
Citation: Duan, H.; Yu, J.; Wei, L.

Measurement and Forecasting of

Systemic Risk: A Vine Copula

Grouped-CoES Approach.

Mathematics 2024, 12, 1233.

https://doi.org/10.3390/

math12081233

Academic Editors: Jing Yao, Xiang Hu

and Jingchao Li

Received: 6 March 2024

Revised: 16 April 2024

Accepted: 17 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Measurement and Forecasting of Systemic Risk: A Vine Copula
Grouped-CoES Approach
Huiting Duan, Jinghu Yu and Linxiao Wei *

College of Science, Wuhan University of Technology, Wuhan 430070, China; htduan@whut.edu.cn (H.D.);
jhyu@whut.edu.cn (J.Y.)
* Correspondence: lxwei@whut.edu.cn

Abstract: Measuring systemic risk plays an important role in financial risk management to control
systemic risk. By means of a vine copula grouped-CoES method, this paper aims to measure the
systemic risk of Chinese financial markets. The empirical study indicates that the banking industry
has a low risk and a strong ability to resist risks, but also contributes the most of the systemic risk. On
the other hand, insurance companies and securities have high ES but low ∆CoES, indicating their low
risk tolerance and small contribution to the systemic risk. Furthermore, this study employs a sliding
window in Monte Carlo simulation to forecast systemic risk. The findings of this paper suggest that
different types of financial industries should adopt different systemic risk measures.
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1. Introduction

A risk measure is to evaluate the risk of financial positions. Artzner [1] first introduced
the coherent risk measures by an axiomatic approach. Later, Föllmer and Schied [2] and
Frittelli and Rosazza Gianin [3] introduced a broader class of convex risk measures. Risk
measures have been extensively studied in the literature. For a comprehensive literature
overview, we refer to Föllmer and Schied [4]. At the same time, multivariate risk measures
were initiated by Burgert and Rüschendorf [5], see also Wei and Hu [6]. A multivariate risk
measure is to evaluate not only the risks of components of a portfolio separately, but also
the joint risk of the portfolio caused by the possible dependence of components. For a
comprehensive literature overview, we refer to Rüschendorf [7].

While univariate and multivariate risk measures are blooming, systemic risk measures
have been attracting more and more researchers’ attention. Chen et al. [8] first studied
systemic risk measures by an axiomatic approach. Kromer et al. [9] further studied systemic
risk measures on general measurable spaces. A systemic risk measure is to evaluate the
risk of a whole financial system which consists of finitely many financial institutions.
As a simple risk measure, value at risk (VaR) has been commonly adopted by financial
institutions to evaluate the risk of financial positions. However, VaR is not sensitive to
extreme events. By an extreme event, we mean an event that has a very small probability of
occurring but has a huge potential loss. To accurately measure the systemic risk, Adrian and
Brunnermeier [10] first proposed CoVaR (Conditional Value at Risk) based on VaR and also
initiated the concept of CoES. CoVaR measures the risk spillover effect from a single
institution to other financial institutions and the financial system in an extreme financial
situation. CoVaR has been widely used since it was proposed. Many researchers choose to
calculate CoVaR by quantile regression or the GARCH model. Using CoVaR and quantile
regression, Bai and Shi [11] studied the impact of the risk of each financial institution on
the systemic risk at different time periods, where the financial institution includes banks,
securities, trust, and insurance companies. Based on CoVaR, Zhu et al. [12] introduced
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state variables to simulate the time-varying risk, and studied the systemic risk of banking,
insurance and securities industries via quantile regression. By constructing a multivariate
GARCH model, Girardi and Ergün [13] estimated the systemic risk contribution of four
financial industry groups consisting of a large number of institutions. Zhang et al. [14]
measured the systemic risk using CoES and quantile regression. By constructing a CoES
model and using quantile regression, Cui [15] evaluated the impact of risk of each financial
institution on the financial system. Note, that either the GARCH model or the quantile
regression can only describe the linear risk spillover, and hence can not describe the
nonlinear risk spillover.

In order to describe the structure of dependence among financial institutions, copula
is widely used in the GARCH model. Copula proposed by Sklar [16] is an effective
tool to describe the dependence between financial assets. The Copula-CoES model can
enable a more comprehensive assessment of systemic risk and enhance the accuracy of
measuring systemic risk. However, the CoES is not used in dependency-based systemic
risk measures in the literature. Currently, studies on measuring systematic risk based
on copula still mainly focus on CoVaR. Yang et al. [17] employed the copula-CoVaR to
calculate risk spillover between corporate and bank sector bonds. Li [18] constructed
an ARFIMA-APARCH-GPD-SKST marginal distribution combined with a copula-CoES
model to measure the risk spillover effect of the index of Chinese pillar industries and
the CSI 300 index. Using an MSGARCH-Mixture copula model combined with CoVaR
and CoES models, Li et al. [19] measured the risk spillover between off-shore and on-
shore RMB interbank lending rates. In the above studies, the copula is limited to two
variables. On the other hand, in order to evaluate the systemic risk of the financial system,
multivariate copula are needed. Bedford and Cooke [20] introduced the so-called vine
copula to describe the possible dependence structure between financial institutions. By
constructing an R-vine-copula-CoVaR model, Lin et al. [21] measured the risk spillover
effects between the international crude oil market, the international gold market, the U.S.
stock market, the Chinese stock market and the foreign exchange market. Shahzad et al. [22]
implemented a C-vine copula-CoVaR model to analyze the downside and upside spillover
effects, systemic and tail dependence risks of the DJ World Islamic (DJWI) and DJ World
Islamic Financial (DJWIF) indices. Based on the GARCH-R vine copula-CoVaR model,
Zhang et al. [23] constructed the direct spillover matrix of systemic risk and further explored
the indirect spillover path through R-vine. Zhu et al. [24] utilized an R-vine copula-CoES
to measure the risk spillover effects among the carbon markets of Guangdong, Hubei,
and Shenzhen.

Although the traditional vine copula can better describe the dependence of variables,
the traditional vine copula does not reflect the mixed operation. That is, the traditional
one can only consider the whole financial market as a whole, and ignore the different
dependency structures for different financial industries. A copula-based grouped model
proposed by Zhou et al. [25] groups the basic risks. Based on this model, the aggregated
risk faced by a financial body under mixed operations can be measured. By dividing the
industries, the copula-based grouped model effectively reduces the dimensionality and
improves the accuracy of the dependency description. However, Zhou et al. [25] only
divided the risk factors into two categories, and each category has only two basic risks. In
reality, there are far more than the two categories of either financial industry or the number
of financial institutions within each industry. To address this issue, Chen and Hao [26]
proposed a vine copula-grouped model to describe the structure of interdependence within
the financial market and demonstrated the advantage of the vine copula-grouped model.
After that, based on the vine copula grouped model, Chen and Hao [27] constructed a
mean-CVaR model to study the optimal portfolio selection. In addition, Hao and Chen [28]
measured the systemic risk of financial markets by constructing a vine copula grouped-
CoVaR model.

This paper investigates systemic risk measured by CoES in the Chinese financial
market. To be precise, we combine the GJR-GARCH model and the vine copula grouped
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model. This combination enables us to describe the dependency structure among three
key industries: banking, securities and insurance. These three industries are of a high
degree of mixed operation. Specifically, while constructing the marginal distribution, we
account for volatility asymmetry and leverage effects by utilizing the GJR-GARCH(1,1)
model. This allows us to accurately characterize the distribution of the data and better
understand the underlying dynamics of the system. Moreover, this paper employs the
sliding window algorithm to estimate the parameters of the dependency model. Monte
Carlo simulation is performed to calculate the VaR and ES of each financial industry and
the whole financial system. Finally, CoES is used to measure the systemic risk. Our results
show that the GJR-Vine Copula grouped-CoES can enhance the accuracy of measuring
financial systemic risk.

2. Methodology

In this section, we introduce the models and methods used in this paper, including
the AR-GJR-GARCH model for constructing the marginal distribution and the distribution
obeyed by the standardized residuals to be selected, the vine copula grouped model for
describing the dependence structure, the definition of the risk measures VaR, ES and CoES,
and the rolling Monte Carlo method for calculating the risk measures.

2.1. Marginal Distribution Modeling

Since financial time series are usually characterized by conditional fat-tailed, non-
normality, skewed distribution, leverage effect, and volatility clustering, many studies have
employed AR-GARCH models to capture these features. However, in the GARCH model,
historical data affect future volatility in the form of squares, thus the effect of increase
or decrease on future volatility is the same. In 1993, Glosten et al. [29] showed that the
same degree of positive news and negative news have significantly different effects on
the volatility of financial assets, i.e., there is a leverage effect. We know that the negative
shocks can lead to an increase in leverage, and thus increases risk. Therefore, we choose
the GJR-GARCH model to capture the asymmetry of volatility.

It has been shown that during modeling the volatility of returns, using an excessively
high model order makes parameter estimation difficult, and does not provide significant
practical meaning. In the first-order model, since the current value indirectly contains
all the historical information in the past, it has high accuracy, and thus is also close to
the prediction results of higher-order models (Lamoureux and Lastrapes [30], Lin [21]).
Therefore, we use the AR(1)-GJR-GARCH(1,1) model to describe the marginal distributions.
After filtering the logarithmic returns by the AR(1)-GJR-GARCH(1,1) model, we select the
student distribution, the skewed student distribution, the generalized error distribution
(GED), and the skewed generalized error distribution (SGED) as the candidate distribu-
tions of the standard deviation. The AR(1)-GJR-GARCH(1,1) model can be represented
as follows:

rt = µ + crt−1 + εt, (1)

εt = σtZt, (2)

σ2
t = ω + αε2

t−1 + βσ2
t−1 + γε2

t−1 I(εt−1 < 0), (3)

where rt and rt−1 are the log returns at day t and day t − 1, respectively, µ is the conditional
mean of the log returns rt, εt is the residual, σ2

t is the conditional variance of εt, and Zt is the
standard Gaussian residual. I(εt−1 < 0) is the indicator function of the event of εt−1 < 0.
γ is an asymmetric parameter to measure the leverage effect. When γ > 0, it indicates
a negative leverage effect, while γ < 0 indicates a positive leverage effect. When γ = 0,
GJR degenerates to a GARCH model. Due to the significant non-normality of the financial
time series, we abandon the normal distribution. Instead, we use the four distributions
aforementioned to describe the distribution of the normalized residual series.
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2.2. Joint Distribution Modeling
2.2.1. R Vine Copula

In 2001, Bedford and Cooke [20] proposed a regular vine copula model to model the
dependency of assets through the graph theory. Vine copula uses pair copula as the base
module to construct multidimensional models, which can compensate for the deficiency of
traditional multivariate copula in portraying the flexibility of interdependence. Therefore,
vine copula is often used to describe the dependence among high-dimensional variables
and has significant superiority in portraying the risk contagion relationship among high-
dimensional assets. Compared to the C-vine and D-vine, the R-vine is constructed based on
the actual dependence of each edge, which makes the R-vine more flexible in describing the
dependence of assets. The vine copula function decomposes the traditional multivariate
copula function into a series of binary copula. The vine structure consists of nodes, edges
and trees. Each level of the tree consists of edges with two nodes, where the two nodes of
each edge can be described by the copula function. In fact, the different vine structures
are different decompositions of the multidimensional copula density function. For an
n-component R-vine model, there are n − 1 trees and n nodes. According to Bedford and
Cooke [20], an n-dimensional R-vine density function can be expressed as follows:

f (x1, x2, · · · , xn)

=
n

∏
k=1

fk(xk)
n−1

∏
k=1

∏
e∈Ek

cj(e),i(e)|D(e)

(
F
(

xj(e) | xD(e)

)
, F

(
xi(e) | xD(e)

))
, (4)

where Ek = {ek1, . . . , ekk} is the set of all edges of the k-th tree, j(e) and c(e) are the two
nodes connecting edge e, D(e) is the condition set, cj(e),c(e)|D(e) is the copula density function
corresponding to e, and F(· | ·) is the conditional distribution function.

2.2.2. Vine Copula Grouped Model

Accurately describing the dependence structure is a prerequisite for accurately measur-
ing systemic risk. Taking into account that the financial institutions may belong to different
industries, Chen and Hao [26] proposed a vine copula grouped model to describe the
dependence among financial assets. They first divided the financial institutions based on
their respective industries and then used the vine copula model to describe the dependence
structure among financial institutions belonging to the same industry and the dependence
structure between different industries, respectively. In this process, the asset return of one
industry can be obtained from the weighted sum of the asset returns of financial institutions
in the industry. Then, the asset returns of each industry are treated as the new variables.
Finally, the asset return of the whole financial system is obtained from the weighted sum
of these new variables. According to Chen and Hao [26], the structure of the vine copula
grouped model can be shown in Figure 1:

Figure 1. The structure of vine copula grouped model.
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where Xi1, · · · , Xini are the asset returns of the financial institutions and Fi1, · · · , Fini are
the marginal distribution functions corresponding to each financial institution in the i-th
industry group for 1 ⩽ i ⩽ N. Xi, i = 1, · · · , N is the asset return of the i-th industry group,
S = ∑N

i=1 ∑ni
k=1 wikXik is the asset return of the whole financial system, wik is the weight

of the k-th financial institution in the i-th industry. CXi , i = 1, · · · , N is the vine copula
within the i-th industry group, respectively, and CX is the vine copula between the whole
industry groups.

In most of the aforementioned literature, a vine copula affects the dependence among
all the financial institutions since all the financial institutions are considered as a whole.
However, from the viewpoint of practice, the dependence of the financial institutions
belonging to the same industry is not necessarily the same as the one of the financial insti-
tutions belonging to different industries. In 2016, Zhou et al. [25] divided the aggregated
risk faced by all the financial institutions into several groups according to the different
kinds of industries. Therefore, the vine copula grouped model can not only reduce the
dimensionality to make the structure clearer but also has more practical significance.

2.3. The Definitions of VaR, ES and CoES

Let (Ω, F , P) be a fixed probability space, and X be a random variable that represents
the loss of a financial institution. VaR (Value at risk) is an important risk measure, which
refers to the maximum expected loss within a certain confidence level over a certain period
of time. The definition of VaR at the confidence level 1 − c can be given as:

VaRc,t(X) = −in f {r ∈ R : P(X ⩽ r | Ωt−1) > c}, (5)

where Ωt−1 is the set of information at the moment t − 1.
VaR can be used widely in different markets to measure the risk of positions, and

provides a numerical value to quantify the potential loss. However, it does not satisfy the
subadditivity of the coherent risk measure proposed by Artzner et al. [1]. More seriously,
VaR only focuses on the extreme losses corresponding to the specified confidence level,
while it ignores the severity of losses beyond the VaR level. In 2002, Acerbi et al. [31]
proposed the expected shortfall (ES), which measures the average loss exceeding VaR
under a certain confidence level. More importantly, ES satisfies the subadditivity, thus it is a
coherent risk measure. In recent decades, the ES has replaced VaR as the measure metric to
determine the minimum capital requirements for the financial market by the Basel Accord.
ES is defined as:

ESc(X) = E[X | X < VaRc,t(X)] =
∫ VaRc,t(X)

−∞
x fX(x)dx, (6)

where fX(x) is the probability density function of the risk position X, and 1 − c is the
confidence level.

It is well known that once an individual institution is exposed to a crisis, systemic
risk may occur. Both VaR and ES are difficult to accurately measure systemic risk. In 2016,
Adrian and Brunnermeier [10] proposed CoVaR to measure the systemic risk, and proposed
the initial idea of CoES. While CoVaR only focuses on the single quantile of the loss random
variable, CoES pays more attention to tail average loss. Thus, CoES can be used as a risk
measure to take into account the maximum tail average loss. CoVaRj|i

c can be denoted by
the VaR of the j-th financial industry is conditional on some event C(Xi) of the i-th financial
industry. Its definition is given by

Pr
(

X j ⩽ CoVaRj|i
c | C

(
Xi

))
= c. (7)

The calculation formula for CoVaRj|i
c is:

CoVaRj|Xi⩽VaRi
c

c = VaRj
c | VaRi

c = α̂i
c + β̂i

c VaRi
c, (8)
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where α̂i
c and β̂i

c are quantile regression coefficients, and 1 − c is the confidence level of VaR.
As Adrian and Brunnermeier [10] illustrated, CoVaR can be adopted for the co-

expected shortfall (CoES). CoESj|i
c represents the expected shortfall of industry j (or system)

due to industry i being under an abnormal extreme risk. CoESj|i
c is defined by the expecta-

tion over the c-tail of the conditional probability distribution:

CoESj|i
c = E

[
X j | X j ⩽ CoVaRj|i

c ,C
(

Xi
)]

. (9)

The contribution of the i-th financial industry to the j-th financial industry is denoted
by ∆CoESj|i

c , where ∆CoESj|i
c represents the difference between the ES of the j-th financial

industry j (or system) under the condition of distress in industry i (c) and the ES of industry
j (or system) when industry i is in a normal state (c = 50%).

∆CoESj|i
c is the difference between the ES of industry j (or system) conditional on the

distress of industry i and the ES of industry j (or system) when industry i is in a normal
state (c = 50%). ∆CoESj|i

c is defined as

∆ CoESj|i
c = E

[
X j | X j ⩽ CoVaRj|i

c ,C
(

Xi
)]

− E
[

X j | X j ⩽ CoVaRj|i
50%

]
. (10)

2.4. Estimation Methods
2.4.1. CoES with Vine Copula Grouped Model

Monte Carlo simulation plays a significant role in the measurement of financial risk.
When calculating CoES, CoVaR is first computed through Equation (8), followed by utilizing
Equation (9) to calculate CoES. In this paper, the vine copula grouped model is used to
describe the dependency among financial institutions (or financial industries). Unlike the
traditional Monte Carlo simulation method which is based on the vine copula, in this paper,
we utilize a vine copula-grouped model. Therefore, during the Monte Carlo simulation it is
necessary to distinguish between intra-group copulas and inter-group copulas for multiple
simulations. The specific steps are as follows:

Step 1: The Monte Carlo method is employed to simulate random numbers within
the range (0,1) according to the n-dimensional vine copula. The probability integration
inverse transformation is applied to obtain the sequence of normalized residuals based on
the distribution followed by the normalized residuals of each marginal distribution. Then
the residuals of each series are obtained by Equation (2), and thus the return series of each
institution are obtained by Equation (1). Finally, the industry (or system) return rates are
obtained by the weighted sum of the simulated rates of return.

Step 2: Sort the obtained return rates of the industries in an increasing order. From
Equations (5) and (6), the VaR value of the industry (or system) is equal to the generated
random numbers m multiplied by the selected significance level. ES value of the industry
(or system) is equal to the average of the return rates smaller than the VaR.

Step 3: The CoVaR is calculated by quantile regression, and the CoES is calculated by
CoVaR according to Equation (9). To obtain more accurate and robust results, the above
steps can be repeated several times and then averaged.

2.4.2. Rolling of Monte Carlo Simulation Based on a Vine Copula Grouped Model

In this paper, we use the rolling of Monte Carlo simulation to simulate the marginal
distributions of the vine copula grouped model, and then calculate VaR, ES and CoES. In
simple terms, calculating the returns of the financial industries and the financial system
in the rolling Monte Carlo simulation is to repeat the above method multiple times. With
the rolling Monte Carlo method, we can obtain multiple sets of data, which is more
advantageous for analyzing systemic risk and observing changes in risk measures more
clearly. At the same time, the data obtained from frequent forecasting are more consistent
with the current state of the financial markets. The specific steps are as follows:
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Step 1: We divide the overall sample (t = 1, 2, 3, . . . , 1460) into an “estimation sample”
and “prediction sample” where the first 1300 samples are selected as “estimation sample”
and the last 160 samples are “prediction sample”. After constructing the marginal distri-
butions for the entire population, we utilize the data from t = 1, 2, 3, . . . , 1300 as the first
estimation sample to build a vine copula, and estimate the parameters using the probability
integral transformation (PIT) series.

Step 2: By the above Monte Carlo simulation based on the vine copula grouped model
with the simulated parameters, we obtain the value of VaR, ES, CoVaR and CoES.

Step 3: Keeping the length of the estimated sample interval, and shifting the estimated
sample interval backward by one day. That is, using data from t = 2, 3, 4, . . . , 1301 as the
second rolling estimation sample interval and repeating the Monte Carlo simulations again.
Thus, we can obtain the simulated return rates for the 1301st day and the risk measures.

Step 4: Repeat the above steps until the simulated return rate and risk measures for
the last day are obtained.

3. Data and Descriptive Statistics

We conduct an empirical study on the systemic risk of the Chinese financial industry
based on the multiple financial institutions belonging to different financial industries. To
ensure a certain level of representativeness of the selected financial institutions and to con-
sider data availability, we selected 20 financial institutions from the industry classification
of the China Securities Regulatory Commission in 2012, including 10 banking institutions,
7 securities institutions, and 3 insurance institutions (see Table 1). We obtain the daily
closing prices of the selected financial institutions from the CSMAR database, covering the
period from 13 October 2016 to 14 October 2022. After removing the unmatched data among
the daily closing prices of the 20 financial institutions, we obtain a total of 1460 observations.
To ensure the stationarity of the data, we used logarithmic returns as the variable. The
calculation formula for logarithmic returns is as follows:

Xi,t = ln Pi,t − ln Pi,t−1, (11)

where Pit is the daily closing price of stock i at time t.

Table 1. Financial institutions selected in each industry.

Industry Financial Institutions

Banking Industrial and Commercial Bank of China (601398), China Construction Bank (601939), Agricultural Bank of China
(601288), Bank of China (601988), Bank of Communications (601328), China Merchants Bank (600036), Industrial
Bank (601166), China Citic Bank (601998), China Minsheng Bank (600016), China Everbright Bank (601818)

Securities Citic Securities (600030), Huatai Securities (601688), Guotai Junan (601211), China Merchants Securities (600999),
Haitong Securities (600837), GF Securities (000776), Guosen Securities (002736)

Insurance China Life (601628), Ping An Insurance (601318), China Pacific Insurance Company (601601)

Notes: The numbers in ( ) is the stock code of each financial institution.

After applying the logarithm transformation to the samples, we obtain a total of 1460
sets of logarithmic returns. Due to space limitations, only the descriptive statistics of
industry returns are presented here. The data in Table 2 represent the descriptive statistical
characteristics of the logarithmic returns for each financial industry. Table 2 shows that the
skewness of all financial industry returns is non-zero, and the excess kurtosis is greater than
zero, indicating the presence of the typical “peak and fat-tailed” distribution. Specifically,
the mean of logarithmic returns for every industry is close to zero, and the standard
deviation of the banking industry is smaller than that of the securities and insurance
industries. Therefore, the banking industry is relatively more stable compared to the other
two industries, and this is consistent with the general perception of the Chinese financial
market. The securities industry has the highest maximum value and the lowest minimum
value among the three industries. This is because stock prices experience significant
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increases during bull markets, and decreases during bear markets, which leads to high
volatility. In contrast, the banking industry has the largest minimum extreme value and the
smallest maximum extreme value, as bank stocks exhibit stable fluctuations regardless of
whether the overall market is in a bull or bear market. Even in a bear market, the decline in
bank stocks is relatively smaller compared to the overall market, reflecting the stability of
bank stocks. Besides, the skewness of all three financial industries is greater than 0, which
means they all exhibit a right-skewed distribution. This suggests that positive returns are
more likely to be observed in the selected time period for all three financial industries.

Except for the descriptive statistics, Table 2 also shows the test statistics for the normal-
ity test, autocorrelation test, ARCH effect test and stationarity test. The daily logarithmic
returns for all financial industries significantly reject the assumption of normality. The
results of the L-BQ test indicate the autocorrelation in the three industries, with the banking
industry exhibiting the strongest autocorrelation. The ARCH-LM test results demonstrate
significant volatility clustering in all industries. Furthermore, to avoid spurious regression,
we conduct a stationarity test on the log returns of each industry. The results of the ADF test
are all significant, indicating that the data series are stationary, which ensures the stability
of the proposed model.

Table 2. Financial institutions selected in each industry.

Banking Securities Insurance

Mean −0.000088 −0.000222 0.000048
Std 0.010453 0.017625 0.018187
Max 0.081269 0.095291 0.092121
Min −0.064432 −0.105246 −0.087806
Kurtosis 5.743234 5.528226 2.325904
Skewness 0.336056 0.445978 0.281523
J-B 1170.4 *** 1584.6 *** 265.97 ***
Q (15) 42.877 *** 30.104 ** 27.483 **
LM (5) 65.612 *** 55.915 *** 55.669 ***
ADF −11.512 *** −10.998 *** −11.491 ***
*** Indicate significance at 1% level. ** Indicate significance at 5% level.

4. Empirical Results

In this section, we conduct an empirical analysis based on the aforementioned method-
ology. First, we estimate the marginal distribution of each financial institution (or industry)
with an AR(1)-GJR-GARCH(1,1) model and choose the distribution for the standardized
residuals of each institution’s (or industry’s) returns based on the maximum likelihood
estimation. Then, we divide the standardized residual series of the samples into estimation
and prediction samples. We perform a rolling Monte Carlo estimation of the model based
on the vine copula grouped model to calculate the values of the prediction interval for VaR,
ES, CoVaR, CoES and ∆CoES.

4.1. Constructing Marginal Model

First, focusing on the industry internally, descriptive statistics of financial institutions
within each industry indicate that the industry returns exhibit common characteristics of
financial data, including non-normality, autocorrelation and volatility clustering. Therefore,
after estimating the institutional returns using the AR(1)-GJR-GARCH(1,1) model, we fit
the standardized residuals with Student’s t distribution, skewed Student’s t distribution,
generalized error distribution and skewed generalized error distribution, respectively. Then,
we select the distribution with the maximum likelihood value based on the maximum
likelihood criterion. Due to the large number of institutions, only the distributions of
the standardized residuals are shown in Table 3. From Table 3, we can observe that
the standardized residuals of most financial institutions follow the skewed Student t-
distribution or the skewed generalized error distribution, while only the standardized
residuals of the logarithmic returns of Agricultural Bank of China follow the generalized
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error distribution. Therefore, we can conclude that, except for the Agricultural Bank of
China, the residual series of other financial institutions exhibit heavy tails and asymmetry.

Table 3. Distribution of standardized residuals by financial institution.

sstd ged sged

Banking 601398, 601939, 601328, 601166, 601998, 600016,
601818

601288 601988,
600036

Securities 600030, 601688, 601211, 600999, 600837, 000776,
002736

- -

Insurance 601628 - 601318,
601601

Notes: For simplicity, each financial institution is represented by its stock code.

After grouping the financial institutions within each industry, we obtain the logarith-
mic returns of each financial industry by weighting the logarithmic return of the financial
institutions within each industry. Based on the descriptive statistical characteristics of each
financial industry provided in the previous section, we can understand the heavy-tailed
and asymmetric characteristics of the financial industry returns. Then, after estimating the
industry returns using the AR(1)-GJR-GARCH(1,1) model, we fit the standardized residual
series with the four candidate distributions mentioned above, and the parameter estimation
results are shown in Table 4. According to the leverage parameter estimation results of the
GJR-GARCH, the leverage parameters for the banking industry and securities industry
are both less than 0, indicating that positive news has a greater impact on the banking and
securities industries compared to negative news. In terms of the magnitude of the coeffi-
cients, positive news has a greater impact on the banking industry than on the securities
industry. On the other hand, the leverage coefficient for the insurance industry is greater
than 0, suggesting that negative news has a greater impact on the insurance industry than
positive news. The last row in Table 4 displays the selected distribution for the standardized
residuals based on the maximum likelihood criterion. We can observe that the standardized
residuals of the banking and securities industries follow a skewed Student’s t distribution,
while the standardized residuals of the insurance industry follow a skewed generalized
error distribution. Overall, most parameters are significant with high likelihood function
estimates, indicating reasonable estimation of the marginal distributions.

Table 4. Parameter estimation results of the marginal distribution models.

Banking Securities Insurance

µ 0.0001 (0.0002) −0.0002 (0.0003) 0.0003 (0.0005)
c −0.0092 (0.0261) −0.0681 *** (0.0226) −0.0333 (0.0252)
ω 0.0000 *** (0.0000) 0.0000 (0.0000) 0.0000 ** (0.0000)
α 0.1144 *** (0.0203) 0.0555 *** (0.0144) 0.0589 *** (0.0138)
β 0.8359 *** (0.0182) 0.9423 *** (0.0134) 0.9160 *** (0.0000)
γ −0.0292 (0.0349) −0.0052 (0.0192) 0.0132 (0.6225)
skew 1.0887 *** (0.0378) 1.1035 *** (0.0384) 1.1124 *** (0.0348)
shape 4.5762 *** (0.5386) 3.2217 *** (0.3045) 1.2184 *** (0.0593)
LL 4744.27 4049.919 3877.209
Zt sstd sstd sged
*** Indicate significance at 1% level. ** Indicate significance at 5% level.

4.2. Constructing Vine Copula Grouped Model

After modeling the marginal distribution of each return series with the AR(1)-GJR-
GARCH(1,1) model, we obtain the standardized residual sequences. Then, we estimate the
skewness parameters and degrees of freedom parameters for each standardized residual
sequence according to the corresponding candidate distribution. We perform probability
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integral transforms based on the obtained parameters. The transformed sequences followed
a uniform distribution on (0,1), which serve as the input variables for the vine copula
grouped model. We construct intra-group vine copula with PIT (Probability Integral
Transform) sequences of financial institutions with t = 1, 2, 3, . . . , 1300 within each industry
separately. Thus, we built inter-group vine copulas using the PIT sequences of each financial
industry. Consequently, the vine copula grouped model is obtained for the first rolling
estimation. By keeping the estimation interval fixed and shifting it one day backward at
a time, we obtain the vine copula combination grouped for the second rolling estimation.
Repeat the above steps until the last day. We can obtain all the vine copula grouped models.
It is worth noting that only the vine structure of the first rolling estimation is shown here,
and the vine copula among financial industries may not follow the same structure in
subsequent vine copula estimations.

In constructing the vine copula, we choose the flexible R-vine copula to describe the
dependency structure among the returns of financial institutions within groups and the de-
pendency structure across financial industries. From Figure 2, we observe the inter-industry
dependency structure generated by the first rolling estimate, where this three-dimensional
R-vine comprises two trees. T1 has two edges (C12, C13), and the two edges represent the
dependence between the banking and securities industries and the dependence between
the banking and insurance industries, respectively. T2 has one edge (C23|1), representing
the conditional dependence relationship between the securities industry and the insurance
industry conditioned on the banking industry.

Figure 2. R-vine structure among industries.

In Table 5, we present the results of the inter-industry vine copula estimation from
the first rolling estimation. The parameters are estimated according to the AIC criterion
and the maximum likelihood estimation method. Based on the estimated parameters of
the inter-industry vine copula, in the first estimation interval, the dependence among the
three industries is dominated by the banking industry, and the dependence relationships
between industries are described by t copulas. This indicates that there is fat-tailedness
and symmetry in the dependence relationships among the industries. In addition, the one
between the banking and insurance industries is stronger than the one between the banking
and the securities industry. This suggests that the dependence relationship between the
banking industry and the insurance industry is stronger than the dependence relationship
between the banking industry and the securities industry.

Table 5. Estimation of vine copula among industries.

Tree Edge Copula Par Par2

T1 (1,2) t 0.57 7.49
(3,1) t 0.73 4.84

T2 (3,2;1) t 0.29 8.57

4.3. CoES Results

In this section, we first analyze the systemic risk among different financial industries
and then proceed to examine the risk spillover of each financial industry to the whole
financial system. We calculate the VaR and ES of each industry, as well as CoVaR, CoES
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and ∆CoES of the systemic risk measures at 97.5% confidence level and 99% confidence
level, respectively.

4.3.1. The CoES between Financial Industries

After constructing the dependency model, we use the Monte Carlo method to calculate
risk measures such as VaR, ES, CoES and ∆CoES. The results of the first rolling estimate of
the risk measures are presented in Table 6. Taking the banking industry as an example, to
calculate the risk values for the banking industry, we employ the aforementioned Monte
Carlo method to simulate 10,000 sets of 10-dimensional return rate sequences and calculate
the weighted sum. This yields 10,000 sets of industry returns. Then, we sort the industry
returns and calculate the VaR and ES according to the corresponding significance levels.
Similarly, VaR and ES values for other industries are calculated. Once the VaR of each
financial industry was calculated, we can use Equations (8) and (9) to calculate the systemic
risk between each pair of industries separately.

According to Table 6, we know that at the same significance level, the banking industry
has the lowest inherent risk, while the insurance industry has the highest inherent risk.
Specifically, the banking industry has the smallest VaR and ES, which implies that the
banking industry faces the least potential loss when the entire financial system experiences
negative shocks. This means that the banking industry is relatively more stable compared to
other sectors when facing adverse events. At the same significance level, the ES for all three
industries is greater than VaR. The reason is that VaR ignores extreme risks, potentially
leading to an underestimation of the actual risk. Additionally, the lower the significance
level, the larger the gap between VaR and ES. Comparing the ES and CoES of each industry,
we find that the risk of all industries is less than the systemic risk, indicating that the risk
exposure of each industry is greater than the systemic risk of the industry. Furthermore,
as the significance level decreases, the difference between the individual inherent risk and
systemic risk becomes larger. Therefore, systemic risk in the financial market should receive
more attention.

Table 6. VaR, ES, CoVaR, CoES, ∆CoES for industries.

Industry c VaR ES CoVaR CoES ∆ CoES

Banking 2.5% −0.0195 −0.0283
1% −0.0266 −0.0372

Banking to Securities 2.5% −0.0502 −0.0734 −0.0631
1% −0.0647 −0.0966 −0.0863

Banking to Insurance 2.5% −0.0438 −0.0562 −0.0428
1% −0.0607 −0.0750 −0.0617

Securities 2.5% −0.0294 −0.0439
1% −0.0407 −0.0590

Securities to Banking 2.5% −0.0255 −0.0367 −0.0297
1% −0.0360 −0.0511 −0.0441

Securities to Insurance 2.5% −0.0423 −0.0547 −0.0413
1% −0.0590 −0.0732 −0.0598

Insurance 2.5% −0.0362 −0.0475
1% −0.0461 −0.0584

Insurance to Banking 2.5% −0.0289 −0.0416 −0.0346
1% −0.0386 −0.0546 −0.0476

Insurance to Securities 2.5% −0.0477 −0.0698 −0.0595
1% −0.0680 −0.1022 −0.0919

Similarly, CoES exceeds CoVaR for all three industries. Additionally, as the significance
level decreases, the disparity between CoVaR and CoES widens. This suggests that CoVaR
may underestimate systemic risk, and such underestimation can lead to significant losses.
Therefore, in this paper, CoES is used as a measure of systemic risk. In addition to having
the lowest inherent risk, the banking industry has the highest systemic risk, indicated
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by the inverse relationship between CoES and ES. More specifically, we find that the risk
spillover effect from banking to securities is stronger than from insurance to securities.
Similarly, the risk spillover effect from banking to insurance is stronger than from securities
to insurance. Therefore, in the first estimation interval the banking industry plays a major
role in the financial industry linkages, which is consistent with the constructed vine copula
results. The CoES values of the banking industry to the other two industries are greater
than 0.05, and the ∆CoES values are greater than 0.04 at the significance level of 2.5%, which
is a significant contribution to inter-industry systemic risk. On the other hand, the risk
spillover measures from other industries to the banking industry are relatively smaller,
with CoES ranging from 0.03 to 0.05 at a significance level of 2.5%. Compared to the risk
spillover from the securities industry to the banking industry, the risk spillover from the
insurance industry to the banking industry is greater, which is consistent with the higher
dependency between the insurance and banking industries mentioned earlier.

4.3.2. The CoES between the Financial System and the Financial Industries

We perform Monte Carlo simulations to obtain the financial system returns. After
obtaining the simulated returns for the system, we rank the returns to calculate the VaR
and ES of the financial system. Then, using the VaR of each industry, the systemic risk
CoVaR and CoES of each financial industry are calculated by Equations (8) and (9).

In Table 7, we present the first rolling estimate of the financial industry’s risk spillover
to the financial system in terms of the CoES measure at significance levels of 2.5% and
1%. From Table 7, we can see that banking has the highest risk spillover effect on the
financial system, followed by insurance and finally securities. At the 2.5% significance level,
the banking industry’s risk contribution ∆CoES to the financial system exceeds 0.04, while
those of the insurance and securities industries are below 0.04. In addition, the insurance
industry’s risk contribution to the financial system is greater than the securities industry’s
risk contribution to the financial system. The findings align with the conclusions by
Zhang et al. [14] and Cui [15].

Table 7. CoVaR, CoES, ∆CoES for financial industries and financial system.

Industry to System c CoVaR CoES ∆CoES

Banking to System 2.5% −0.0423 −0.0554 −0.0442
1% −0.0531 −0.0699 −0.0588

Securities to System 2.5% −0.0318 −0.0405 −0.0303
1% −0.0461 −0.0566 −0.0464

Insurance to System 2.5% −0.0348 −0.0479 −0.0396
1% −0.0472 −0.0639 −0.0556

4.4. Dynamic CoES
4.4.1. The Dynamic CoES among Industries

In this section, we combine the vine copula grouped model and the rolling Monte Carlo
method to calculate the out-of-sample ES of the financial industries and the CoES between
industries over a period of 160 days, which can be displayed visually in Figures 3–5.

In a two-by-two comparison of ES and two-way CoES across industries, it can be
observed that the fluctuation trends of ES and CoES are consistent for each financial
industry. However, there are large differences in the magnitude of the fluctuations. In
terms of individual industry risk during the forecast period, the banking industry has the
lowest value of risk, while the securities and insurance industries have similar levels of
risk. From the perspective of the fluctuation of risk, the banking industry has the smallest
fluctuation in its own risk, followed by the securities industry, and the insurance industry
has the largest fluctuation in risk, which is in accordance with the order of the standard
deviation of the three industries’ logarithmic returns. Most of the time, the systemic risk of
all industries exceeds their individual risk values. In other words, the risk exposure of the
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financial system as a whole is greater than the financial industry’s own risk. This situation
can be attributed to the high interdependence within the financial system, especially
considering that the selected three financial industries are highly integrated within the
Chinese financial system.

Figure 3. The CoES between banking and securities.

Figure 4. The CoES between banking and insurance.

From the perspective of risk spillover between industries, the banking industry is
the least affected by other industries. Moreover, the risk spillover effects on the banking
industry are smaller than the risks faced by financially distressed industries, and the
magnitude of the fluctuation in the risk spillover effect on the banking industry is smaller
than that of the financially distressed industry. This indicates that the risk spillover effects
of other industries in financial distress do not affect the banking industry to a greater extent.
The reason for the above situation is that the size of banks occupies a dominant position in
the Chinese financial system. In general, the risk spillover effect of the insurance industry
to the securities industry is greater than the risk spillover effect of the securities industry to
the insurance industry.

This suggests that the risk spillover effects generated by financially distressed in-
dustries do not have a significant impact on the banking industry. We can observe that
the fluctuations in risk spillover effects from the banking industry to other industries are
highly similar to the fluctuations in their own risks. Therefore, once the banking industry
experiences a crisis, it can easily influence other industries. The underlying reason for this
phenomenon might be the banking industry’s overwhelming dominance in scale within the
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Chinese financial system. The difference in risk spillover volatility between the securities
industry and the insurance industry is relatively small. However, in general, the securities
industry has a greater risk spillover effect on the insurance industry.

Figure 5. The CoES between securities and insurance.

4.4.2. The Dynamic CoES between Industries and System

In Figure 6, we present the dynamic CoES of each financial industry to the financial
system throughout the forecast interval. Consistent with the low ES and high CoES
characteristics of the banking industry in the previous section, this indicates that the
banking industry demonstrates greater resilience to risk autonomously. However, once
the banking industry is in financial distress, it could generate a large risk spillover to the
whole financial system. We observe that the banking industry demonstrates the largest risk
spillover effect on the whole financial system in comparison to other financial industries.
This observation is likely related to the strong development and dominance of the banking
industry in the Chinese financial market. Furthermore, the risk spillover effects of the
three financial industries on the financial system have the same trend, while the banking
industry has the largest change in risk spillover effects on the financial system, followed
by the insurance industry and finally the securities industry. Despite exhibiting a high
level of their own risk and weaker resistance to risk, we observe that the securities industry
contributes less to the systemic risk of the whole financial system when it experiences a
crisis itself.

Figure 6. The CoES between industries and system.
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4.5. A Comparison between Dynamic CoVaR and Dynamic CoES

In this section, we compare out-of-sample dynamic CoVaR and dynamic CoES. The
specific arrangement involves comparing dynamic CoVaR and dynamic CoES across in-
dustries first, followed by comparing the impact of different industries on the financial
system’s dynamic CoVaR and dynamic CoES.

4.5.1. The CoVaR and CoES between Industries

In Figures 7–9, we present the comparison between the dynamic CoES and dynamic
CoVaR among financial industries at a significance level of 2.5%. It is evident from the
graphs that the measured values of CoES which account for the presence of extreme risks
are significantly higher than CoVaR.

In terms of the magnitude of changes in the indicators, CoES exhibits a larger vari-
ation compared to CoVaR. By comparing CoVaR and through the comparison of CoVaR
and CoES, it is evident that CoVaR has the flaw of underestimating risk spillover effects.
Underestimating these effects may lead to erroneous risk management decisions, whereby
risks are further amplified through inter-industry dependencies, ultimately causing the
entire financial system to fall into crisis and affecting the stability and development of the
country and society.

Specifically, the difference between CoVaR and CoES for the spillover effects from the
securities industry to the banking industry is relatively small, while the difference is slightly
larger for the spillover effects from the insurance industry to the banking industry. This
is because the insurance industry can experience extreme losses due to natural disasters,
which also have a significant impact on the banking industry. Additionally, for the banking
industry to be less affected by spillover risks, the magnitude of variation in CoES is
comparable to CoVaR, once again indicating the strong resilience of the banking industry
to extreme risk spillovers. Regarding spillover risks between the insurance and securities
industries, the magnitudes of CoVaR are similar, but there is a significant difference in the
magnitudes of CoES. The insurance industry’s CoES for spillover to the securities industry
is noticeably larger, primarily due to the insurance industry’s susceptibility to natural
disasters. CoVaR fails to account for this extreme risk spillover phenomenon, resulting in
comparable measurements and underestimation of spillover effects.

Figure 7. The CoVaR and CoES between banking and securities.
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Figure 8. The CoVaR and CoES between banking and insurance.

Figure 9. The CoVaR and CoES between securities and insurance.

4.5.2. The CoVaR and CoES between Industries and System

In Figure 10, this paper presents a comparison of CoVaR and CoES for risk spillover
effects of different financial industries on the financial system. The figure clearly shows
that the CoES values of different financial industries on the financial system are greater
than their CoVaR values. Overall, due to the presence of extreme losses, the fluctuations
in CoES measurements are slightly larger than those in CoVaR, but they are still relatively
robust and can be used to measure financial risk spillover effects.

In terms of the differences in indicator values, the banking industry exhibits the
greatest disparity between CoVaR and CoES values for risk spillover to the financial
system, followed by the insurance industry, and finally the securities industry. This is
because the banking industry plays a dominant role in the entire Chinese financial market,
and the extreme loss situation in the banking industry can have a significant impact on
overall financial risk. However, CoVaR overlooks these extreme losses, leading to an
underestimation of financial risk spillover effects. The insurance industry, due to its
business characteristics and its role in providing insurance to other financial industries to
share risks, leads to increased risk spillover to other industries. If the insurance industry
experiences extreme losses, it can affect the risk transfer to other industries to a certain
extent, thereby impacting the entire financial system and causing disruptions.

Overall, CoVaR underestimates risk spillover effects due to its neglect of extreme risks.
However, the existence of extreme risks can potentially plunge the entire financial system
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into crisis. Thus, underestimating financial risk spillover effects can affect the accuracy and
effectiveness of risk management decisions.

Figure 10. The CoVaR and CoES for financial industries on the financial system.

5. Conclusions

With the rapid development of the Chinese financial markets, there has been an
increasing level of dependency among financial industries within the financial system. In
this paper, using Monte Carlo simulation based on the dependency structure of the financial
system described by the vine copula grouped model, we calculate the VaR, ES, CoVaR and
CoES of the Chinese financial markets. We draw the following conclusions: First, judging
from the risks faced by the financial industry itself, the banking industry exhibits the lowest
level of risk while the securities industry and the insurance industry face nearly equal
levels of risk. However, most of the time, the insurance industry faces greater risk. Second,
the banking industry makes the greatest contribution to systemic risk, signifying the most
significant risk spillover effect on other financial industries and the whole financial system,
and thus makes itself the primary systemic risk driver. Third, the insurance industry’s
risk fluctuation is the largest of the three industries which is consistent with the insurance
industry having the largest standard deviation of log returns.
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