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Abstract: This study presents a novel event-triggered relearning framework for neural network
modeling, designed to improve prediction precision in dynamic stochastic complex industrial systems
under non-stationary and variable conditions. Firstly, a sliding window algorithm combined with
entropy is applied to divide the input and output datasets across different operational conditions,
establishing clear data boundaries. Following this, the prediction errors derived from the neural
network under different operational states are harnessed to define a set of event-triggered relearning
criteria. Once these conditions are triggered, the relevant dataset is used to recalibrate the model to
the specific operational condition and predict the data under this operating condition. When the
predicted data fall within the training input range of a pre-trained model, we switch to that model
for immediate prediction. Compared with the conventional BP neural network model and random
vector functional-link network, the proposed model can produce a better estimation accuracy and
reduce computation costs. Finally, the effectiveness of our proposed method is validated through
numerical simulation tests using nonlinear Hammerstein models with Gaussian noise, reflecting
complex stochastic industrial processes.

Keywords: stochastic processes; non-stationary and variable conditions; event-triggered conditions;
sliding window algorithm; information entropy

MSC: 68T07; 93-10

1. Introduction

Stochastic processes are ubiquitous in both natural and engineered systems, where
they often exhibit complex and unpredictable behaviors that challenge conventional mod-
eling and control methods [1–3]. In industrial contexts, stochastic systems may operate
under multiple conditions due to mechanical breakdowns, environmental disturbances,
or operator mistakes. These systems can unpredictably transition between different states,
causing operational inefficiencies, potential harm, safety risks, and failures in control sys-
tems. Precise modeling of such systems is crucial for designing effective controllers and
ensuring robust operation. Traditional approaches often employ neural networks to model
complex industrial stochastic processes characterized by dynamic behaviors, unobserv-
able internal states, and limited data confined to inputs and outputs. However, these
conventional neural network models may fall short in accurately predicting the behavior
of stochastic systems with multiple operating conditions. Taking the ironmaking blast
furnace as an example, under stable operating conditions, the model can be effectively
constructed using an offline training dataset to deliver accurate predictions [4–7]. However,
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ironmaking blast furnaces are often subject to random perturbations from the external
environment, uncertainties within the system, and measurement errors, all of which have
impacts on the operating condition and product quality of the blast furnace, manifesting as
mismatches between the forecast data’s boundary range and the boundary range of the
modeling training input data, along with irregular changes. In this case, the prediction
accuracy of the original neural network model will be significantly reduced.

In recent years, given the notable drop in prediction accuracy of conventional neural
networks under non-stationary variable working conditions inherent in complex industrial
stochastic processes, researchers and scholars have pursued research into online learning
modeling algorithms to address these challenges. Zhou et al. [8] combined integrated
auto-encoder and principal component analysis (PCA) techniques to propose a new type of
improved random vector functional-link networks (RVFLNs) algorithms (AE-P-RVFLNs
algorithms) for online estimation. Su et al. [9] established a multi-layer extreme learning
machine (ML-ELM) predictive model for unsupervised sequential learning layer-by-layer.
Zhou et al. [10] applied the output self-feedback structure to the traditional online se-
quential random vector functional-link networks (OS-RVFLNs), and proposed a dynamic
modeling method. Jiang et al. [11] proposed a silicon content prediction method for adap-
tive working condition clustering of process variables, establishing Elman neural network
submodel. He et al. [12] proposed to integrate bagging strategies, point-of-care learning
methods, and semi-supervised extreme learning machines into a unified local semi-super-
vised model (BLSM) for online measurement. However, in the actual production process,
due to the influence of interference such as detection instruments and transmitter failure
or human operation, the data distribution varies greatly. Continuous updates and param-
eter adjustments of the model need to rely on previous experience, and then, the model
cannot adapt well to the new data distribution, resulting in a decrease in model accuracy.
Furthermore, there is no necessity for real-time updating of model parameters, which
would otherwise escalate computational overhead. This consideration becomes particularly
critical when processing large-scale datasets or managing high-dimensional data, where
computational demands can become exceedingly burdensome.

An event-triggered mechanism is an automated event-based response mechanism [13,14].
Through an event-triggered mechanism, predefined rules or conditions activate the system
to autonomously perform the appropriate actions or tasks upon their fulfillment. This study
presents the design of an event-triggered controller gain for a larger sampling interval in [15].
In sewage treatment plants, the control strategy based on online optimization usually faces
high computational complexity, so an event-triggered method solves the above problems
in [16]. The backstepping technique is employed to design a controller by combining event-
triggered mechanisms (ETMs), which can alleviate data transmission and save communication
resource in [17]. A Zeno-free event-triggered mechanism in controller-to-actuator channels is
proposed to save limited communication resources in [18]. A dynamic event-triggered control
scheme for strict-feedback uncertain nonlinear systems is proposed, and a control scheme can
ensure zero tracking stabilization error in the absence of Zeno behavior in [19].

Inspired by the aforementioned problems, the concept of an event-triggered mecha-
nism is employed in this paper to counteract the decrease in neural network prediction
accuracy due to non-stationary changing working conditions in complex industrial stochas-
tic processes. This mechanism activates appropriate control actions in response to system
state variations, facilitating adaptive control of the system. Firstly, both information entropy
and sliding windows can be used in data processing and analysis. By combining them,
the input data are detected to find the locations of the data jump point and to count the
boundary range to divide the input and output datasets corresponding to different bound-
aries. Secondly, the prediction errors of the current model for data with different boundary
ranges are calculated, and then, the event-triggered condition group is constructed from
the above errors. When the boundary range of the prediction data diverges from that of
the training input data of the current model and meets the specified triggered conditions,
the model’s parameters are updated by retraining with the dataset corresponding to the
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new boundary range. Conversely, if the boundary range of the prediction data aligns with
the training input data of the current model, we simply transition to the model specific to
that boundary range to forecast new data.

In conclusion, by integrating an event-triggered mechanism with a neural network
model, we can effectively model and forecast the behavior of stochastic systems. According
to the algorithm combining sliding window and entropy, we can detect and divide the
boundary range of the input data, so as to distinguish different working conditions, and fi-
nally improve the prediction accuracy of the model under different working conditions.
The contribution of this paper can be summarised as follows:

1 By integrating the sliding window technique with entropy, our approach successfully
detects and segments the boundary range of input data, thereby efficiently categorizing
various working conditions.

2 The prediction accuracy of the model decreases due to the change in working con-
ditions. To address this, prediction errors are utilized to establish a group of event-
triggered conditions, which guide the model’s retraining process across diverse work-
ing conditions.

3 Distinct predictive models are developed corresponding to the segregated boundary
ranges of input data. When the prediction data boundaries align with those of a
pre-existing model’s input, the system seamlessly transitions to the appropriate model
for prediction.

The remainder of this paper is organized as follows. Section 2 describes the problem
that conventional neural networks approximate the stochastic systems under the non-
stationary and variable conditions. Section 3 develops the algorithm combining sliding
window and information entropy and is applied to a modeling strategy for event-triggered
relearning. Section 4 provides an example to show the effectiveness of the proposed method.
Finally, we give some concluding remarks in Section 5.

2. Problem Description
2.1. System Statement

In practical applications, a wide array of engineering and control systems, ranging
from aircraft and robots to power systems, exhibit stochastic characteristics [20–22]. A de-
scription of a stochastic system can be expressed as follows:

Y(k + 1) = f (U(k), Y(k)) + V(k), (1)

where Y(k + 1) is the output of the system at the discrete time k + 1, and U(k) and Y(k)
are the input and output of the system at the discrete time k, respectively. V(k) denotes
stochastic noise. f (·) represents nonlinear transformations. Compared with linear systems,
stochastic nonlinear systems usually exhibit more complex and unpredictable dynamic
behaviors. Therefore, the modeling and prediction of stochastic systems become crucial
and essential areas of research. There are many methods for modeling and prediction.
In this paper, we focus on applying neural network algorithms for this purpose. Detailed
explanations and methodologies will be provided in the following section.

2.2. Neural Networks Modeling Problem

Neural networks are a common data-driven modeling method that applies input and
output datasets to construct a model and predict unknown data for complex industrial
stochastic processes [23,24]. For the stochastic system described above, the inputs and
outputs are utilized as the respective input and output data for a neural network. Through
data acquisition, we gather ‘L’ sets of scalar data points, comprising ‘m’ input variables
and ‘n’ output variables. This can be formally presented as follows:

U = [u1, u2, · · · , um]
T ∈ Rm×1, (2)
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Y = [y1, y2, · · · , yn]
T ∈ Rn×1, (3)

where ui is the time series of the ith input, and yj is the time series of the jth output.
The time series of input and output can be expressed as follows:

{U(k), Y(k)|k = 1, 2, · · · , L}. (4)

Under stationary conditions, conventional neural networks use datasets to establish a
nonlinear mapping relationship from input to output. The default condition is that values
of the prediction data vary within the boundaries of its modeling training input data, which
can be given as follows in Equation (5):

Y = fNN(U), U ∈ D. (5)

Just as the value of the independent variable in a function is constrained by a defined
domain, as shown in Figure 1, data within the boundary range D can be accurately predicted.

fNN
U Y

Y = fNN(U),  U∈D:[minU, maxU]

D

Figure 1. The prediction data is constrained by the boundary range of the model training data. The
red dots represent different data points. The pink circle represents the boundary range of the input
data, similar to the defined domain of a function. The green circle represents the boundary range of
values predicted by the neural network for the input data, similar to the range of values of a function.

However, in the actual production process affected by the operating environment
and human factors, the system working conditions will change, that is, cause changes in
the system. During the nonlinear system, f j(·), j = 1, 2, · · · , represent different nonlinear
transformations. Simultaneously, the range of the system’s inputs also shifts due to this
change, leading to a corresponding variation in the output, which can be demonstrated
in Equation (6) as follows:

Y(k + 1) =



f1(U(k), Y(k)), U(k) ∈ D1

f2(U(k), Y(k)), U(k) ∈ D2

...

f j(U(k), Y(k)), U(k) ∈ Dj

, (6)

where Di, i = 1, 2, · · · , j, represents the boundary range of the input variable.
In view of the above situation, conventional neural networks cannot accurately predict

the prediction data of different boundary ranges. It is not possible to construct a one-to-one
correspondence between different domains and different mappings similar to the segmen-
tation function. Taking the multiple-input and multiple-output of nonlinear model with
Gaussian noise as the research object to simulate complex industrial stochastic processes,
the problem of model prediction accuracy degradation caused by neural network under
non-stationary variable working conditions can be regarded as the problem of the decline
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in prediction accuracy of the original model caused by the inconsistency from the boundary
range between the prediction data and the modeling training input data:

1 When the boundary range of the prediction data exceeds the boundary range of the
training input data of the current model, how to detect the different boundaries of
prediction data and redivide the input and output datasets.

2 When the boundary range of the prediction data is detected, the data for the variable
working conditions prediction accuracy of the established model will decrease, how
to improve the prediction accuracy of the model.

3 As time goes by, when the boundary range between the prediction data and training
input data of established model will be consistent again, how to achieve the prediction
of the data when the boundary range is the same.

In order to solve the above problems of conventional neural network modeling, the fol-
lowing relearning modeling strategy based on event-triggered mechanism is proposed.

3. Triggered Relearning Modeling Method
3.1. Modeling Strategy

The conventional neural network modeling strategy uses the input and output data
under the stationary working condition, iteratively optimized through the backpropagation
of error based on the gradient descent method [25,26]. The output weight is ultimately
determined in line with the regularization principle to form a predictive model. A diagram
of this conventional modeling strategy is depicted in Figure 2. When the prediction data
satisfies the constraints of the boundary range of its modeling training input data, it can
make accurate prediction with the data. However, when the range of the prediction data
exceeds the boundary range of the modeling training input data, the conventional neural
network will not be able to accurately learn the features of the data outside the range,
resulting in inaccurate data prediction. To solve the aforementioned problems, a neural
network modeling strategy based on triggered relearning is proposed, as shown in Figure 3.

Neural Network(NN)

input output

prediction value

Stochastic System

Figure 2. General modeling strategy.

Neural Network(NN)

input output

Prediction value

Boundary 
detection of 

data

Event- 
triggered 

mechanism

Stochastic System

Figure 3. Event-triggered modeling strategy.
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The process of triggered relearning modeling mainly solves the problems mentioned
earlier in Section 2, and the specific solutions are given as follows:

1 To address the issue of discrepancies of the boundary ranges between the prediction
data and the training input data of the current model, a method that combines
sliding window techniques with information entropy is employed. This approach is
mainly applied to detect and define the boundaries of the prediction data, resulting
in a reclassification of the input and output datasets accordingly.

2 As we mentioned earlier, to address that issue of decline for the model’s prediction
accuracy, a modeling strategy for event-triggered relearning is proposed. This
strategy is implemented to construct an event-triggered condition group, setting
reasonable thresholds. If the triggered conditions are met, the model will be re-
trained based on the datasets corresponding to the boundaries of the prediction
input data.

3 If the same boundary range of prediction data recurs, as the boundary range has
already been identified, segmented, and an associated prediction model established,
the process will simply involve switching directly to the relevant model based on the
current data’s boundary range for subsequent predictions.

3.2. Dataset Boundary Detection Algorithm Based on Sliding Window and Information Entropy

If the system operates under non-stationary conditions, it will cause some parameter
transition points. A jump dataset can be understood as a collection of data that is affected
by the system and has abrupt and drastic changes in the data flow. When a jump dataset
occurs, it usually leads to a change in the distribution of the data, causing bias and
discontinuities in the data. Therefore, when performing data-driven modeling, the jump
dataset needs to be identified and processed to ensure the accuracy and reliability of
the model.

Focused on the above challenges, this paper proposes a sliding window and in-
formation entropy method for detecting datasets that contain abrupt changes. Sliding
window [27,28] analysis can reveal hidden patterns and information in time series data,
providing a solid foundation for data analysis and modeling. Information entropy,
as defined by Shannon, is a metric for quantifying the randomness of a discrete random
variable. It is commonly used to measure the degree of signal variation and informa-
tion content, and can be applied for feature extraction and anomaly detection [29,30].
By incorporating these two techniques, our proposed method can effectively detect
abrupt changes in the dataset and provide a valuable tool for neural networks to trigger
relearning modeling processes.

The methodology can be succinctly described as follows: Initially, the sliding win-
dow moves as the data stream slides to keep the latest data processed. Within each
window, the kernel density estimation technique is applied to assess the probability
density distribution of the data. This allows for the acquisition of a probability density
distribution specific to each window. Subsequently, the information entropy for each
window is computed alongside the first-order differential of the entropy values. In this
process, we can observe that the entropy difference of the window containing the jump
points will show a significant change. By analyzing the entropy difference, we can deter-
mine the sliding window that contains the jump points. Ultimately, with the detection of
a window with jump points, statistical measures like mean and variance are employed
to pinpoint the exact location of these jump points by analyzing the change in the mean
and variance of the data.

Figure 4 presents the schematic diagram of the sliding window algorithm. The sliding
window frames the time series by specifying a fixed-length window and advances in the
specified direction with a fixed length and step size.

For an input variable, a set of sample data is obtained as follows:

u1 = {u1, u2, · · · , ul}. (7)
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sliding window

sliding window

Figure 4. Schematic diagram of sliding window algorithm.

The sliding window’s starting point is positioned at the initial point of the time series,
yielding a time series u1

i with a length of ω. This can be represented as follows:

u1
i = (u1, u2, · · · , uω). (8)

Then, sliding window is subsequently moved one position forward along the time
series, yielding a subsequent time series u2

i , illustrated as follows:

u2
i = (u2, u3, u4, · · · , uω+1). (9)

In general terms, the sliding window will position the starting point of the sliding
window at the q th point of the time series to obtain a time series uq

i whose length is ω,
which can be expressed as follows:

uq
i =

{
uq, uq+1, · · · , uq+ω−1

}
. (10)

Then, the distribution of data in each window can be calculated using the kernel
density estimation method [31,32]. The kernel density estimation method is a common
non-parametric estimation method. The process of kernel density estimation is to assign the
probability of each point to its subordinate interval, and the final density function should
be the sum of the density of all independent points. The kernel density estimation of the
overall density function at any point can be expressed as follows:

P(u) =
1

ωh

ω

∑
i=1

K(
ui − u

h
), (11)

where K(·) is kernel function, h represents window width, ui, i = 1, 2, · · · , ω and repre-
sents ω samples within each window. After obtaining the probability density function
from Equation (11), information entropy then can be calculated as follows:

Ei = −∑ P(ui) log2 P(ui), (12)

where Ei, i = 1, 2, · · · , g, represents entropy for each sliding window. By calculating the
information entropy for each sliding window, an entropy sequence E can be obtained
as follows:

E =
{

E1, E2, · · · , Eg
}

. (13)

The first-order differential calculation of the entropy sequence yields the difference
sequence Ed, which is given by

Edi
= Ei+1 − Ei, (14)

Ed =
{

Ed1 , Ed2 , · · · Edg−1

}
, (15)

where Edi
represents the change in entropy between adjacent windows. From the definition

of information entropy. It can be seen that the first-order difference value of the information
entropy of the sliding window containing the jump points is significantly higher than the
first-order difference value of the information entropy of the sliding window without the
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jump points. By comparing the results of the first-order difference in entropy, the sliding
window containing the jump points can be detected. Denote the window which contains
the jump point as follows:

uE =
{

uq+1, uq+2, · · · , uq+ω

}
, (16)

and for the data in the above window, we select the q + d th point of the time series as the
initial split point, where, d = 1, 2, · · ·ω, the corresponding value is uq+d, and the data in
the window is divided into two parts,

uE1 =
{

uq+1, uq+2, · · · , uq+d

}
, (17)

uE2 =
{

uq+d+1, uq+d+2, · · · , uω

}
, (18)

and the degree to which any data uq+r, r = 1, 2, · · · , ω within the window deviates from
the empirical estimate is expressed as follows:

er =
|uq+r − µi|

σt
, (19)

where µi and σi are the mean and standard of the two parts, respectively. To compute the
cumulative deviation of all points encompassed by the sliding window, the calculation can
be expressed as follows:

esum =
ω

∑
r=1

er. (20)

The optimal split point is determined by shifting the initial position until the esum
reaches its minimum value. Finally, the starting and ending positions of the jump dataset
are obtained, so that the boundary of the input data is detected and stored, and different
input and output data sets are divided.

In summary, the steps of the data detection algorithm based on sliding window and
information entropy can be summarized as follows:

Step 1: Use slide window to intercept the time series;
Step 2: Apply kernel density estimation method to esitimate the probability distribu-

tion for each window;
Step 3: Calculate the information entropy of the data in each window to find the

first-order difference;
Step 4: Evaluate the degree of deviation of the data in each window from the empirical

estimates, and obtain the window containing the jump dataset;
Step 5: Determine the start and end positions of the jump dataset;
Step 6: Obtain different boundary ranges in the statistics and divide the correspond-

ing datasets.
After the boundary range of the input data is detected, the next part will be the

construction of the event-triggered conditions for model relearning.

3.3. Neural Networks for Triggered Relearning

The concept of the event-triggered mechanism dates back to 1959, and the event-
triggered mechanism can be regarded as a non-isoperiodic triggered method of “execution
on demand”. The core idea is to determine whether to trigger the current operation by
defining a reasonable “event” generator and judging whether the “event” has occurred.
If the boundary range of the prediction dataset and the modeling training input data is
inconsistent, the established neural network will generate large errors, and then errors
are redefined to construct an event-triggered condition group as the basis for triggering
retraining. The flow of an event-triggered relearning modeling strategy is shown in Figure 5.
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Initial predictive 
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of prediction data
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New data

builds a new model and 

updates the initial model

Yes

No

Start

End

Figure 5. Flow chart of event-triggered relearning modeling.

The neural network established by Equation (5) satisfies the constraints of the bound-
ary range of its modeling training input data under stationary conditions. Therefore,
accurate predictions can be made on the data, and the predicted values of the neural
network are given by

ŷ(k) = f 1
NN(u(k))s.t.u(k) ∈ D1, (21)

where u(k) is the input data of the neural network, D1 is the boundary range of the
input data, and ŷ(k), y(k) are the prediction value and the real value, respectively. Mean
square error (MSE) and mean absolute error (MAE) can be used to represent the model
performance. Mean squared error (MSE) is defined as follows:

MSE =
1
N

N

∑
k=1

[y(k)− ŷ(k)]2, (22)

while mean absolute error (MAE) is defined as follows:

MAE =
1
N

N

∑
k=1

|y(k)− ŷ(k)|, (23)

where N is the number of output variables. The MSE and MAE serve as model evaluation
metrics, assisting in decision-making and model refinement to better align with real-world
application requirements. When the boundary range of the predicted data is D2 and
exceeds the boundary range D1 of the modeling training input data , the neural network
established within the boundary of D1 predicts the data of the boundary range of D2, which
can be expressed as follows:

ŷ(k) = f 1
NN(u(k))s.t.u(k) ∈ D2. (24)

The error between the true value and the prediction value, is given by

e = y(k)− ŷ(k), (25)
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and the established neural network model cannot accurately predict data that falls outside
the boundaries of the modeled training input.

When the system operates under a nonstationary condition, there is a jump dataset in
the prediction data, often involving a wider range of data points and having a significant
impact on the entire dataset or a specific group. If the original model continues to predict
the jump point, from the first jump point on, the subsequent predictions will produce
large errors. These errors can be much greater than the prediction errors of the data under
stationary conditions. This situation indicates a significant reduction in the predictive
performance of the model. Therefore, when the prediction error reaches a certain threshold,
the model needs to be relearned. Consequently, we define and employ both the current
error and the cumulative error as criteria to initiate the relearning process. To be specific,
the current error represents a measure of deviation or difference between the prediction
value at the jump point and the true value at a given point in time, while cumulative error
is a measure of the overall deviation of the prediction values and the true values from
the occurrence of the jump point and multiple subsequent jump points over a period of
time. When the jump data is at the time point k = kk, the current error is given by the
following description,

ecur = y(kk)− f 1
NN(u(kk)), (26)

where y(kk), f 1
NN(u(kk)) are true value and prediction value at the time point k = kk,

respectively. And, the cumulative error across L − kk + 1 to L groups of data following the
jump point is defined as:

ecum =
1

L − kk + 1

L

∑
k=kk

(y(k)− f 1
NN(u(k)))

2. (27)

Setting up the threshold eT1 and threshold eT2, the event-triggered condition group
then can be established as follows: {

ecur ≥ eT1

ecum ≥ eT2
, (28)

where threshold eT1 stands for the average of prediction errors for data within the boundary
range of its training input data, and threshold eT2 represents the MSE of prediction values
for data within the boundary range of its training input data.

Defining and calculating current and cumulative errors with set thresholds helps
pinpoint abnormal data points and their impact on the dataset. Once event-triggered con-
ditions are satisfied, the corresponding nonlinear mapping relationship f 2

NN is established
by retraining the dataset under the new boundary D2, which is given as follows:

Y(k) = f 2
NN(U(k))s.t.U(k) ∈ D2. (29)

When the boundary range of the prediction data aligns with that of the training input
data for the established model, the event-triggered conditions are not activated. In such
cases, the system can directly transition to the pre-established model corresponding to the
prediction data’s boundary range, bypassing the need for additional training and learning.
Finally, we can get a one-to-one correspondence between the boundary range of the input
data and the neural network model, and the corresponding representation can be expressed
as follows:

Y(k) =



f 1
NNU(k), U(k) ∈ D1

f 2
NNU(k), U(k) ∈ D2

...

f j
NNU(k), U(k) ∈ Dj

, (30)
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where D1, D2, · · · , Dj represent the different boundary ranges of the forecast data, respec-

tively. f 1
NN , f 2

NN , · · · , f j
NN , are different prediction models corresponding to the predicted

data of different boundaries, respectively. In comparison with the traditional BP neural
network, our proposed method can accurately predict data beyond the boundary of the
modeling training input data. Furthermore, compared with the traditional online random
weight network, the proposed method can more accurately predict data characterized by
large distribution differences while also reducing computational cost.

The proposed modeling strategy for BP neural network relearning based on event-
triggered mechanism is given by Algorithm 1.

Algorithm 1: The triggered relearning algorithm.

1 Initialize the network f 1
NN and boundary of input data D1 ;

2 According to Equations (22) and (23), calculate MSE and MAE, set eT1 and eT2 ;
3 for Di, i = 1 to j do
4 if Di+1 /∈ Di and satisfy conditions by Equation (28) then
5 retrain data corresponding to boundary Di+1 and obtain new network f i+1

NN
by Equation (29);

6 else
7 switch directly to established network f i

NN corresponding to Di by
Equation (30);

8 end
9 end

10 return result

4. Numerical Simulation

In order to verify the effectiveness of the proposed algorithm, the following numerical
simulation experiments are carried out. A system description, the Hammerstein model,
a synergistic combination of a nonlinear component followed by a linear one, is employed
to test the effectiveness of the proposed algorithm [33–35]. This model provides a more
precise simulation of specific systems and is widely adopted in real-world applications,
as demonstrated in Figure 6.

Nonlinear 

module   

(NL)

Linear 

module

(L)

U YU   

Figure 6. Hammerstein model.

U, and U, Y in Figure 6 are system inputs, intermediate variables, and outputs, re-
spectively. NL and L represent nonlinear modules and linear modules, respectively. The
Multi-Input Multi-Output (MIMO) Hammerstein system is more complex and able to
describe a variety of nonlinear systems with relative accuracy, such as system models
for hydraulic excavators, solid oxide fuel cells, and magnetorheological dampers. By in-
troducing a static nonlinear function at the input stage of the state–space model, we can
construct a MIMO Hammerstein model with Gaussian noise. This stochastic system can be
formulated as follows:

U(k) = f [U(k)], (31)

X(k + 1) = AX(k) + BU(k) + W(k), (32)

Y(k) = CX(k), (33)
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where U(k) ∈ Rm, X(k) ∈ Rp , Y(k) ∈ Rn are the input, the state vector, the output of the
system at the discrete time k, sequentially. Matrices A, B, C are system matrix, input matrix,
output matrix, respectively. f (·) is the nonlinear change, U(k) ∈ Rm is the intermediate
variable after nonlinear change, and W(k) is Gaussian noise. The input is processed by a
nonlinear module which is expressed as follows:

U(k) = f [U(k)] = [u1(k), u2(k), · · · , um(k)]
T . (34)

In this paper, the nonlinear part can be expressed by a polynomial as follows:

u1(k) = γ11u1(k) + γ12u2
1(k) + · · ·+ γ1mum

1 (k)

u2(k) = γ21u2(k) + γ22u2
2(k) + · · ·+ γ2mum

2 (k)
...

um(k) = γm1um(k) + γm2u2
m(k) + · · ·+ γmmum

m(k)

, (35)

where polynomial coefficients Θ for the nonlinear part can be defined as follows:

Θ =

 γ11 · · · γ1m
...

. . .
...

γm1 · · · γmm

. (36)

Thus the Hammerstein system, f j(·), j = 1, 2, · · · , represents a different nonlinear
transformation. The coefficients by different polynomials Θj are given as follows:

Θj =


γ

j
11 · · · γ

j
1m

...
. . .

...
γ

j
m1 · · · γ

j
mm

. (37)

When the parameter Θj in Equation (37) varies, it alters the nonlinear module, which
in turn changes the entire system. Simultaneously, the range of the system’s inputs also
shifts due to this change, leading to a corresponding variation in the output, which can be
demonstrated in Equation (38),

f j[U(k)] =



uj
1(k) = γ

j
11u1 + . . . + γ

j
1mum

1 ,

u1 ∈ [a1, b1]

uj
2(k) = γ

j
21u2 + . . . + γ

j
2mum

2 ,

u2 ∈ [a2, b2]

...

uj
m(k) = γ

j
m1um + . . . + γ

j
mmum

m,

um ∈ [am, bm]

, (38)

where ai, bi, i = 1, 2, · · · , m, represent the lower and upper bounds of the range of values
for each input variable, respectively.

4.1. Acquisition of Experimental Data

In this paper, matrices A, B and C in the Hammerstein model in Equation (32) are
given as follows:

A =

[
0.1 0
0 0.2

]
, C =

[
0.3 0
0.1 0.6

]
,
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B =

[
0.1 −0.1 0.2 0 −0.3
0.3 −0.2 0 0.1 0

]
.

Altering the coefficients of the polynomial in the nonlinear part results in correspond-
ing changes in the system. Given three different sets of polynomial coefficients, three differ-
ent nonlinear Hammerstein systems are obtained, with the following polynomial coefficients:

Θ1 =


0.309 0.192 0 0 0
0.289 0.442 0 0 0
0.533 0.617 0.272 0 0
0.705 0.421 0.127 0.098 0
1.732 0.896 0.141 0.057 0.604

,

Θ2 =


0.299 0.186 0 0 0
0.291 0.438 0 0 0
0.531 0.596 0.265 0 0
0.671 0.394 0.118 0.087 0
1.658 0.771 0.136 0.069 0.058

,

Θ3 =


0.409 0.208 0 0 0
0.311 0.507 0 0 0
0.533 0.617 0.272 0 0
0.801 0.439 0.206 0.011 0
1.859 0.901 0.157 0.068 0.077

.

W(k) in Equation (32) is Gaussian white noise sequence with variance of σ2
v = 0.01 and a

null mean.
A dataset I containing 1000 samples with 5 inputs and 2 outputs can be obtained

by processing each input component ui(k) in the nonlinear Hammerstein system with
Gaussian white noise corresponding to the parameter Θ1 , with null mean and a variance
of 1. Similarly, datasets II and III can be obtained by multiplying each input component
of the Hammerstein system with a constant k1 and k2 , respectively, with null mean and a
variance of 1. Dataset II and III also contain 1000 samples with five inputs and two outputs.
Repeating the above operation, dataset IV, dataset V, and dataset VI with five inputs and
two outputs, and the length of 1000 can be obtained, respectively. Among them, the input
data of dataset I and IV, II and V, III and VI have the same boundary range, respectively.

4.2. Triggered Relearning for Neural Network
4.2.1. Model Development

The above datasets I, II, III are combined into a dataset with a length of 3000, where
the input data contain three different boundary ranges. The boundary range of the in-
put component u1 is detected and divided, as shown in Figure 7. Figure 7’s first graph
shows entropy trends, highlighting significantly higher values for the fifth and tenth win-
dows containing jump points compared to others. The second graph depicts the sharp
changes in entropy’s first-order difference for windows with jump points. The third graph
uses Equations (19) and (20) to identify windows with jump points, and the fourth illus-
trates using a data detection algorithm to locate the start of the jump dataset using sliding
windows and information entropy.

Datasets I, II, and III have unique boundary ranges D1, D2, and D3. Model I predicts
within D1 effectively, but accuracy falters when dataset II’s boundary D2 extends beyond
D1. The neural network initiates relearning when boundaries shift, using prediction errors
to set event-triggered conditions. For boundary D2, Model II retrains using dataset II.
If dataset III’s boundary D3 exceeds D2, a similar retraining for Model III occurs using
dataset III. A total of 700 groups of data in each dataset are trained, and 300 groups of
data are predicted, where the prediction effect of the triggered relearning method on the
three pieces of data is shown in Figure 8. In Figure 8, the blue and red lines represent the
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prediction values of BP-triggered relearning and true values, respectively. We can see that
the prediction value is very close to the real value.
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Figure 7. Jump dataset detection of input data. The red circles in the first graph represent the entropy
of each window. The solid line in the second graph indicates the change in the first-order difference
value of entropy. The dotted line in the third graph implies sliding windows with jump points. The
green and purple circles in the fourth figure show the starting jump points in the data, respectively.
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Figure 8. Prediction effect diagram of triggering relearning.
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If the input data for Dataset IV matches the D1 boundary range of Dataset I, the system
defaults to Model I for direct prediction. Similarly, identical boundary ranges for new
input data with Dataset II or III trigger the use of Model II and III, respectively, for direct
predictions of Dataset V and VI. By using 300 sets of data in datasets I–VI to form a
dataset containing six input data with different boundary ranges, the prediction effect of
the triggered relearning method is shown in Figure 9. In Figure 9, the blue and red lines
represent the prediction values of BP-triggered relearning and true values, respectively. It
can be seen that the prediction value of the triggered relearning model is very close to the
true value, and the distribution of the error probability density curve is consistent with the
Gaussian distribution curve around the null mean.
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Figure 9. Estimation effect and error of triggered strategy.

4.2.2. The Effect of Model Estimation

Following the procedure introduced above, 300 sets of data are taken from data sets
I–V I to form an 1800 groups test dataset. We use the BP neural network for the triggered
relearning modeling method to predict the input and output datasets containing the jump
dataset. In order to show the superiority of the proposed method, the conventional BP
neural network and the online sequential random weight neural network (OS-RVFLNs)
modeling method also applied to the same system to compare. To ensure the validity of
the comparative experiment, the training data and test data are exactly the same, and are
all datasets containing the jump dataset. The modeling prediction results are shown
in Figure 10.

In Figure 10, the blue line, green line and black line represent the prediction val-
ues of BP neural networks for triggered relearning, conventional BP neural networks,
and OS-RVFLNs, respectively. For conventional neural networks, if the data structure
changes, timely adjustments will not be made, so the prediction errors will be very
large. Traditional online sequential random weight neural network has a certain degree
of difference in the prediction effect of different boundary data. Triggered relearning
effectively leverages new data to address the limitations of conventional online learning
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algorithms when confronted with substantial disparities in the distribution of new and
old data. By the timely updating of the model parameters, it enhances the accuracy
and generalizability of the model, aligning it more closely with the characteristics and
distribution of the new data. In addition, that which is no longer representative or
crucial can be filtered out, allowing the focus to be on data with high reliability and
significance. When the boundary range of the prediction data aligns with that of the
modeling training input data, the system can seamlessly switch to the corresponding
model for data prediction within that boundary, thereby reducing computational costs.
The MSE and MAE of the prediction results from different methods are presented in
Table 1. From Table 1, we can see that the MSE and MAE of the BP neural network
for triggered relearning are the smallest. This result demonstrates that the predictive
performance of this model outperforms several other methods, marking it as the most
effective in the comparison group. Furthermore, the number of float point operations
is much smaller than that of the online random weight method, indicating that the
calculation amount of this method is smaller.
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Figure 10. Estimation performance and error of different modeling methods.

Table 1. Evaluation of performance indicators for different models.

Model FLOPs
MSE MAE

Y1 Y2 Y1 Y2

BP 148,180 81.23 74.93 5.71 6.26
OS-RVFLNs 3,413,100 0.18 0.12 0.26 0.27
BP-trigger 1,326,180 0.09 0.05 0.19 0.18

To facilitate a clear and intuitive assessment of the strengths and weaknesses of these
methods, the error and their probability density function curves of several modeling
prediction models are generated, as shown in Figure 11, respectively. It can be seen that for
both outputs, the conventional BP neural network and OS-RVFLNs are wider and shorter,
indicating a worse prediction performance. Compared to the other two methods, the pdf
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of the prediction error generated by the proposed BP-triggered relearning method has
a much sharper and taller shape, indicating that the proposed method engaged a better
prediction job.

PDF for the estimation error of y1

BP-Trigger
BP-out
OS-RVFLNs

PDF for the estimation error of y2

Figure 11. Error probability density distribution curves of different models.

5. Conclusions

To address the challenge of decreased model accuracy in conventional neural net-
works caused by the boundary range inconsistency between prediction data and modeling
training input data, this paper has proposed a novel algorithm that involves detecting and
segmenting the boundary range of prediction data using a combined approach of sliding
window and information entropy. Through the combination of the event-triggered mecha-
nism and the data-driven neural network modeling method, the prediction errors of the
input data of different boundary ranges of the current model have been used to construct
an event-triggered condition group and set the corresponding threshold. If the prediction
error meets the triggered conditions, indicating a significant shift in system behavior, we
will retrain the model using datasets that reflect the new operational boundaries. If the
prediction data with the same boundary range appears again, it will directly switch to
the corresponding known model to predict. In this way, we can realize the one-to-one
correspondence between the boundary range of the prediction data and the neural network
model. The simulation experiment applies the nonlinear Hammerstein model with Gaus-
sian white noise to simulate the complex industrial stochastic processes. By comparing
with traditional online learning algorithms and conventional neural network modeling
methods, it has been concluded that the proposed method can better adapt to the changes
of the boundary range of prediction data caused by non-stationary working conditions of
complex systems. It has been proven that the proposed method can improve not only the
accuracy of prediction, but also the adaptability of the model. Furthermore, the demands
for the computing and storage resources of the algorithm have been alleviated, and the
scalability and efficiency of the algorithm have also been enhanced.
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