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Abstract: The aim of this work is to establish a connection between Bohr’s radius and the an-
alytic and normalized solutions of two differential second-order differential equations, namely
y′′(z) + a(z)y′(z) + b(z)y(z) = 0 and z2y′′(z) + a(z)y′(z) + b(z)y(z) = d(z). Using differential sub-
ordination, we find the upper bound of the Bohr and Rogosinski radii of the normalized solution
F(z) of the above differential equations. We construct several examples by judicious choice of a(z),
b(z) and d(z). The examples include several special functions like Airy functions, classical and
generalized Bessel functions, error functions, confluent hypergeometric functions and associate
Laguerre polynomials.
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1. Introduction

The aim of this work is to establish a connection between various special functions with
one of the classical results known as Bohr’s theorem for the class A of analytic functions of
the form f (z) = a0 + ∑∞

n=1 anzn defined in the unit disk D = {z : |z| < 1}. The connection
is based on subordination, an important concept in geometric functions theory. Before
starting the main results, let us recall some basic information on geometric functions theory
and Bohr’s phenomena.

1.1. Basic Requirements from Geometric Functions Theory

The class of functions f in the open unit disk D = {z : |z| < 1}, normalized by the
constraints f (0) = 0 = f ′(0)− 1, shall be denoted by the symbol A0. We also require the
class A1, which consists of functions normalized by f (0) = 1.

If f and g are analytic in D, then f is subordinate [1] to g, written f ≺ g, or f (z) ≺ g(z),
z ∈ D, if there is an analytic self-map w on D satisfying w(0) = 0 and |w(z)| < 1 such that
f (z) = g(w(z)), z ∈ D. In particular, f (D) ⊂ g(D) if g is univalent and g(0) = f (0).

One of the important subclasses of A consisting of univalent starlike functions is de-
noted by S∗. Related to this subclass is the Cárathèodory class P consisting of analytic func-
tions p satisfying p(0) = 1 and Re p(z) > 0 in D. Analytically, f ∈ S∗ if z f ′(z)/ f (z) ∈ P .

A function f ∈ A0 is lemniscate starlike if z f ′(z)/ f (z) ≺
√

1 + z. On the other hand,
the function f ∈ A0 is lemniscate Carathéodory if f ′(z)) ≺

√
1 + z. Clearly, a lemniscate

Carathéodory function is a Carathéodory function and hence is univalent.

1.2. On Bohr’s Phenomena of Analytic Functions

Bohr’s result states that:

Theorem 1 ([2]). If f (z) ∈ A satisfies | f (z)| ≤ 1 for all z ∈ D, then ∑∞
n=0 |an||zn| ≤ 1 for

|z| ≤ 1/3, and the constant 1/3 cannot be improved.
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In the initial result by Bohr, the constant was 1/6, which later was improved inde-
pendently by M. Riesz, I. Schur and F. Wiener. One can find Bohr and Wiener’s proof
in [2], and other proof can be found in [3,4]. Recently, an easy proof of Theorem 1 was
established in [5]. The constant 1/3 in Theorem 1 is called the Bohr radius for analytic
bounded functions in D.

Another concept that is closely linked to the Bohr radius is the Rogosinski radius
which can be found in the following result of Rogosinski [6]:

Theorem 2 ([6]). If f (z) = ∑∞
n=0 anzn ∈ A and | f (z)| ≤ 1 for all |z| ≤ r, then for every

k = {0, 1, 2, . . .} and 0 < r ≤ 1, each section sk( f ) : sk(z; f ) = ∑k
n=0 anzn of f satisfies

the inequality
|sk( f )| ≤ 1

for |z| < r/2. The constant r/2 cannot be improved.

The constant r/2 in Theorem 2 is called the Rogosinski radius.
For fixed |z| = r and f ∈ A, the Bohr operator on f is defined as

Mr( f ) :=
∞

∑
n=0

|an||zn| =
∞

∑
n=0

|an|rn, 0 ≤ r ≤ 1/3. (1)

Clearly, if f is a polynomial of degree k, namely,

Pk(z) = a0 + a1z + a2z2 + . . . + akzk,

then
Mr(Pk) = |a0|+ |a1|r + |a2|r2 + . . . + |ak|rk.

Theorem 3 ([7,8]). If f ≺ h in D, then Mr( f ) ≤ Mr(h) for 0 ≤ r ≤ 1/3.

Theorem 3 is the main result in [8], while it is also stated and proved in [7] as a lemma
and applied to prove other results. Theorem 3 is refined in [9] as follows:

Theorem 4 ([9]). Suppose that f ≺ h in D and

r1(x) =

{ √
1−x

2 for x ∈ [0, 1
2 )

1
1+2x for x ∈ [ 1

2 , 1).
(2)

Then, we have

1. Mr( f ) ≤ Mr(h) for r ≤ r1(| f ′(0)/h′(0)|), when h′(0) ̸= 0.

2. Mr( f ) ≤ Mr(h) for r ≤ 1/3, when h′(0) = 0.

Moreover, r1(| f ′(0)/h′(0)|) cannot be improved if | f ′(0)/h′(0)| ∈ [1/2, 1) ∪ {0}, and the
constant 1/3 in (b) cannot be improved.

Note here that r1(x) ≥ 1/3 for x ∈ [0, 1].

1.3. On Subordination by
√

1 + z and 1 + z − z3/3

The following three functions are important for this study.

PL(z) =
√

1 + z, ϕA(z) = 1 + Az and ϕNe(z) = 1 + z − z3

3 .

The function PL maps D to a leminscate, ϕA shifts D to a disc center at (1, 0) with
radius A ∈ [0, 1) and ϕNe maps D to the neuphroid domain.
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Lemma 1 ([10]). Let p ∈ H[1, n] with p(z) ̸≡ 1 and n ≥ 1. Let Ω ⊂ C, and Ψ : C3 ×D → C
satisfy

Ψ(r, s, t; z) ̸∈ Ω

whenever z ∈ D,. For m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
and Re

(
(t + s)e−3iθ

)
≥ 3m2

8
√

2 cos(2θ)
. (3)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ PL(z) in D.

In the case of two dimensions, if Ψ : C2 ×D → C satisfies Ψ(r, s; z) ̸∈ Ω whenever
z ∈ D, and for m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
.

If Ψ(p(z), zp′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ PL(z) in D.
We need the following results in sequence.

Lemma 2 ([11]). Let p : D → C be analytic such that p(0) = 1. Then, the following subordination
implies p(z) ≺ ϕNϵ(z):

(i) 1 + βzp′(z) ≺ PL(z) for β ≥ β1 := 3(1 − log(2) ≈ 0.920558;

(ii) 1 + β
zp′(z)
p(z) ≺ PL(z) for β ≥ β2 :=

2(
√

2+log(2)−1−log(1+
√

2)
log(5/3) ≈ 0.884792;

(iii) 1 + β
zp′(z)
(p(z))2 ≺ PL(z) for β ≥ β3 := 5

(√
2 + log(2)− 1 − log(1 +

√
2)
)
≈ 1.12994.

Note here that Mr(ϕNe) = 1 + r + r3/3 and we denote it as ΦNe(r) for further use in
the next section.

1.4. Problems and Arrangement of This Article

Two subsections constitute Section 2, containing the major findings. The effects of
Bohr’s operator on leminiscate and nephroid domain functions are discussed in Section 2.1.
We aim to find the solution of the following problem in Section 2.1.

Problem 1. If a function f maps D inside the leminiscate
√

1 + z or f(z) ≺
√

1 + z, then find the
upper bound of Mr(.) when Bohr’s operator applies on any function generated by f, namely f2, or
a specific integration of f.

For our next problem, we consider a differential equation DE1 as follows

z2y′′(z) + a(z)y′(z) + b(z)y(z) = d(z), (4)

where a(z), b(z) and d(z) are analytic functions for which (4) has a solution, say F(z), with
normalization F(0) = 1. The existence of a solution to (4) is a completely separate problem,
but we demonstrate through examples that there is a solution F(z) with normalization
F(0) = 1 for some judicious choice of a(z), b(z) and d(z).

We also continue the work of [12] in the context of Bohr’s operator. In [12], the
lemniscate starlikeness of the solution of the differential equations

DE2 : y′′(z) + a(z)y′(z) + b(z)y(z) = 0; (5)
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and

DE3 : z2y′′(z) + a(z)zy′(z) + b(z)y(z) = 0, (6)

has been studied. Note here that DE3 is a special case of DE1 with d(z) = 0.
We aim to find the solution of the below problem.

Problem 2. What are the effects of Bohr’s operator on the solution of a second-order differential
equation? In particular, what are the conditions on a(z), b(z) and d(z) for which we can implement
the findings of Problem 1 on the solution of DE1, DE2 and DE3?

The effects of Bohr’s operator on the solution of a second-order differential equation
as stated in Problem 2 are covered in Section 2.2. We construct a number of examples that
incorporate different special functions in Section 3.

2. Main Results
2.1. Bohr’s Operator on Functions Associated with the Leminiscate and Nephroid Domain

Theorem 5. Suppose that f ∈ A1 such that f (0) = 1 and f (z) ≺
√

1 + z. Define

g(z) := 1 +
1
β

∫ z

0

f (t)− 1
t

dt, (7)

and assume that the integration on the right-hand side is convergent. Then, the following inequalities
are true

(a) Mr( f 2(z)) ≤ 1 + r;
(b) Mr(g(z)) ≤ ΦNe(r) for β ≥ β1;
(c) Mr(eg(z)−1) ≤ ΦNe(r) for β ≥ β2.

For (a),

r ≤
{

r1(|2 f ′(0)|) if | f ′(0)| < 1/2,
1
3 Otherwise,

while for (b) and (c),

r ≤
{

r1

(∣∣∣ f ′(0)
β

∣∣∣) if | f ′(0)| < β,
1
3 Otherwise.

Proof. Suppose that f (z) ≺
√

1 + z. Then, from the definition of subordination, there is a
Schawarz function ϕ(z) such that

f (z) =
√

1 + ϕ(z) =⇒ ( f (z))2 = 1 + ϕ(z) =⇒ ( f (z))2 ≺ 1 + z := ζ1(z).

Clearly, ζ ′1(0) = 1. Finally, for the bound of r, let us denote η(z) = ( f (z))2. Then,

η′(0) = 2 f (0) f ′(0) = 2 f ′(0).

By Theorem 4, we have r ≤ r1(|η′(0)/ζ ′1(0)|) = r1(|2 f ′(0)|). Since r1 is defined in
[0, 1), the inequality holds if | f ′1(0)| < 1/2. In all other cases, the result follows from
Theorem 3.

From (7), it follows by the fundamental theorem of calculus that

g′(z) =
f (z)− 1

βz
=⇒ 1 + βzg′(z) = f (z) ≺

√
1 + z. (8)

From Lemma 2 (i), it follows that g(z) ≺ ϕNe(z), for β ≥ β1.
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To prove the third case, denote h(z) = eg(z)−1. Logarithmic differentiation of h yields

h′(z)
h(z)

=
f (z)− 1

βz
=⇒ 1 + β

zh′(z)
h(z)

= f (z) ≺
√

1 + z.

Again, by Lemma 2 (ii), it follows h(z) ≺ ϕNe(z) for β ≥ β2.
Next, to find the upper bound of r in (b) and (c), note that ϕ′

Ne
(0) = 1. Further, the

right-hand side of (8) gives

g′(0) = lim
z→0

f (z)− 1
βz

=
f ′(0)

β
.

Hence, the conclusion follows from Theorem 4 if | f ′(0)| < β and Theorem 3 for all
other cases.

Next, the theorem is related to leminiscate starlike functions.

Theorem 6. Suppose that f is leminiscate starlike and β > 0. For

r ≤
{

r1

(
| f ′′(0)|

2β

)
if | f ′′(0)| < 2β,

1
3 Otherwise.

Then, the following assertion holds:

(i) Mr

(
1 + 1

β ln
(

f (z)
z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
f (z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(

f (z)
z

)
 ≤ ΦNe(r) for β ≥ β3.

Proof. Since f is lemniscate starlike, it satisfies the subordination z f ′(z)/ f (z) ≺
√

1 + z.
Now, let us denote all the given functions, respectively, as

P1(z) = 1 +
1
β

ln
(

f (z)
z

)
; P2(z) =

(
f (z)

z

)1/β
; P3(z) =

β

β − ln
(

f (z)
z

) .

The normalization of f by f (0) = 0 = f ′(0)− 1 implies

lim
z→0

f (z)
z

= lim
z→0

f ′(z)
1

= 1.

Thus, P1(0) = 1 = P2(0) = P3(0). Further, if β − ln
(

f (z)
z

)
= 0, then f (z) = zeβ, which

contradicts the fact that f ′(0) = 1. This implies that P3 is defined for all z.
Differentiation of the above three equations leads to

P′
1(z) =

1
β

(
f ′(z)
f (z)

− 1
z

)
=⇒ 1 + βzP′

1(z) =
z f ′(z)

f (z)
≺

√
1 + z,

P′
2(z)

P2(z)
=

1
β

(
f ′(z)
f (z)

− 1
z

)
=⇒ 1 + β

zP′
2(z)

P2(z)
=

z f ′(z)
f (z)

≺
√

1 + z,

−
P′

3(z)
(P3(z))2 = − 1

β

(
f ′(z)
f (z)

− 1
z

)
=⇒ 1 + β

zP′
3(z)

(P3(z))2 =
z f ′(z)

f (z)
≺

√
1 + z.



Mathematics 2024, 12, 39 6 of 17

Clearly, each of the three cases satisfies the requirements of Lemma 2, which is equiva-
lent to say Pi(z) ≺ ΦNe(z) for i = 1, 2, 3. The limit

lim
z→0

(
f ′(z)
f (z)

− 1
z

)
= lim

z→0

z f ′(z)− f (z)
z f (z)

= lim
z→0

z f ′′(z)
z f ′(z) + f (z)

= lim
z→0

z f ′′′(z) + f ′′(z)
z f ′′(z) + 2 f ′(z)

=
f ′′(0)

2
,

implies P′
1(0) = P′

2(0) = P′
3(0) = f ′′(0)/2β.

Finally, from Theorem 4, it follows that

Mr(Pi(z)) ≤ ΦNe(r),

with r ≤ r1(| f ′′(0)|/(2β)) provided | f ′′(0)| < 2β. In all other cases, the conclusion follows
from Theorem 3.

Theorem 6 is useful in the next section where we study Bohr’s operator on the solution
of a second-order differential equation.

2.2. Bohr’s Operator on the Solution of Differential Equations

For our next result, we consider the differential equation DE1 from (4).

Theorem 7. Suppose that for the analytic functions a(z), b(z) and d(z), the differential Equation (4)
has a solution f1(z) such that f1(0) = 1. If, for A ∈ (0, 1],

A Re(a(z)− 1) > A|b(z)− 1|+ |b(z)− d(z)|, (9)

then Mr( f1) ≤ 1 + Ar for

r ≤
{

r1(| f ′(0)|) if | f ′1(0)| < 1,
1
3 if Otherwise ,

Proof. Consider

q(z) =
√

1
A ( f1(z) + A− 1). (10)

A simplification gives

f1(z) = Aq2(z)− A+ 1, f ′1(z) = 2Aq′(z)q(z) f′′α,n(z) = 2Aq′′(z)q(z) + 2A(q′(z))2.

From (4), it follows that

2Az2q′′(z)q(z) + 2A(zq′(z))2 + 2A(α + 1 − z)zq′(z)q(z) + nAzq2(z)− nAz + nz = 0.

Let Ω = {0} ⊂ C and define ψ : C3 ×D → C as

ψ(r, s, t; z) = 2Atr + 2As2 + 2A(α + 1 − z)sr + nz(Ar2 − A+ 1). (11)

It is clear from (11) that ψ(q(z), zq′(z), z2q′′(z); z) ∈ Ω. We shall apply Lemma 1 to
show ψ(r, s, t; z) /∈ Ω, which implies q(z) ≺

√
1 + z.

Now, for −π/4 ≤ θ ≤ π/4, let

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
.
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Applying elementary trigonometric identities, we have

r2 − 1 = 2 cos(2θ)e2iθ − 1 = (2 cos2(2θ)− 1) + i2 cos(2θ) sin(2θ) = e4iθ .

Substitute r, s and t in (3), and simplification leads to

|ψ(r, s, t; z)| = |2Atr + 2As2 + 2A(α + 1 − z)sr + nz(Ar2 − A+ 1)|
= |2Ar(t + s) + 2As2 + 2A(α − z)sr + Anz(r2 − 1) + nz|

> |e4iθ |
(

2A
√

2 cos(2θ)Re(t + s)e−3iθ + 2A
m2 Re(e2iθ)

8 cos(2θ)
+ ARe(α − 1)m

)
− nA|e4iθ | − n

> 2A
3m2

8
+

Am2

4
+ ARe(α − 1)− n(A+ 1)

> A+ ARe(α)− A− n(A+ 1) ≥ 0

when Re(α) ≥ n(A+ 1)/A. By Lemma 1, it follows that q(z) ≺
√

1+ z, which is equivalent to√
1
A ( f1(z) + A− 1) =

√
1 + w(z), (12)

for some analytic function w(z) such that |w(z)| < 1. A simplification of (12) gives

1
A ( f1(z) + A− 1) = 1 + w(z) =⇒ f1(z) = 1 + Aw(z) =⇒ f1(z) ≺ 1 + Az.

This completes the proof.

The next few results are a continuation of the work in [12]. It is proven in [12]
(Theorem 2.1) that the solution of the differential equation DE2 in (5), with the normalization
F(0) = 0, F′(0) = 1, is associated with ϕNe(z) when

4(
√

2 − 1)|za(z)− 1|+ 4|zb(z) + a(z)| < 4 +
√

2.

A similar result was also obtained in [12] (Theorem 2.2), which is associated with the
solution of the differential equation DE3 in (6), with normalization G(0) = 0, G′(0) = 1.

Using the results [12] (Theorems 2.1 and 2.2) mentioned above along with Theorem 6
in this article, we have the following two results. We omit a detailed proof.

Theorem 8. Suppose that F is the solution of the differential equation DE2 in (5), with the
normalization F(0) = 0, F′(0) = 1. Suppose that F(z) ̸= 0 for all z ∈ D \ {0}. Assume that the
analytic functions a and b satisfy the inequality

4(
√

2 − 1)|za(z)− 1|+ 4|zb(z) + a(z)| < 4 +
√

2. (13)

Then, the following assertion are true:

(i) Mr

(
1 + 1

β ln
(

F(z)
z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
F(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(

F(z)
z

)
 ≤ ΦNe(r) for β ≥ β3.
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Theorem 9. Suppose that G(z) ̸= 0 for any z ∈ D \ {0} is the solution of the differential equation
DE3 in (6), with the normalization G(0) = 0, G′(0) = 1. Assume that the analytic functions a and
b satisfy the inequality

4(
√

2 − 1)|a(z)− 1|+ 4|b(z) + a(z)| < 4 +
√

2. (14)

Then, the following assertions are true:

(i) Mr

(
1 + 1

β ln
(

G(z)
z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
G(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(

G(z)
z

)
 ≤ ΦNe(r) for β ≥ β3.

3. Examples Involving Special Functions

This section is devoted to establishing examples based on the results obtained in
Sections 2.1 and 2.2. Some of the examples are based on article [12] but this article empha-
sizes Bohr’s radius of special functions, which is a normalized solution of some second-
order differential equations.

3.1. Example Involving the Associated Laguerre Polynomial

The generalized [13] or associated Laguerre polynomial (ALP) Lα
n(z), defined by

the series

Lα
n(z) =

n

∑
i=0

(−1)i
(

n + α
n − i

)
zi

i!
=

(1 + α)n

n! 1F1(−n; 1 + α; z), (15)

is a solution of the differential equation

zy′′(z) + (α + 1 − z)y′(z) + ny(z) = 0, α ∈ R. (16)

Here, 1F1 is a well-known confluent hypergeometric function and (a)n is the Pochham-
mer symbol defined as

(a)0 = 1, (a)n = a(a + 1) . . . (a + n − 1), n ∈ N.

The monographs by Szegó [14] and Andrews, Askey, and Roy [15] include a wealth of
information about the ALP and other orthogonal polynomial families. A short summary of
various applications of the ALP is given in [12]. The normalized form

fn,α(z) =
n!

(α + 1)n
Lα

n(z), z ∈ D, (17)

which is a solution of the differential equation

z2y′′(z) + (α + 1 − z)zy′(z) + nzy(z) = 0, (18)

is studied in [12]. It is proven that fn,α(z) ≺ PL(z) when 4 Re(α) > 16n + 1.
From (17), it follows that fn,α(0) = 1 and f′n,α(0) = −n/(1 + α). Now, applying

Theorem 5, we have the following results:

(a) Mr( f 2
n,α(z)) ≤ 1 + r, where

r ≤ r1
(
|2 f ′n,α(0)|

)
= r1

(∣∣ 2n
1+α

∣∣).
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Since, 4 Re(α) > 16n + 1, it follows that

|1 + α| > 1 + Re(α) > 4n +
5
4

,

which further gives ∣∣ 2n
1+α

∣∣ < 8n
16n+5 ≤ 8

21 < 1
2 , ∀n ≥ 1.

Finally, from the definition of r1 in (2), it follows that

r ≤ r1
(∣∣ 2n

1+α

∣∣) = √
|1+α|−2n

2|1+α| .

(b) Define

gn,α(z) := 1 +
1
β

∫ z

0

fn,α(t)− 1
t

dt. (19)

Now,

fn,α(t)−1
t = 1F1(−n;1+α;t)−1

t =
∞

∑
j=1

(−n)j
(1+α)j

tj

j! =⇒ gn,α(z) = 1 + 1
β

∞

∑
j=1

(−n)j
j(1+α)j

tj

j! .

Further simplification leads to

gn,α(z) = 1 + 1
β

∞

∑
j=1

(−n)j
j(1+α)j

tj

j! = 1 − n
β(1 + α) 3F3(−n + 1, 1, 1; 2 + α, 2, 2; z).

(i) Mr(gn,α(z)) ≤ ΦNe(r) for β ≥ β1. In this case,

r ≤ r1

(∣∣∣∣ f ′n,α(0)
β

∣∣∣∣) = r1

(∣∣∣∣ n
β(1 + α)

∣∣∣∣).

A similar calculation to the one above yields∣∣∣ n
β(1+α)

∣∣∣ < 4n
β(16n+5) ≤

4
21β < 1

2 , ∀n ≥ 1 and β ≥ β1.

Thus,

r ≤ r1

(∣∣∣ n
β(1+α)

∣∣∣) =

√
|1+α|−n
2β|1+α| , ∀n ≥ 1 and β ≥ β1

(ii) Mr(egn,α(z)−1) ≤ ΦNe(r) for β ≥ β2. In this case,

r ≤ r1

(∣∣∣ n
β(1+α)

∣∣∣) =

√
|1+α|−n
2β|1+α| , ∀n ≥ 1 and β ≥ β2.

3.2. Example Involving the Error Function

Our next function is

h1(z) :=
√

πα

2
ez2/(2α)erf

(
z√
2α

)
, α > 0 (20)

involving the error function erf [13], which is defined as

erf (z) :=
2√
π

∫ z

0
e−t2

dt =
2√
π

∞

∑
n=0

(−1)n

n! (2n + 1)
z2n+1.
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The error function can also be expressed by the confluent hypergeometric functions
through

√
πerf (z) = 2z1F1(1/2; 3/2;−z2). Functional inequalities involving the real error

functions can be found in [16]. In the context of geometric functions theory, Coman [17]
determined the radius of starlikeness of the error function. It is proven in [12] that h1(z) is
lemniscate starlike for α > 4(

√
2+ 1)/(8− 3

√
2). Note that erf (0) = 0 and hence f1(0) = 0.

The derivative of erf (z) leads to

d
dz

erf
(

z√
2α

)
=

2
√

π
√

2α
e−

z2
2α .

Taking the derivative of both sides of (20), it follows that

h′1(z) =
√

π

2α
ze

z2
2α erf

(
z√
2α

)
+ 1 (21)

and

h′′1 (z) =
√

π

2α

(
e

z2
2α erf

(
z√
2α

)
+

z2

α
e

z2
2α erf

(
z√
2α

)
+

2z√
2πα

)
. (22)

It is clear from (22) that h′′1 (0) = 1. Now, we have the following assertions from
Theorem 6

(i) Mr

(
1 + 1

β ln
(
h1(z)

z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
h1(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(
h1(z)

z

)
 ≤ ΦNe(r) for β ≥ β3.

In the first two cases,

r ≤ r1

(
h′′1 (0)

2β

)
= r1

(
1

2β

)

=


√

2β−1
4β for β > 1

β
β+1 for β ∈ [βi, 1], for i = 1 or 2.

,

while in the third case, when β ≥ β3 > 1,

r ≤ r1

(
h′′1 (0)

2β

)
= r1

(
1

2β

)
=

√
2β−1

4β .

We further note here that h1 is a solution of the differential equation

αy′′(z)− zy′(z)− y(z) = 0.

Thus, the above results can also be obtained by using Theorem 8.

3.3. Example Involving the Classical Bessel Function

It is proven in [12] that the function

h2(z) =
π

sin
(

2πν√
β

)(
J
− 2ν√

β

(
2√

β

)
J 2ν√

β

(
2
√

ez

β

)
− J 2ν√

β

(
2√

β

)
J
− 2ν√

β

(
2
√

ez

β

))
, ν /∈ Z, β > 0.
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is leminiscate starlike when for a fixed β > 0, there exists ν for which

4(ν4 − 2ν2e cos(1) + e2) ≤ (8 − 3
√

2)β. (23)

Here, Jν is the well-known classical Bessel function of order ν, which is a solution of
the differential equation:

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0. (24)

Several results related to the geometric properties of the Bessel function and its gener-
alizations can be found in [18,19] and the references therein.

Clearly,

h2(0) =
π

sin
(

2πν√
β

)
J

− 2ν√
β

(
2√

β

)
J 2ν√

β

(
2√

β

)
− J 2ν√

β

(
2√

β

)
J
− 2ν√

β

(
2√

β

) = 0.

After a careful computation as in [20] (Example 3, Page 561), it follows that h′2(0) = 1
and h2 is the solution of the differential equation

βF′′(z) + (ez − ν2)F(z) = 0.

The second-order derivative of h2 yields

h2
′′(z) =

π(ez−ν2) csc
(

2πν√
β

)J 2ν√
β

(
2
√

1
β

)
J− 2ν√

β

(
2
√

ez
β

)
−J− 2ν√

β

(
2
√

1
β

)
J 2ν√

β

(
2
√

ez
β

)
β ,

and h2
′′(0) = 0. Finally, we have from Theorem 6 (as well as Theorem 8) that

(i) Mr

(
1 + 1

β ln
(
h2(z)

z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
h2(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(
h2(z)

z

)
 ≤ ΦNe(r) for β ≥ β3.

In all three cases,

r ≤ r1

(
h′′2 (0)

2β

)
= r1(0) =

1√
2

.

3.4. Example Involving Airy Functions

For next example, consider the following function considered in [12]:

h3(z) =
Γ
(

1
3

)(
35/6Bi

(
3
√

az
)
− 34/3 Ai

(
3
√

a z
))

6 3
√

a
, a ̸= 0.

Here, Ai and Bi are well-known Airy functions [13] which are independent solutions
of the differential equation y′′(z)− zy(z) = 0 with initial value

Ai(0) =
1

32/3Γ
( 2

3
) , Ai′(0) = − 1

31/3Γ
(

1
3

) , Bi(0) =
1

31/6Γ
( 2

3
) , Bi′(0) =

31/6

Γ
(

1
3

) .
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Thus,

h3(0) =
Γ
(

1
3

)(
35/6Bi(0)− 34/3 Ai(0)

)
6 3
√

a
=

Γ
(

1
3

)
6 3
√

a

(
35/6

31/6Γ
( 2

3
) − 34/3

32/3Γ
( 2

3
)) = 0

and

h′3(0) =
Γ
(

1
3

)(
35/6 3

√
aBi′

(
3
√

az
)
− 3 3

√
3 3
√

aAi′
(

3
√

az
))

6 3
√

a

∣∣∣∣∣∣
z=0

=

Γ
(

1
3

)(
35/6 3

√
aBi′(0)− 34/3 3

√
aAi′(0)

)
6 3
√

a
=

Γ
(

1
3

)
6

(
3

Γ
(

1
3

) +
34/3

31/3Γ
(

1
3

)) = 1.

Further computation yields that h3 is a solution of the differential equation

F′′(z)− a z F(z) = 0.

Then, it is shown in [12] that h3 is lemniscate starlike for |a| < (8 − 3
√

2)/4 ≈ 0.93934.
Now, the second-order derivative of h3 at z = 0 gives

h′′3 (0) =
Γ
(

1
3

)2
z
(

35/6aBi
(

3
√

az
)
− 3 3

√
3azAi

(
3
√

a
))

36a2/3

∣∣∣∣∣∣∣
z=0

= 0.

Similar to the earlier example, we now have from Theorem 6 (as well as Theorem 8) that

(i) Mr

(
1 + 1

β ln
(
h3(z)

z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
h3(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(
h3(z)

z

)
 ≤ ΦNe(r) for β ≥ β3,

and in all three cases,

r ≤ r1

(
h′′3 (0)

2β

)
= r1(0) =

1√
2

.

3.5. Example Involving Generalized Bessel Functions

One of the most significant functions included in the literature of geometric functions
theory is the generalized and normalized Bessel functions of the form

Up(z) =
∞

∑
n=0

(−1)ncn

4n(κ)n

zn

n!
, 2κ = 2p + b + 1 ̸= 0,−2,−4,−6, . . . ;

which are the solutions of

4z2U′′(z) + 4κzU′(z) + czU(z) = 0. (25)

For b = c = 1, the function Up represents the normalized Bessel function of order p,
while for b = −c = 1, the function Up represents the normalized modified Bessel function
of order p. The spherical Bessel function can also be obtained by using b = 2, c = 1.
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The inclusion of Up in various subclasses of univalent functions theory has been
extensively studied by many authors [18,21–23] and some references therein. Recently,
the lemniscate convexity and other properties of Up have been studied in [21].

Now, consider

h4(z) = zUp(z).

It is proved in [12] that the function f4 is lemniscate starlike if

16(
√

2 − 1)|κ − 3|+ |c| < 4 +
√

2.

A simple computation yields

h′4(z) = zU′p(z) + Up(z), h′′4 (z) = zU′′p(z) + 2U′p(z).

Then, it follows that h′′4 (0) = 2U′p(0) = −c/2κ.
We now have from Theorem 6 (as well as Theorem 8) that

(i) Mr

(
1 + 1

β ln
(
h4(z)

z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
h4(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(
h4(z)

z

)
 ≤ ΦNe(r) for β ≥ β3,

and in all three cases, with respect to β, we have

r ≤ r1

(∣∣∣∣h′′4 (0)2β

∣∣∣∣) = r1

(
|c|

4|κβ

)
=


√

4β|κ|−|c|
8|κ|β for 2β|κ| > |c|

2|κ|β
2|κ|β+|c| for |c| < 4β|κ| ≤ 2|c|

.

3.6. Example Involving Confluent Hypergeometric Functions

Geometric functions theory has a close association with the hypergeometric func-
tions 2F1 and the confluent hypergeometric functions 1F1 (refer to the articles [20,24–30]).

The differential equation

z2y′′(z) + (b − z)y′(z)− azy(z) = 0

has the solution 1F1(a, b; z).
Now, consider the function h5(z) := z1F1(a, b; z). Then, h5 is lemniscate starlike if

4(
√

2 − 1)|β − 3|+ |α| < 8 − 3
√

2 (26)

which is proven in [12]. The second derivative of h5 leads to

h′′5 (0) = 21F′
1(a, b; 0) = a/b.

Similar to earlier examples, we have

(i) Mr

(
1 + 1

β ln
(
h5(z)

z

))
≤ ΦNe(r) for β ≥ β1;

(ii) Mr

((
h5(z)

z

) 1
β

)
≤ ΦNe(r) for β ≥ β2;

(iii) Mr

 β

β−ln
(
h5(z)

z

)
 ≤ ΦNe(r) for β ≥ β3,
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and in all three cases, with respect to β, we have

r ≤ r1

(∣∣∣∣h′′5 (0)2β

∣∣∣∣) = r1

(
|a|

2β|b|

)
=


√

2β|b|−|a|
4β|b| for β|b| > |a|

2|b|β
|b|β+|a| for |a| < 2β|b| ≤ 2|a|

.

3.7. Example Involving Some General Functions

For α ∈ (−∞, 1/2], define the functions

h6(z) =
√

1 − z(1 + αz) and w(z) = (2α − 1)z +
(

α2 − α
)

z2 − α2z3. (27)

Clearly, h6(0) = 1, h′6(0) = α − 1/2 and w(0) = 0.
Now, a calculation yields

1 + w(z) = 1 + (2α − 1)z +
(

α2 − 2α
)

z2 − α2z3 = (1 − z)(1 + αz)2.

This implies h6(z) =
√

1 + w(z). Further, for |z| < 1,

|w(z)| < |2α − 1|+ |α2 − 2α|+ |α|2 = 1

when α ≤ 1
2 . Thus, h6(z) ≺

√
1 + z for α ∈ (−∞, 1/2].

For β > 0, let us define g6 as

g6(z) := 1 +
1
β

∫ z

0

h6(t)− 1
t

dt. (28)

Next, we aim to find a closed form of g6. The solution of the integration in (28) can be
easily established using computational software, but here we solve the problem to achieve
the completeness of the result. First, we consider the following indefinite integration:

I =
∫ √

1 − t − 1
t

dt =
∫ (√

1 − t − 1
)(√

1 − t + 1
)

t
(√

1 − t + 1
) dt = −

∫ 1√
1 − t + 1

dt.

Next, substitute r =
√

1 − t. Then,

dr = − 1
2
√

1 − t
dt ⇒ dt = −2r dr.

The integration I reduces to

I = 2
∫ r

r + 1
dr = 2

∫ (
1 − 1

r + 1

)
dr

= 2r − 2 ln |r + 1|+ c1

= 2
√

1 − t − 2 ln (1 +
√

1 − t) + c1.

By a routine calculation, the second integration in I1 leads to∫ √
1 − t dt = −2

3
(1 − t)3/2 + c2.
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This finally leads to the closed form of g6 as follows:

g6(z) = 1 +
1
β

∫ z

0

√
1 − t(1 + αt)− 1

t
dt

= 1 +
1
β

∫ z

0

√
1 − t − 1

t
dt +

α

β

∫ z

0

√
1 − tdt

= 1 +
1
β

(
2
√

1 + t − 2 ln (1 +
√

1 + t)
)z

0
+

α

β

(
−2

3
(1 − t)3/2

)z

0

= 1 +
1
β

(
2
√

1 + z − 2 ln (1 +
√

1 + z)− 2 + 2 ln(2)
)
− 2α

3β
(1 − z)3/2 +

2α

3β

Finally, from Theorem 5, we have the following conclusions:

(a) Mr
(
(1 − z)(1 + αz)2) ≤ 1 + r, with r ≤ r1(h

′
6(0)). Since h′6(0) = α − 1/2 and

α ≤ 1/2, we can say that r1(α − 1/2) is defined only for α = 1/2. Hence,

r ≤ r1(h
′
6(0)) = r1(0) = 1/

√
2.

(b) Mr

(
1 + 1

β

(
2
√

1 + z − 2 ln (1 +
√

1 + z)− 2 + ln(4)
)
− 2α

3β (1 − z)3/2 + 2α
3β

)
≤ ΦNe(r)

for β ≥ β1, and r ≤ r1

(∣∣∣ h′6(0)β

∣∣∣). Now,

r1

(∣∣∣∣h′6(0)β

∣∣∣∣) = r1

(∣∣∣∣2α − 1
2β

∣∣∣∣) =


√

2β−|2α−1|
4β for 2|2α − 1| ≤ β

β
β+|2α−1| for β < 2|2α − 1| ≤ 2β.

4. Conclusions

Bohr’s operator has been the subject of numerous investigations. To the best of our
knowledge, no research has addressed Bohr’s operator in relation to the solution to a
second-order differential equation. This article offers a novel approach to research in this
area of study. It is also interesting to incorporate special functions into the investigation
of Bohr’s operator. We established the upper bound of Bohr’s radius involving special
functions such as:

1. Associated Laguerre polynomials (Section 3.1);
2. Error functions (Section 3.2);
3. Classical Bessel functions (Section 3.3);
4. Airy functions (Section 3.4);
5. Generalized Bessel functions (Section 3.5);
6. Confluent hypergeometric functions (Section 3.6).

All of the above functions are the solution of some second-order differential equations.
It is well known that Gaussian hypergeometric functions are also solutions of second-
order differential equations and are very important special functions. Hence, we raised
following problem.

Problem 3. How can the Gaussian hypergeometric functions 2F1(a, b, c; z) be connected with
Bohr’s radius problem?

In addition, by utilizing the definition of subordination, we proved in Section 3.7 that√
1 − zP1(α1, z) ≺

√
1 + z for α1 ≤ 1/2, which further leads to the inequality

Mr

(
(1 − z)(P1(α1, z))2

)
≤ 1 + r,

only for α = 1/2. Here, P1(α1, z) = 1 + α1z is a polynomial of degree 1. In this aspect, we
raised the following problem for further study:
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Problem 4. Can we define an n-th degree polynomial

Pn(α1, α2, . . . , αn, z) = 1 +
n

∑
i=1

αizn

such that Pn(α1, α2, . . . , αn, z) ≺
√

1 + z? What will be the range of each αi, i = 1, 2, . . . , n in
such cases? Further, if Mr

(
(1 − z)(Pn(α1, α2, . . . , αn, z))2) ≤ 1 + r, what is the range or exact

value of each αi?
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