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Abstract: Due to the advantage that the non-convex penalty accurately characterizes the sparsity of
structural damage, various models based on non-convex penalties have been effectively utilized to
the field of structural damage identification. However, these models generally ignore the influence
of the uncertainty on the damage identification, which inevitably reduces the accuracy of damage
identification. To improve the damage identification accuracy, a probabilistic structural damage
identification method with a generic non-convex penalty is proposed, where the uncertainty corre-
sponding to each mode is quantified using the separate Gaussian distribution. The proposed model
is estimated via the iteratively reweighted least squares optimization algorithm according to the
maximum likelihood principle. The numerical and experimental results illustrate that the proposed
method improves the damage identification accuracy by 3.98% and 7.25% compared to the original
model, respectively.

Keywords: damage identification; model updating; non-convex function penalty; uncertainty; sparsity
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1. Introduction

Engineering structures are often affected by various factors in their service process,
such as natural loads and artificial loads, which may lead to structural damage. Long-time
structural damage may even lead to structural collapse, which leads to economic losses
and casualties [1,2]. In order to avoid all kinds of disasters caused by structural damage,
timely and effective structural damage identification is pretty necessary.

Currently, there are several widely utilized methods for damage identification, such
as image-based methods, vibration-based and so on [3]. Among these methods, vibration-
based methods have gained significant attention and extensive research due to their ability
to identify internal structural damage non-destructively [4]. In addition, they offer the
advantage of detecting and analyzing damage within a structure without causing any
physical destructive [5,6]. Within the realm of vibration-based methods, model updating
has emerged as a prominent method for structural damage identification. This method has
gained significant popularity due to its notable advantages, including its strong operability
and interpretability [7–9]. Researchers and practitioners have recognized the efficacy of
model updating in accurately and efficiently identifying structural damage while provid-
ing insights into the underlying mechanisms. The model updating method involves an
iterative process of adjusting the stiffness parameters in a finite element (FE) model to
minimize the differences between the predicted and measured vibration characteristics.
This iterative optimization enhances the accuracy of the FE model, enabling it to more
effectively represent the actual structural behavior. By continuously refining the model
through parameter adjustments, the model updating method improves the ability of the
FE model to capture and reflect the true performance of the structure [10]. Subsequently,
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the updated stiffness parameters are employed for the purpose of damage identification.
The sensitivity analysis plays a crucial role among model updating methods due to its
remarkable sensitivity towards slight alterations in parameters [11,12]. Unfortunately, since
the number of elements of structural modes is much larger than that of the observational
mode orders, the sensitivity analysis method is typically underdetermined.

In order to tackle the underdetermined problem, it is common practice to utilize
regularization models. In the damage identification field, it is expected that the locations
of damage, relative to the entire structure, will exhibit sparse characteristics [13,14]. The
sparse characteristic of the structural damage can provide valuable insights for damage
identification. To account for the sparsity of structural damages, the l0-norm regularization
model is commonly employed for damage identification. Due to the NP-hard nature of
solving the l0-norm regularization model, it is necessary to employ a convex relaxation
technique to transform it into an l1-norm regularization model. The l1-norm regularization
model has gained significant popularity and has been widely utilized in the field of struc-
tural damage identification [14–20], and it has proven to be an effective tool for accurately
detecting and quantifying structural damage in various applications and research studies.

Although the l1-norm regularization model is known for effectively capturing the
sparsity of structural damages, it has a tendency to impose a disproportionate penalty
on larger components of the damage parameter [21,22]. As a result, this can lead to an
increased estimation bias, which unavoidably reduces the accuracy of damage identifica-
tion. To address this issue of a disproportionate penalty, researchers have proposed various
non-convex penalties as approximations of the l0-norm to study the damage identification
problem. In detail, the iteratively reweighted l1 regularization (IRLR) algorithm in [23] was
proposed for damage identification, and this study showcases the advantage of the IRLR
algorithm compared to the standard l1 regularization method in the context of damage
identification. A fraction function regularization model was proposed in [24] to study the
problem of structural damage identification, and the compelling evidence from both numer-
ical and experimental results demonstrates the efficacy of the proposed model in enhancing
the accuracy of damage identification. In addition, Wang et al. utilize the lp (0 < p < 1)
regularization model to enhance the accuracy of identifying multiple slight damage [7].
An improved extended Kalman filter method based on lp (0 < p < 1) regularization was
proposed in [25], and the results illustrated that the damage identification accuracy of the
proposed method is higher than the other related methods.

Although various damage identification models based on non-convex penalties have
been effectively utilized in the field of structural damage identification, these models gener-
ally ignore the influence of the uncertainty on the damage identification, which inevitably
reduces the accuracy of damage identification. Motivated by this, a probabilistic structural
damage identification method with a generic non-convex penalty is proposed to further
improve the accuracy of structural damage identification. Specifically, we first employed
Gaussian distribution to quantify the uncertainty of the damage identification and the
non-convex penalties to effectively capture the sparse characteristic of structural damage.
Second, we utilized the iteratively reweighted least squares (IRLS) optimization algorithm
to estimate the the proposed method according to the maximum likelihood principle. In
addition, the convergence of the optimization algorithm was verified through numerical
studies. Finally, the results obtained from both numerical and experimental study validate
the exceptional effectiveness of the proposed model in the realm of damage identification.

2. Method
2.1. Sensitivity Analysis-Based Model Updating

The equation governing the free vibration behavior of a structure with N degrees of
freedom can be expressed as follows:(

−λj M + K
)
ϕj = 0, j = 1, · · · , N, (1)
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where M ∈ RN×N and K ∈ RN×N represent the mass and stiffness matrices of the structure,
respectively; λj ∈ R and ϕj ∈ RN are the jth order natural frequency and the mass-
normalized mode shape of the structure, respectively. When a structure is damaged,
the physical parameters (i.e., M and K) changed. The damage-induced modifications in
the physical parameters of the structure lead to corresponding variations in its modal
parameters (i.e., λj and ϕj). Hence, by identifying the variations in the eigenvalues and
eigenvectors, it is feasible to infer the presence of structural damages.

The stiffness matrix of an undamaged structure within the FM model can be expressed as

[K] =
n
∑

i=1
αi[Ki] (2)

where [K] denotes the structural global stiffness matrix, [Ki] denotes the ith substructure’s
stiffness matrix, αi denotes the substructure stiffness parameter, and n denotes the number
of substructure in the FE model.

When the structure is damaged, the stiffness matrix reduces to [K̃],

[K̃] =
n
∑

i=1
α̃i[Ki], (3)

where α̃i represents the substructure stiffness parameter of the damaged structure. Then, letting

pi =
α̃i−αi

αi
(4)

defines the ith substructure’s Stiffness Reduction Factor (SRF), where pi ∈ [−1, 0].
Most currently used methods for identifying structural damage rely on the assumption

that damage primarily manifests as a decrease in stiffness, while the mass of the structure
remains unchanged. Hence, pi = 0 indicates that the ith element is undamaged, and
pi = −1 indicates that the ith element is completely damaged. Based on this, SRF {P}
({P} = {p1, . . . , pn}) as a damage parameter can indicate the damage location and damage
severity of the structure.

Using the sensitivity analysis, we establish the linear relationship between the damage
parameter {P} and modal residual {R}:

[S]{P} = {R} (5)

where [S] is the sensitivity matrix of modal parameter with respect to damage parameters.
The modal residue {R} refers to differences between measured modal parameters and the
analytical ones. In detail, it includes the normalized differences in eigenvalues and the
differences in the mass-normalized mode shapes between two kinds of modal parameters.
The sensitivity matrix [S] =

[
S1

λ; · · · ; Sj
λ; · · · ; Sm

λ ; S1
ϕ; · · · ; Sj

ϕ; · · · ; Sm
ϕ

]
∈ R(Ns+1)m×n can

be calculated by the substructuring approach [26,27] or the global FE model [28] (m is
the observed mode orders), and it can be obtained from the partial derivation of each

natural frequency λj and mode shape ϕj to the stiffness parameter αi. In detail, Sj
λ(i) =

∂λj
∂pi

and Sj
ϕ =

∂ϕj
∂α =

[
∂ϕj
∂p1

∂ϕj
∂p2

· · · ∂ϕj
∂pn

]
(i = 1, · · · , n; j = 1, · · · , m), where λj is the jth order

eigenvalue calculated from the model; ϕj is the is the corresponding mass-normalized
mode shape.

2.2. l0 Regularization for Structural Damage Identification

Taking into account the sparsity of structural damage, Model (5) can be formulated
as follows:

min
{p}∈Rn

∥{P}∥0 s.t. ∥[S]{P} − {R}∥2
2 < ε (6)
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where ∥{P}∥0 denotes the l0-norm of the damage parameter {P}, and ε is a positive
number that is approximately equal to 0. min

{p}∈Rn
∥{P}∥0 controls the sparsity of {P}, and

∥[S]{P} − {R}∥2
2 < ε controls the accuracy of the damage parameter {P}.

In order to balance the sparsity and the accuracy of the damage parameter, Model (6)
is reformulated as the following l0-norm regularization model:

min∥[S]{P} − {R}∥+ β∥{P}∥0 (7)

where β adjusts the trade-off between the sparsity and the accuracy of the damage parame-
ter. However, the discrete nature of the l0-norm significantly increases the computational
complexity of Model (7).

2.3. Generic Non-Convex Penalty Regularization Model for Structural Damage Identification
2.3.1. The Proposed Model

The l0-norm, which is solely based on the count of nonzero elements, serves as an
optimal penalty for inducing sparsity. However, the l0 optimization problems is NP-hard
due to the discrete nature of the l0-norm. One commonly employed approach involves
approximating the discontinuous function with a suitable continuous function and utilizing
optimization algorithms for continuous functions (such as the steepest descent method)
to minimize the corresponding optimization problem. Generally, the l0-norm of a vector
{P} can be expressed by the Kronecker delta function (called herein the delta function for
brevity). Let

δ(pi) =

{
1 if pi = 0
0 if pi ̸= 0

(8)

denote the delta function, then the l0-norm of a vector {P} is equal to ∥{P}∥0 = ∑n
i=1 f (pi) =

∑n
i=1 [1 − δ(pi)], where f : R → R acts as a delta approximating (DA) function.

Replacing the l0-norm with the above DA function, the next step is to find the fea-
sible functions that minimizes ∑n

i=1 f (pi). In general, the convex relaxation and concave
relaxation functions are included for f (·).

Convex relaxation uniquely selects f (·) as the l1-norm. The l1-norm penalty is suc-
cessful in promoting the sparsity because it is singular at the origin. Nevertheless, the
l1-norm penalty tends to excessively penalize coefficients with larger magnitudes, poten-
tially making it less optimal in terms of estimation risk. In the application of damage
identification, the l1-norm penalty over-penalizes the large elements of SRF, which causes
nonzero elements in SRF appearing in the wrong location. However, the location of nonzero
elements in SRF is crucial for damage identification.

There are many choices of f (·) for non-concave relaxation, of which the lp-norm
(p ∈ (0, 1)) appears to be the most popular choice. The lp-norm has also been used in the
damage identification field. However, how to determine the optimal p in lp regularization
is still an open problem.

In fact, besides the lp regularization, the other concave DA functions are proposed as
the surrogate of the l0-norm to handle the sparse recovery problem. With this background,
we consider whether better approximations of the delta function lead to higher performance
in damage identification. In this paper, we consider two concave DA functions (that is the
Fractional function [29] and Gaussian function [30]) as shown in Table 1.

Table 1. The functions fδ(pi) and their supergradients.

Function Name Function fδ(pi) Supergradient f ′δ(pi)

Fractional function fδ(pi) =
|pi |

|pi | + δ
δ

(|pi | + δ)2

Gaussian function fδ(pi) = 1 − e−
x2

2δ2 |pi |
δ2 exp

(
− |pi |2

2δ2

)
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Excellent theoretical studies [29,30] have proven the attractive theoretical properties
of the Fractional function and Gaussian function, respectively. These two non-convex
penalties possess singularity at the origin, which plays a crucial role in promoting sparsity
in the damage parameter. It is straightforward to validate that fδ(pi) = 0 if pi = 0, and
lim
δ→0

fδ(pi) = 1 if pi ̸= 0. With δ → +0, fδ(pi) can approximate l0 well. By choosing a

small enough δ, the Fractional function and the Gaussian function can provide a good

approximation for the DA function. In addition, it is obviously that
n
∑

i=1
fδ(pi) only involves

a number of nonzero elements, which can effectively avoid the over-penalizing of the large
elements of SRF, and thus it is feasible for improving the damage identification performance.
Moreover, the curves of Fractional and Gaussian functions are monotonically increasing
on [0,+∞) and monotonically decreasing on (−∞, 0], and their supergradients exist on
(−∞, 0] and [0,+∞).

Putting this DA function in the damage identification model, we define the structural
damage identification model with a generic non-convex penalty as follows:

min
P̂

L({p}, β) = 1
2∥[S]{p} − {R}∥2

2 + β
n
∑

i=1
fδ(pi) (9)

where fδ(pi) is the non-convex functions listed in Table 1.
Considering the modeling errors and measurement noises, the uncertainties of each

eigenvalue and model shape in Equation (5) is individually evaluated as

ε j = Sj
λ{P} −

{
rj

λ

}
∼ N

(
0, τ−1

j

)
(10)

rj = Sj
λ{P} −

{
rj

ϕ

}
∼ N

(
0, γ−1

j I
)

(11)

where τj and γj (j = 1, · · · , m) are the variance parameters that reflect the corresponding
uncertainty levels.

According to Equations (10) and (11), the likelihood functions of the measured eigen-
value and mode shape are formulated as

p
(

rj
λ

∣∣P, τj

)
=
(

τj
2π

) 1
2 exp

{
− 1

2 τj

(
Sj

λ{P} −
{

rj
λ

})2
}

(12)

p
(

rj
ϕ

∣∣P, rj

)
=
( rj

2π

) Np
2 exp

{
− 1

2 γj

∥∥∥Sj
ϕ{P} −

{
rj

ϕ

}∥∥∥2

2

}
(13)

Assuming that the error of each model is independent with respect to each mode, the
likelihood function is obtained and shown as follows:

p(R|P, Σ ) =
m
∏
j=1

p
(

rj
λ

∣∣P, τj

)
p
(

rj
ϕ

∣∣P, rj

)
=

m
∏
j=1

(
τj
2π

) 1
2
( rj

2π

) Np
2 exp

{
− 1

2

(
m
∑

j=1

(
τj

(
Sj

λ{P} −
{

rj
λ

})2
+ γj

∥∥∥Sj
ϕ{P} −

{
rj

ϕ

}∥∥∥2

2

))} (14)

where Σ =
{

τ1, · · · τj, · · · τm, r1, · · · rj, · · · rm
}

. The log-likelihood function is

L(P, Σ) = ln p(R|P, Σ ) =
m
∑

i=1
ln p

(
rj

λ

∣∣P, τj

)
+ ln p

(
rj

ϕ

∣∣P, γj

)
=

m
∑

j=1

(
1
2 ln
(

τj
2π

)
+

Np
2 ln

( rj
2π

))
− 1

2

(
m
∑

j=1

(
τj

(
Sj

λ{P} −
{

rj
λ

})2
+ γj

∥∥∥Sj
ϕ{P} −

{
rj

ϕ

}∥∥∥2

2

)) (15)

As a result, the penalized log-likelihood function can be written as
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L̃(P, Σ, β) = ln p(R|P, Σ ) + β f (P) =
m
∑

i=1
ln p

(
rj

λ

∣∣P, τj

)
+ ln p

(
rj

ϕ

∣∣P, γj

)
+ β

n
∑

i=1
fδ(pi)

=
m
∑

j=1

(
1
2 ln
(

τj
2π

)
+

Np
2 ln

(
γj
2π

))
− 1

2

(
m
∑

j=1

(
τj

(
Sj

λ{P} −
{

rj
λ

})2
+ γj

∥∥∥Sj
ϕ{P} −

{
rj

ϕ

}∥∥∥2

2

))
+ β

n
∑

i=1
fδ(pi)

(16)

By computing the gradient ∂L̃(P, Σ, β)
/

∂τj and ∂L̃(P, Σ, β)
/

∂γj, and then letting them
be zero, we can receive the update of τj and γj as

τj =
1(

Sj
λ{P}−

{
rj

λ

})2 , γj =
Np∥∥∥Sj

ϕ{P}−
{

rj
ϕ

}∥∥∥2

2

(17)

Based on this, the probabilistic structural damage identification (PSDI) model with
generic non-convex penalty can be written as

min
{P}

m
∑

j=1

(
τj

(
Sj

λ{P} −
{

rj
λ

})2
+ γj

∥∥∥Sj
ϕ{P} −

{
rj

ϕ

}∥∥∥2

2

)
+ β

n
∑

i=1
fδ(pi) (18)

The workflow of the probability model is summarized as follows:

1. Initializing the variance parameter Σ.
2. At the ith iteration.

Update {P} using Equation (18);
Update the Σ using Equation (17);

3. Repeat step 2 until the following convergence criterion is met.

2.3.2. Iteratively Reweighted Least Squares Numerical Algorithm

Within this section, we introduce the IRLS optimization algorithm [31] for solving the
optimization problem (18). The gradient ∇{P}L({P}, β) of the damage parameter {P} is
given by the following equation:

∇{P}L({P}, β) = [S]T([S]{P} − {R}) + β{P} f {P} (19)

{P} f
∆
= diag

(
f ′(pi)√

p2
i +δ

)
(20)

where f ′(pi) denotes the derivative of f (pi). The formula provided above can be further
expressed as

∇{P}L({P}, β) = H f {P} − [S]T{P} (21)

H f = [S]T[S] + β{P} f (22)

It is worth mentioning that the derivative of |pi| is undefined at zeros. Some approxi-
mation tricks are adopted in practice, that is,

|pi| ≈
√

p2
i + c (23)

where c is a positive number that is approximately equal to 0. Equation (23) approaches to
|pi| when c → +0. With Equation (23), the derivative of |pi| can be approximated as

d|pi |
pi

≈ pi√
p2

i +δ
(24)

There are several methods to solve the optimization problem. In this paper, the IRLS
algorithm is applied, and the iteration formula is

{P}[k+1] = {P}[k] − hx H−1
f (H−1

f {P}[k] − [S]T{P})
= (1 − hx){P}[k] + hx H−1

f [S]T{P}
(25)
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where hx is the iterative step.
Considering that most components of the damage parameters are either 0 or close to

0, the iterative calculations in the corresponding variables primarily emphasize the key
components to reduce the complexity and improve the algorithm stability. In particular,
we delineate a specific setting using the following definition:

M =

{
t : |pt| ≥ α × max

i
|pi|
}

(26)

where α ∈ [0, 1] is a threshold parameter (α is set to 0.005 in this paper). Subsequently, [P]
and [S] are reduced to

{
PM} and [SM], respectively, and are denoted by{

PM} = {pi}, i ∈ M (27)

[SM] = [Si], i ∈ M (28)

where pi is the ith element of [P], and Si is the ith column of [S]. Thus, the iteration steps in
above algorithm is replaced as

H f = [SM]T[SM] + βdiag
(

f ′δ(pi)√
p2

i +c

)
(i ∈ M) (29)

{
{pM}[k+1] = (1 − hx){pM}[k] + hx H−1

f [SM]T{p}
{pM̄} = 0

(30)

where M̄ is the complement of M. In this numerical algorithm, the value of the variable δ
can be adjusted iteratively to approach the l0-norm as closely as possible. We summarize
the non-convex penalty-based damage identification algorithm in Algorithm 1.

Algorithm 1 Iterative algorithm for non-convex penalty-based damage identification
method
Input: [S], {R}, β, and ε0
Output: {P}
1. Initial: the initial solution {P0} = [S]T

(
[S][S]T

)−1{R}
2. Repeat

3. Update: M =

{
t : |pt| ≥ α × max

i
|pi|
}

.

4. Update:
{

pM} = {pi}, i ∈ M, [SM] = [si], i ∈ M.
5. Update matrix: H f = [SM]T[SM] + βdiag

(
f ′δ(pi)

)
(i ∈ M)

6. Update:

{
{pM}[k+1] = (1 − hx){pM}[k] + hx H−1

f [SM]T{p}
{pM̄} = 0

7. Update δ: δ = δ × 0.5.

8. Until Convergence (
∥∥∥{p}(k+1) − {p}(k)

∥∥∥2

2
≤ ε0 or δ ≤ δmin)

Next, we briefly discuss the computational complexity of the presented IRLS algorithm.
In initial step, the ([S][S]T)−1 leads to O

(
((Ns + 1)m)2n + ((Ns + 1)m)3

)
costs, and the

computational complexity of [S]T
(
[S][S]T

)−1{R} is O
(
(Ns + 1)mn2 + (Ns + 1)mn

)
. Thus,

the computational complexity of initial step is O
(
((Ns + 1)m)2n + ((Ns + 1)m)3

)
. In the

iterative process, the computational complexity of H f is O
(
(Ns + 1)mn2). For

{
PM},

H−1
f [S]T{P} leads to O

(
(Ns + 1)mn2 + (Ns + 1)n

)
costs. Thus, the computational com-

plexity of
{

PM} is O
(
(Ns + 1)mn2 + (Ns + 1)n

)
. If the algorithm stops after q iterations,

the total computational cost is O
(
q
(
(Ns + 1)mn2 + (Ns + 1)n

))
. Consequently, the compu-

tational complexity of the presented IRLS algorithm is O
(
q
(
(Ns + 1)mn2 + (Ns + 1)n

))
.
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3. Numerical Study
3.1. Model Description

A six-bay truss structure are conducted to validate the effectiveness of the proposed
PSDI method. The numerical study focuses on analyzing a simply supported planar truss
structure consisting of 31 elements and characterized by 25 degrees of freedom. The truss
structure is depicted in Figure 1. Each bar in the truss structure has a cross-sectional area
of 0.05 × 0.05 m2, and the diagonal bar has a length of 2.12 m. The Young’s modulus and
mass density of the truss structure are 7 × 1010 N

/
m2 and 2.77 × 103 kg

/
m3, respectively.

Figure 1. Layout of the with-simple-supports truss structure.

3.2. Damage Scenarios

In this numerical study, two kinds of damage scenarios are introduced by reducing
the Young’s modulus of the elements, and the first six orders’ natural frequencies and the
first three orders’ mode shapes are employed for damage identification. In the numerical
study, the mode shapes are measured at seven specific locations, both in the undamaged
and damaged states. These locations include the horizontal displacement at the 2nd, 6th
and 10th pin joints, as well as the vertical displacement at 4th, 8th, 12th and 14th pin joints.
Table 2 presents the two damage scenarios for this simulation study, and these two damage
scenarios are represented as damage scenario 1 (DS1) and damage scenario 2 (DS2).

Table 2. The simulated damage scenarios for numerical study.

Damage Scenario No. of Damaged Element Damaged Intensity SRF

Damage scenario 1 (DS1) 4 16% SRF(4) = − 0.16

Damage scenario 2 (DS2) 4 16% SRF(4) = −0.16
14 18% SRF(14) = −0.18

In order to assess the accuracy of damage identification, the relative model error

defined as η =
∥θ̂−θ∥2

2
∥θ∥2

2
is employed in this paper, where θ represents the real SRFs, and

θ̂ represents the estimated SRFs. It is evident that a smaller value of η corresponds to a
higher level of accuracy in damage identification.

3.3. Results of Damage Identification

For the comparative study, the fraction function regularization model is considered
for structural damage identification [24]. The results obtained from this model are referred
to as the “Original model” in representing the results of the damage identification. A
comparison of the damage identification results of the Original model and proposed model
is shown in Figures 2–5, where PSDI-Fra and PSDI-Gau represent the results of damage
identification of the probabilistic structural damage identification model with the Fractional
function (PSDI-Fra) and the probabilistic structural damage identification model with the
Gaussian function (PSDI-Gau), respectively.

Figure 2 displays the results of damage identification of the Original method and the
proposed method for DS1. In the case of DS1, it is evident that three models successfully and
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accurately identify the damage in element 4, without any instances of false identification.
The accuracies of damage identification of the Original model, PSDI-Fra and PSDI-Gau are
6.13%, 1.66% and 3.49%, respectively.

Damage identification results for DS1

0 5 10 15 20 25 30

Element No.

-0.2

-0.15

-0.1

-0.05

0

0.05

S
R

F The reference Origin model

PSDI-Fra PSDI-Gau

Figure 2. Results of damage identification of the Original method and the proposed method for DS1
on the truss structure.

Figure 3 presents the convergence process of SRFs for damage identification by the
PSDI-Fra and PSDI-Gau models on DS1. Figure 3a displays the convergence process of
the IRLS algorithm for the PSDI-Fra model in one of the runs (the first time); it shows that
IRLS algorithm approaches a stable value after thirteen iterations. Figure 3b shows the
variation in p4 of the PSDI-Fra model during the entire runs. It obvious that p4 reaches
the final result after three runs of the IRLS algorithm. Figure 3c displays the convergence
process of the IRLS algorithm for the PSDI-Gau model in one of the runs (the first time); it
shows that the IRLS algorithm approaches a stable value after five iterations. Figure 3d
shows the variation in p4 of the PSDI- Gau model during the entire runs. It obvious that p4
reaches the final result after three runs of the IRLS algorithm. The above results indicate
the steady convergence and high efficiency of the proposed numerical algorithm.

0 5 10 15 20 25

Iteration No.
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-0.2

0
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(a)
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(b)
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Figure 3. Identification of stiffness reduction factors (SRFs) for DS1: (a) convergence of SRFs for the
PSDI-Fra model in the 1st run; (b) variation in p4 for the PSDI-Fra model during the entire runs;
(c) convergence of SRFs for the PSDI-Gau model in the 1st run; (d) variation in p4 for the PSDI-Gau
model during the entire runs.
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Figure 4 displays the results of damage identification of the Original method and the
proposed method for DS2. In the case of DS2, the identification of the damaged elements
is precise, but there is a clear contrast in the SRFs between the undamaged and damaged
elements. The accuracies of damage identification of the Original model, PSDI-Fra and
PSDI-Gau are 9.74%, 6.74% and 7.08%, respectively. This comparison verifies that the
proposed model is superior to the Original model in damage identification.

0 5 10 15 20 25 30

Element No.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

S
R

F
Damage identification results for DS2

The reference

Origin model

PSDI-Fra

PSDI-Gau
SRF(14)

SRF(4)

Figure 4. Results of damage identification of the Original method and the proposed method for DS2
on the truss structure.

Figure 5 presents the convergence process of SRFs for damage identification by the
PSDI-Fra and PSDI-Gau models on DS2. Figure 5a shows the convergence process of the
IRLS algorithm for the PSDI-Fra model in one of the runs (the first time). It shows that IRLS
algorithm approaches a stable value after 40 iterations. Figure 5b displays the variation in
p4 and p14 of the PSDI-Fra model during the entire runs. It obvious that p4 and p14 reach
the final results after three runs of the IRLS algorithm. Figure 5c displays the convergence
process of the IRLS algorithm for the PSDI-Gau model in one of the runs (the first time).
It shows that the IRLS algorithm approaches a stable value after 10 iterations. Figure 5d
shows the variation in p4 and p14 of the PSDI- Gau model during the entire runs. It obvious
that p4 and p14 reach the final results after three runs of the IRLS algorithm. These results
reveal the steady convergence and high efficiency of the proposed numerical algorithm.

Table 3 displays the accuracy of damage identification (i.e., η) in simulation studies. As
shown in Table 3, the average η of the Original mode is 7.15%, 3.65% and 2.70%, respectively.
The damage identification accuracy of PSDI-Fra and PSDI-Gau is improved by 3.50% and
4.45% compared to that of the Original model, respectively. The average improvement is
3.98%. In summary, the aforementioned result demonstrates the outstanding performance
of the proposed method in accurately identifying structural damage.

Table 3. The accuracy of damage identification (i.e., η) in simulation studies.

Damage Scenario Original Model PSDI-Fra PSDI-Gau

DS1 6.13% 1.66% 3.49%

DS2 9.74% 6.74% 7.08%

Average 7.15% 3.65% 2.70%
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Figure 5. Identification of stiffness reduction factors (SRFs) for DS2: (a) convergence of SRFs for the
PSDI-Fra model in the 1st run; (b) variation in p4 and p14 for the PSDI-Fra model during the entire
runs; (c) convergence of SRFs for the PSDI-Gau model in the 1st run; (d) variation in p4 and p14 for
the PSDI-Gau model during the entire runs.

3.4. Effect of Noise on Damage Identification Results

Earlier research has indicated that in practical ambient vibration tests, it is common for
natural frequencies and mode shapes to contain approximately 1% and 10% noise [32,33],
respectively. To investigate the influence of noise for damage identification, we introduce
two varying levels of noise, as specified in Table 4, into the frequencies and mode shapes.

Table 4. Noise levels for the frequency and mode shape in the numerical study.

Noise Level Natural Frequency Mode Shape

1 1% 10%

2 1.5% 15%

Specifically, the modal parameter was subject to noise contamination by

D̂ = (1 + σµ)D, (31)

where D̂ and D represent the noisy and the noise-free modal data, respectively, σ represents
the standard deviation ratio of noise, and µ follows the standard normal distribution.

A total of 100 reduplicative tests were conducted for each level of noise, and the results
are presented in Figures 6 and 7. The bars and short horizontal lines in the figures represent
the average values and standard deviations obtained from the 100 test runs, respectively.
Despite the occurrence of some minor false positives in Figures 6 and 7, the identified SRFs
clearly and accurately indicate the damaged elements under these two noise levels.
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Figure 6. SRF of the proposed models for DS1 with different levels of noise: (a) SRFs of the PSDI-Fra
model; (b) SRFs of the PSDI-Gau model.

(a)

0 5 10 15 20 25 30

Element No.

-0.3

-0.2

-0.1

0

S
R

F

Noise level 1

Noise level 2

(b)

5 10 15 20 25 30

Element No.

-0.2

-0.1

0

0.1

S
R

F
Noise level 1

Noise level 2

Figure 7. SRF of the proposed models for DS2 with different levels of noise: (a) SRFs of the PSDI-Fra
model; (b) SRFs of the PSDI-Gau model.

The accuracy of damage identification of simulation studies with different uncertainty
levels is presented in Table 5. Table 5 shows that the accuracies of damage identification
for PSDI-Fra and PSDI-Gau are 11.00% and 14.30%, respectively. These results indicate the
satisfactory robustness of the PSDI-Fra and PSDI-Gau models.

Table 5. The accuracy of damage identification (i.e., η) of the proposed models with different noise
levels in simulation studies.

Damage Scenario Noise Level PSDI-Fra PSDI-Gau

DS1 Noise level 1 7.19% 9.98%
Noise level 2 10.54% 13.34%

DS2 Noise level 1 9.65% 12.98%
Noise level 2 16.63% 20.91%

Average 11.00% 14.30%

4. Experimental Study
4.1. Experiment Description

To further validate the effectiveness of the proposed PSDI method, a laboratory-tested
fixed-end-beam structure, as depicted in Figure 8a, is employed in this section. The fixed-
end-beam structure used here is shown in Li et al. [34]. The length and the cross-section
of the fixed end beam are 1000 mm and 49 mm × 5.5 mm, respectively. The density and
Young’s modulus of the material are 7809 kg/m3 and 2.1 × 1011 N/m2, respectively.

Vibration testing and a modal analysis are performed on the beam. The hammering
method is employed for the vibration test. Eleven accelerometers, as shown in Figure 8b,
are equidistantly attached to the beam to measure the horizontal vibration of the beam.
The sensors are numbered as 1–11 from left to right, respectively. The center point between
sensor No. 5 and No. 6 is the hammering position. A dynamic signal amplifier, as shown
in Figure 8c, is utilized to amplify the vibration signals, and then a spectrum analyzer,
as shown in Figure 8d, is used to record the amplified acceleration signals. All the tests
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are conducted at a sampling frequency of 2560 Hz. After the vibration test, as shown in
Figure 8e, the uTekMa software (V3.1) (http://www.utekl.com/, accessed on 1 January
2008) is utilized for modal analysis.

Figure 8. The experimental fixed-end beam and the experimental equipment: (a) sketch of the
fixed-end beam; (b) photo of the fixed-end beam; (c) dynamic signal amplifier; (d) signal acquisition
instrument; (e) modal analysis system.

4.2. FE Modeling

As shown in Figure 9, the beam is modeled with 50 identical elements, each modeled
as an Euler–Bernoulli beam element with a length of 20 mm. Furthermore, the beam
elements are assigned numerical labels ranging from Element 1 to Element 50.

Figure 9. Sketch of the benchmark model.

The measured modal data in the intact structure is employed to calibrate the FE model
before damage identification. In this step, the l2 regularization is employed to constrain the
SRF. The updated FE model will be used for damage identification in the next section.

4.3. Damage Simulation

Three cuts are successively introduced into the fixed-end beam, and thereby, three
damaged cases are generated with the introduction of the three cuts. Table 6 displays the
damage locations, as well as the corresponding severity levels, for the three damage scenar-
ios. The cut at each location has the depth d = 8 mm and length b = 10 mm. Specifically,
Cut 1 is situated at Element 8, Cut 2 is situated at Element 23, and Cut 3 is situated at
Element 38.

http://www.utekl.com/
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Table 6. The simulated damage scenarios in an experimental study.

Damage Patterns Damage Scenario Damaged Elements and Their Damage Severity

Single damage Damage scenario 3 (DS3) Element 8: 16%

Multiple damage Damage scenario 4 (DS4) Element 8 and Element 23: 16%
Damage scenario 5 (DS5) Element 8, Element 23, and Element 38: 16%

4.4. Damage Identification Results

This investigation employed the first six orders’ natural frequencies and the corre-
sponding mode shapes. The modal parameter is based on the average of 10 modal tests.
A comparison of the damage identification results of the fraction function regularization
model (Origin model in brief) and the proposed PSDI method ( PSDI-Fra and PSDI-Gau
in brief) for DS3–DS5 is shown in Figures 10–12. In the case of DS3, it is evident that
three models successfully and accurately identify the damage in Element 8, without any
instances of false identification, and the accuracies of damage identification of the origin
model, PSDI-Fra and PSDI-Gau are 8.38%, 3.15% and 4.45%, respectively. In the case of
DS4, the accuracies of damage identification of the origin model, PSDI-Fra and PSDI-Gau
are 23.28%, 17.46% and 19.53%, respectively. In the case of DS5, the accuracies of damage
identification of the origin model, PSDI-Fra and PSDI-Gau are 30.53%, 15.53% and 22.23%,
respectively. Overall, the damage identification results are deemed satisfactory, despite the
occurrence of occasional minor false positives.
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Figure 10. Results of damage identification of the proposed method for DS3 on the experimental study.
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Figure 11. Results of damage identification of the proposed method for DS4 on the experimental study.
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Figure 12. Results of damage identification of the proposed method for DS5 on the experimental study.

The damage identification accuracies of the origin model, PSDI-Fra and PSDI-Gau
for DS3–DS5 are presented in Table 7. The average damage identification accuracy of
the origin model, PSDI-Fra and PSDI-Gau are 20.73%, 12.01% and 15.40%. The results
demonstrate that the proposed method achieves an average improvement of 7.25% in
damage identification accuracy compared to the original model. These results potently
indicate that the proposed PSDI method has more advantages than the origin fraction
function regularization method in damage identification.

Table 7. The accuracy of damage identification (i.e., η) in experimental study.

Damage Scenario Original Model PSDI-Fra PSDI-Gau

DS3 8.38% 3.15% 4.45%
DS4 23.28% 17.46% 19.53%
DS5 30.53% 15.43% 22.23%

Average 20.73% 12.01% 15.40%

5. Conclusions and Discussion

To further improve the damage identification accuracy, a probabilistic method with
a generic non-convex penalty has been proposed to investigate the problem of structural
damage identification. This method can be employed for damage identification, and the
Gaussian distribution can accurately quantify uncertainties of damage identification, and
the Non-convex function penalty is able to accurately characterize the sparsity of structural
damage. The proposed model is estimated via the iteratively reweighted least squares
optimization algorithm according to the maximum likelihood principle. The numerical
and experimental results demonstrate that the proposed method enhances the accuracy of
damage identification by 3.98% and 7.25%, respectively, compared to the original method.

Although the superiority of the proposed method has been illustrated, the application
of the proposed method to more complex structure systems still needs to be further explored.
In the following study, we will continue to work on improving the damage quantification
accuracy of the proposed model for complex structure systems.
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