∂t

)
(14)

or

d̂ij
∂

∂xi

(
h1/2 ∂ψ

∂xj
+ hψ

∂h−1/2

∂xj

)
− v̂i

(
h1/2 ∂ψ

∂xi
+ ψ

∂h1/2

∂xi

)
− k̂h1/2ψ = α̂h1/2 ∂ψ

∂t
(15)

Using the identity
∂h−1/2

∂xi
= −h−1 ∂h1/2

∂xi
(16)

implies

d̂ij
∂

∂xi

(
h1/2 ∂ψ

∂xj
− ψ

∂h1/2

∂xj

)
− v̂i

(
h1/2 ∂ψ

∂xi
+ ψ

∂h1/2

∂xi

)
− k̂h1/2ψ = α̂h1/2 ∂ψ

∂t
(17)

Rearranging and neglecting some zero terms gives

h1/2

(
d̂ij

∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi

)
− ψ

(
d̂ij

∂2h1/2

∂xi∂xj
+ v̂i

∂h1/2

∂xi

)
− k̂h1/2ψ = α̂h1/2 ∂ψ

∂t
(18)

so that if h satisfies

d̂ij
∂2h1/2

∂xi∂xj
+ v̂i

∂h1/2

∂xi
− λh1/2 = 0 (19)

where λ is a constant, then the transformation (10) takes the variable coefficient Equation (1)
into a constant coefficient equation:

d̂ij
∂2ψ

∂xi∂xj
− v̂i

∂ψ

∂xi
−
(

λ + k̂
)

ψ = α̂
∂ψ

∂t
(20)

Taking the Laplace transform of (10), (11), (20) and applying the initial condition (4),
we obtain

ψ∗(x, s) = h1/2(x)c∗(x, s) (21)

Fψ∗(x, s) = [F∗(x, s) + Fh(x)ψ
∗(x, s)]h−1/2(x) (22)

d̂ij
∂2ψ∗

∂xi∂xj
− v̂i

∂ψ∗

∂xi
−
(

λ + k̂ + sα̂∗
)

ψ∗ = 0 (23)



Mathematics 2023, 11, 2091 4 of 16

Using the Gauss divergence theorem, Equation (23) can be transformed into a bound-
ary integral equation:

η(ζ)ψ∗(ζ, s) =
∫

∂Ω

{
Fψ∗(x, s)Φ(x, ζ)− [F(x)Φ(x, ζ)

+Γ(x, ζ)]ψ∗(x, s)}dS(x) (24)

where η = 0 if ζ /∈ Ω, η = 1/2 if ζ ∈ ∂Ω, η = 1 if ζ ∈ Ω, Fv(x) = v̂ini(x). For 2D problems,
the fundamental solutions Φ(x, ζ) and Γ(x, ζ) are given as

Φ(x, ζ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0
(
µṘ
)

(25)

Γ(x, ζ) = d̂ij
∂Φ(x, ζ)

∂xj
ni (26)

where

µ =

√
(v̇/2D)2 +

[(
λ + k̂ + sα̂∗

)
/D
]

(27)

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2

r + ρ2
i

)]
/2 (28)

Ṙ = ẋ− ζ̇ (29)

ẋ = (x1 + ρrx2, ρix2) (30)

ζ̇ = (ζ1 + ρrζ2, ρiζ2) (31)

v̇ = (v̂1 + ρr v̂2, ρi v̂2) (32)

Ṙ =

√
(x1 + ρrx2 − ζ1 − ρrζ2)

2 + (ρix2 − ρiζ2)
2 (33)

v̇ =

√
(v̂1 + ρr v̂2)

2 + (ρi v̂2)
2 (34)

and ρr and ρi are the real and the positive imaginary parts of the complex root ρ of the
quadratic equation d̂11 + 2d̂12ρ + d̂22ρ2 = 0, respectively, and K0 is the modified Bessel
function. Using (21) and (22) in (24) yields

ηh1/2c∗ =
∫

∂Ω

{(
h−1/2Φ

)
F∗ +

[(
Fh − Fvh1/2

)
Φ− h1/2Γ

]
c∗
}

dS (35)

Equation (35) provides a boundary integral equation for determining the numerical
solutions of c∗ and its derivatives at all points of Ω. The derivative solutions ∂c∗/∂ξ1 and
∂c∗/∂ξ2 can be determined using the following equations:

∂c∗

∂ζ1
= h−1/2

[∫
∂Ω

{(
h−1/2 ∂Φ

∂ζ1

)
F∗ +

[(
Fh − Fvh1/2

) ∂Φ
∂ζ1
− h1/2 ∂Γ

∂ζ1

]
c∗
}

dS− c∗
∂h1/2

∂ζ1

]
(36)

∂c∗

∂ζ2
= h−1/2

[∫
∂Ω

{(
h−1/2 ∂Φ

∂ζ2

)
F∗ +

[(
Fh − Fvh1/2

) ∂Φ
∂ζ2
− h1/2 ∂Γ

∂ζ2

]
c∗
}

dS− c∗
∂h1/2

∂ζ2

]
(37)

Knowing the solutions of c∗(x, s) and its derivatives ∂c∗/∂x1 and ∂c∗/∂x2 from (35),
the numerical Laplace transform inversion technique using the Stehfest formula is then
employed to find the values of c(x, t) and its derivatives ∂c/∂x1 and ∂c/∂x2. The Stehfest
formula is
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c(x, t) ' ln 2
t

N

∑
m=1

Vmc∗(x, sm)

∂c(x, t)
∂x1

' ln 2
t

N

∑
m=1

Vm
∂c∗(x, sm)

∂x1
(38)

∂c(x, t)
∂x2

' ln 2
t

N

∑
m=1

Vm
∂c∗(x, sm)

∂x2

where

sm =
ln 2

t
m (39)

Vm = (−1)
N
2 +m

min(m, N
2 )

∑
k=[m+1

2 ]

kN/2(2k)!(
N
2 − k

)
!k!(k− 1)!(m− k)!(2k−m)!

(40)

Possible multiparameter solutions h(x) to (19) are

h(x) =

{
constant, λ = 0
[exp(β0 + βixi)]

2, d̂ijβiβ j + v̂iβi − λ = 0
(41)

If the flow is incompressible, that is, the divergence of the velocity is zero, then

∂vi(x)
∂xi

= 0 (42)

Therefore, the governing Equation (1) reduces to

∂

∂xi

[
dij(x)

∂c(x, t)
∂xj

]
− vi(x)

∂c(x, t)
∂xi

− k(x)c(x, t) = α(x)
∂c(x, t)

∂t
(43)

Moreover, from (6), we obtain

∂vi(x)
∂xi

= 2h1/2(x)v̂i
∂h1/2(x)

∂xi
= 0 (44)

so that

v̂i
∂h1/2(x)

∂xi
= 0 (45)

Therefore, Equation (19) reduces to

d̂ij
∂2h1/2

∂xi∂xj
− λh1/2 = 0 (46)

Thus, for incompressible flow, possible multiparameter functions h(x) satisfying (46) are

h(x) =


(β0 + βixi)

2, λ = 0
[cos(β0 + βixi) + sin(β0 + βixi)]

2, d̂ijβiβ j + λ = 0
[exp(β0 + βixi)]

2, d̂ijβiβ j − λ = 0
(47)

4. Numerical Examples

We will examine multiple analytical and nonanalytical test problems to demonstrate
the accuracy and effectiveness of the mixed Laplace transform and a boundary element
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method used in deriving the boundary integral Equation (35). We will also analyze the
efficiency, accuracy, and consistency of the combined LT-BEM method.

We assume each problem belongs to a system that is valid in spatial and temporal
domains and is governed by Equation (1). The system is also assumed to satisfy the initial
condition (4) and some boundary conditions, as mentioned in Section 2. The characteristics of
the system, which are represented by the coefficients dij(x), vi(x), k(x), α(x, t) in Equation (1),
are assumed to be of forms (5)–(8). They represent, respectively, the diffusivity or conductivity,
the velocity of flow existing in the system, the reaction coefficient, and the change rate of the
unknown or dependent variable c(x, t).

A standard BEM with constant elements is employed to obtain numerical results. For
simplicity, a unit square depicted in Figures 1 and 2 is taken as the geometrical domain for
all problems. A total of 320 elements of equal length, namely 80 elements on each side of
the unit square, are used.

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c(x, 0) = 0

F given

F given

F given

c given

Figure 1. The boundary conditions for problems in Section 4.1.

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c(x, 0) = 0

F = 0

c = 0

F = 0

F = F(t)

Figure 2. The boundary conditions for problems in Section 4.2.

A FORTRAN script is developed to compute the numerical solutions. A subroutine
that evaluates the values of the coefficients Vm, m = 1, 2, . . . , N of the Stehfest formula
in (38) for any number N is embedded in the script. Table 1 shows the values of Vm for
N = 6, 8, 10, 12 resulting from the subroutine.
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Table 1. Values of Vm of the Stehfest formula for N = 6, 8, 10, 12.

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60

V2 −49 145/3 −385/12 961/60

V3 366 −906 1279 −1247

V4 −858 16,394/3 −46,871/3 82,663/3

V5 810 −43,130/3 505,465/6 −1,579,685/6

V6 −270 18,730 −236,957.5 1,324,138.7

V7 −35,840/3 1,127,735/3 −58,375,583/15

V8 8960/3 −1,020,215/3 21,159,859/3

V9 16,4062.5 −8,005,336.5

V10 −32,812.5 5,552,830.5

V11 −215,5507.2

V12 359,251.2

4.1. A Test Problem

The problems will consider three types of inhomogeneity functions h(x), namely
the exponential function of form (41) with the compressible flow, and the quadratic and
trigonometric functions of form (47) with incompressible flow. For all test problems, we
take coefficients d̂ij and k̂

d̂ij =

[
1 0.35

0.35 0.25

]
, k̂ = 0.5 (48)

and a set of boundary conditions (see Figure 1)

F is given on side AB, BC, CD
c is given on side AD

For each problem, numerical solutions of c and its derivatives ∂c/∂x1and ∂c/∂x2 are
sought at 19× 19 interior points (x1, x2) = {0.05, 0.1, 0.15, . . . , 0.9, 0.95}×{0.05, 0.1, 0.15, . . . ,
0.9, 0.95} and 9 time-steps t = 0.0004, π

8 , π
4 , 3π

8 , π
2 , 5π

8 , 3π
4 , 7π

8 , π. The value t = 0.0004 is the
approximating value of t = 0 as the singularity of the Stehfest formula. The individual
relative error EI at each interior point and the aggregate relative error EA of the numerical
solutions are computed using the formulas

EI =

∣∣∣∣ cn,i − ca,i

ca,i

∣∣∣∣ (49)

EA =

[
∑19×19

i=1 (cn,i − ca,i)
2

∑19×19
i=1 c2

a,i

] 1
2

(50)

where cn and ca are the numerical and analytical solutions of c or its derivatives, respec-
tively.

Case 1:

First, we suppose that the function h(x) is an exponential function:

h(x) = [exp(1 + 0.15x1 − 0.25x2)]
2 (51)
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that is, the material under consideration is exponentially graded material. We choose

v̂i = (1, 1) (52)

α̂(t) = 0.192625t (53)

so that the system has a compressible flow, as the divergence of the velocity vi(x) does not
equal zero. In order for h(x) to satisfy (41), then λ = −0.088125. The analytical solution
c(x, t) for this problem is

c(x, t) =
t exp[−(0.2x1 + 0.3x2)]

exp(1 + 0.15x1 − 0.25x2)
. (54)

Figure 3 (top row) shows the aggregate relative errors EA of the numerical solutions c
obtained using N = 6, 8, 10, 12 for the Stehfest formula (38). It indicates convergence of the
Stehfest formula when the value of N changes from N = 6 to N = 10. For this specific case
(Case 1), the value of N is optimized at N = 10. Increasing N to N = 12 does not give more
accurate solutions. According to Hassanzadeh and Pooladi-Darvish [16], increasing N will
increase the accuracy up to a point, and then the accuracy will decline due to round-off
errors. The bottom row of Figure 3 depicts individual relative errors EI for the 19× 19
interior points at time t = π/2 (left) and t = π (right), with N = 10 as the optimized value
of N. It indicates that the errors EI decrease as t changes from t = π/2 to t = π. This result
agrees with the result of the aggregate relative error EA in the top row of Figure 3.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6
N = 8
N = 10
N = 12

 0.0015

 0.00155

 0.0016

 0.00165

 0.0017

 0.00175

 0.0018

 0.00185

 0.0019

 0.00195

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 8
N = 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

Figure 3. (Top): The aggregate relative error EA of the numerical solutions of c with N = 6, 8, 10, 12
for Case 1 (left) and zoom-in view for N = 8, 10 (right). (Bottom): The individual relative errors EI

at t = π/2 (left) and t = π (right) with N = 10.

For the derivative solution ∂c/∂x1, Figure 4 (top row) shows that N = 6 is the opti-
mized value of N for the aggregate relative errors EA. The bottom row of Figure 4 depicts
individual relative errors EI with N = 6. It indicates that the errors EI stay steady as t
changes from t = π/2 to t = π. This result agrees with the result of the aggregate relative
error EA in the top row of Figure 4.

Meanwhile, for the derivative solution ∂c/∂x2, Figure 5 (top row) shows that N = 10
is the optimized value of N for the aggregate relative errors EA. The bottom row of Figure 5
depicts individual relative errors EI with N = 10.
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 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6
N = 8
N = 10
N = 12

 0.009

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0.012

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6
N = 8
N = 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

Figure 4. (Top): The aggregate relative error EA of the numerical solutions ∂c/∂x1 with N = 6, 8, 10, 12
for Case 1 (left) and zoom-in view for N = 6, 8, 10 (right). (Bottom): The individual relative errors EI

at t = π/2 (left) and t = π (right) with N = 6.
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Case 2:

Next, we choose an analytical solution:

c(x, t) =
exp[−(0.2x1 + 0.3x2)]

1 + 0.15x1 − 0.25x2
sin
√

t (55)

Suppose the function h(x) and the coefficients are

h(x) = (1 + 0.15x1 − 0.25x2)
2 (56)

v̂i = (1, 0.6) (57)

α̂(t) = −0.031
√

t tan
(√

t
)

(58)
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Therefore, the considered system involves a quadratically graded material with an
incompressible flow. From (47), we have the parameter λ = 0.

Figure 6 (top row) indicates that N = 10 is the optimized value of N for the aggregate
relative errors EA of the numerical solutions of c. Increasing N to N = 12 gives worse
solutions. The bottom row of Figure 6 depicts individual relative errors EI with N = 10.

N = 10 is also the optimized value of N for the aggregate relative errors EA of the
numerical solutions ∂c/∂x1. This result is shown in Figure 7 (top row). The bottom row of
Figure 7 depicts individual relative errors EI with N = 10.

Meanwhile, for the derivative solution ∂c/∂x2, Figure 8 (top row) shows that N = 6 is
the optimized value of N for the aggregate relative errors EA. The bottom row of Figure 8
depicts individual relative errors EI with N = 6.
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Figure 6. (Top): The aggregate relative error EA of the numerical solutions c with N = 6, 8, 10, 12 for
Case 2 (left) and zoom-in view for N = 10, 12 (right). (Bottom): The individual relative errors EI at
t = π/2 (left) and t = π (right) with N = 10.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6
N = 8
N = 10
N = 12

 0.00286

 0.00288

 0.0029

 0.00292

 0.00294

 0.00296

 0.00298

 0.003

 0.00302

 0.00304

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 10
N = 12

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

Figure 7. (Top): The aggregate relative error EA of the numerical solutions ∂c/∂x1 with N = 6, 8, 10, 12
for Case 2 (left) and zoom-in view for N = 10, 12 (right). (Bottom): The individual relative errors EI

at t = π/2 (left) and t = π (right) with N = 10.
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Case 3:

Now, we consider a trigonometrically graded material with a grading function of

h(x) = [cos(1 + 0.15x1 − 0.25x2)]
2 (59)

We choose
v̂i = (1, 0.6), α̂(t) = 0.003625[1− exp(t)] (60)

so that the system has an incompressible flow, as the divergence of the velocity vi(x) equals
zero. From (47) we have λ = −0.011875. The analytical solution of c(x, t) for this problem
is

c(x, t) =
exp[−(0.2x1 + 0.3x2)][1− exp(−t)]

cos(1 + 0.15x1 − 0.25x2)
(61)
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Figure 8. (Top): The aggregate relative error EA of the numerical solutions ∂c/∂x2 with N = 6, 8, 10, 12
for Case 2. (Bottom): The individual relative errors EI at t = π/2 (left) and t = π (right) with N = 6.

Based on the results in Figures 9–11 (top rows) we assume that N = 12 is the optimized
value for the aggregate relative errors EA of the solutions of c and the derivatives ∂c/∂x1
and ∂c/∂x2. The corresponding individual relative errors EI are shown in the bottom row
of each figure.
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Figure 10. (Top): The aggregate relative error EA of the numerical solutions ∂c/∂x1 with
N = 6, 8, 10, 12 for Case 3 (left) and zoom-in view for N = 10, 12 (right). (Bottom): The individual
relative errors EI at t = π/2 (left) and t = π (right) with N = 12.

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 6
N = 8
N = 10
N = 12

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

0.0004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

EA

t

N = 8
N = 10
N = 12

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

Figure 11. (Top): The aggregate relative error EA of the numerical solutions ∂c/∂x2 with
N = 6, 8, 10, 12 for Case 3 (left) and zoom-in view for N = 10, 12 (right). (Bottom): The individual
relative errors EI at t = π/2 (left) and t = π (right) with N = 12.

4.2. A Problem without Analytical Solution

Further, we will show that the anisotropy and inhomogeneity of materials give an
impact on the solutions. We will use d̂ij, v̂i, k̂, h(x) in Case 3 of Section 4.1 for this problem,
which are

d̂ij =

[
1 0.35

0.35 0.25

]
(62)

v̂i = (1, 0.6) (63)

k̂ = 0.5 (64)

h(x) = [cos(1 + 0.15x1 − 0.25x2)]
2 (65)

We choose
α̂(t) = 1 (66)
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As we aim to show the impacts of anisotropy and inhomogeneity of the material, we
need to consider the case of homogeneous material and the case of isotropic material. We
assume that when the material is homogeneous, then

h(x) = 1 (67)

and when an isotropic material is under consideration, then

d̂ij =

[
1 0
0 1

]
(68)

The boundary conditions are (see Figure 2)

F = 0 on side AB
c = 0 on side BC
F = 0 on side CD
F = F(t) on side AD

where F(t) is associated with four cases, namely

Case 1: F(t) = 1
Case 2: F(t) = exp(−t)
Case 3: F(t) = t
Case 4: F(t) = t/(t + 0.01)

Figure 12 shows that for all cases, when the material is isotropic and homogeneous,
the solutions c(0.5, 0.3, t) and c(0.5, 0.7, t) coincide. This is to be expected, as the problem
is geometrically symmetric at x2 = 0.5 when the material is isotropic and homogeneous.
Furthermore, the results in Figure 12 also indicate that the material’s anisotropy and
inhomogeneity affect the solutions. Once we change the material from homogeneous to
inhomogeneous, or from isotropic to anisotropic, then the solution will not be symmetric
anymore. Moreover, as is also expected, the variation of the solution with respect to t
mimics the time function F(t) as the boundary condition on side AD.

Meanwhile, the results in Figure 13 show that Case 1 of F(t) = 1 and Case 4 of
F(t) = t/(t + 0.01) have the same steady-state solution. This is to be expected, as both the
functions F(t) = 1 and F(t) = t/(t + 0.01) will converge to 1 when t approaches infinity.
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Figure 12. Solutions of c(0.5, 0.3, t) and c(0.5, 0.7, t) for all cases.
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5. Conclusions

Two-dimensional transient problems for anisotropic FGMs governed by a diffusion–
convection–reaction equation of variable coefficients of the form (1) have been considered.
The coefficients dij(x), vi(x), k(x), α(x, t) are restricted to take forms (5), (6), (7) and (8),
respectively. By assuming that the gradation function h(x) satisfies (19), and by using the
transformation (10), the variable coefficient Equation (1) is reduced to a constant coefficient
Equation (20), which can be written in the form of the boundary-only integral Equation (35)
and solved using a standard BEM for the solutions c∗. These BEM solutions are then
numerically inverse transformed using the Stehfest formula (38) to obtain the solutions c.

Some problems of three types of gradation function h(x), namely trigonometric, expo-
nential, and quadratic functions, have been solved. Based on the results obtained, we may
conclude that the analysis of the reduction to the constant coefficient equation (in Section 3)
for deriving the boundary-only integral Equation (35) is valid, and the combined BEM and
Stehfest formula is quite accurate.
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Abbreviations
The following abbreviations are used in this manuscript:

FGM Functionally Graded Material
BEM Boundary Element Method
LT Laplace Transform
DCR Diffusion Convection Reaction

List of Symbols

The following symbols are used in this manuscript:

c concentration
x spatial variable
t temporal variable
dij diffusivity
vi velocity
k reaction coefficient
α rate of change of the concentration
∂/∂xi, ∂/∂t partial derivative with respect to xi and t, respectively
Ω, ∂Ω the spatial domain and its boundary, respectively
F flux
h gradation function
d̂ij constant diffusivity
v̂i constant velocity
k̂ constant reaction coefficient
α̂ constant rate of change of the concentration
ψ transformation function
λ constant parameter
∗ the Laplace transform of a dependent variable
s variable of the Laplace transform
Φ, Γ the fundamental solutions
ζ variable of the fundamental solutions
ρ, µ, D parameters of the fundamental solutions
ẋ, ζ̇, Ṙ, v̇ vectors for the fundamental solutions
Ṙ, v̇ length of the vectors Ṙ, v̇, respectively
N, Vm parameters of the Stehfest formula
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