
Citation: He, Y.; Yu, C.; Wang, H.

Local C0,1-Regularity for the Parabolic

p-Laplacian Equation on the Group

SU(3). Mathematics 2024, 12, 1288.

https://doi.org/10.3390/

math12091288

Academic Editors: Ahmadjan

Muhammadhaji and Maimaiti

Yimamu

Received: 2 April 2024

Revised: 20 April 2024

Accepted: 23 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Local C0,1-Regularity for the Parabolic p-Laplacian Equation on
the Group SU(3)
Yongming He 1, Chengwei Yu 1,2,* and Hongqing Wang 1

1 Department of Basic, China Fire and Rescue Institue, 4 Nanyan Road, Changping District,
Beijing 102202, China; heyongming@cfri.edu.cn (Y.H.); wanghongqing@cfri.edu.cn (H.W.)

2 School of Mathematical Sciences, Beihang University, Haidian District, Beijing 100191, China
* Correspondence: chengweiyu@buaa.edu.cn

Abstract: In this article, when 2 ≤ p ≤ 4, we establish the C0,1
loc -regularity of weak solutions to

the degenerate parabolic p-Laplacian equation ∂tu = −
6
∑

i=1
X∗

i (|∇Hu|p−2Xiu) on the group SU(3)

granted with horizontal vector fields X1, . . . , X6. Compared to the Heisenberg group, Hn, we obtained
the optimal range of p; that is, 2 ≤ p ≤ 4.
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1. Introduction

The study of the regularity for partial differential equations involving the p-Laplacian
operator has always been a hot topic. In the Euclidean space, the C0,1, C1,α, W2,2-regularities
and other second-order Sobolev regularities for the p-Laplacian equation have been proved
in [1–7]. In recent years, there has been significant progress in the study of the regu-
larity for the p-Laplacian equation in sub-Riemannian manifolds. Many scholars have
made outstanding contributions. In the Heisenberg group, Hn, Domokos-Manfredi [8,9],
Manfredi-Mingione [10], Migione et al. [11], Ricciotti [12], and Zhong-Mukherjee [13,14]
established the C0,1 and C1,α-regularities for the p-Laplacian equation in the full range
1 < p < ∞; Domokos [15] and Lie et al. [16] proved the W2,2-regularity for the p-Laplacian
equation in the range of 1 < p < 3 + 1

n−1 with n ≥ 2. In the group SU(3), the C0,1,
C1,α, and W2,2-regularities of the p-Laplacian equation were established by [17,18]. The
method in [13,14] is extended by Citti-Mukherjee [19] to include Hörmander vector fields
of step two, and the C0,1 and C1,α-regularities for the p-Laplacian equation have been
successfully established. The C1,α-regularity for inhomogeneous quasi-linear equations
on the Heisenberg group Hn were established by [20,21] when 2 − 1

2n+2 < p < ∞. New
ideas and perspectives behind the development of research on regularity include certain
hybrid-type Caccioppoli-type inequalities, as first proposed and introduced by Zhong [13].
In comparison, for the degenerate parabolic p-Laplacian equation, such inequalities are not
applicable due to the differences in homogeneity between the time and spatial derivatives.
Therefore, we need to find and create new methods and techniques to establish more
suitable Caccioppoli-type inequalities.

In this study paper, we propose a new method to construct a crucial Caccioppoli-type
inequality. Based on the inequality, when 2 ≤ p ≤ 4, we establish the C0,1-regularity
for the parabolic p-Laplacian equation on the group SU(3). To be specific, we focus on a
special type of unitary group composed of 3 × 3 complex matrices. We denote by SU(3) this
unitary group and endow it with horizontal vector fields X1, X2, . . . , X6. More exhaustive
geometries and properties of SU(3) are shown in Section 2. We select an open domain Ω in
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the group SU(3). For T > 0, we define a cylinder Q = Ω × (0, T), as first proposed in [22].
In Q, we consider the following equation:

∂tu = −
6

∑
i=1

X∗
i Ai(∇Hu) in Q = Ω × (0, T). (1)

Here, X∗
i is the formal adjoint of Xi; ∇H = (X1, X2, . . . , X6) is the horizontal gradient; the

vector function A := (A1, . . . ,A6) ∈ C2(R6,R6) meets the following condition: υ′|ζ|p−2|ϱ|2 ≤
6
∑

i,j=1
Ai,ζ j(ζ)ϱiϱj ≤ Υ′|ζ|p−2|ϱ|2,

|Ai(ζ)| ≤ Υ′|ζ|p−1.
(2)

for every ζ, ϱ ∈ R6, where Ai,ζ j(ζ) := ∂ζ jAi(ζ), p ∈ [2, ∞) and 0 < υ′ ≤ Υ′ < ∞. If, for
every function ψ ∈ C∞

0 (Q), the equation

∫ T

0

∫
Ω

∂tuψdxdt = −
∫ T

0

∫
Ω

6

∑
i=1

Ai(∇Hu)Xiψdxdt (3)

holds true, then we name the function u ∈ Lp((0, T), W1,p
H, loc (Ω)) as a weak solution to

Equation (1). Here, W1,p
H, loc (Ω) is the first-order p-th integrable horizontal local Sobolev

space, which is composed of total functions f ∈ Lp
loc (Ω), whose distributional horizontal

gradients are ∇H f ∈ Lp
loc (Ω). In the classic case, A(ξ) = |ξ|p−2ξ, Equation (1) becomes

the parabolic p-Laplacian equation:

∂tu = −
6

∑
i=1

X∗
i (|∇Hu|p−2Xiu).

The study of the parabolic p-Laplacian equation originated from DiBenedetto-Friedman [22].
They established the C1,α-regularity of the weak solution in the Euclidean space;
Wiegner [23] also proved the same result. For more exhaustive results on the parabolic
p-Laplacian equation and more general cases in the Euclidean space, we refer to the
book by DiBenedetto [24]. For the study of the parabolic p-Laplacian equation in the
sub-Riemannian manifold, Capogna et al. [25] established, when 2 ≤ p < ∞, the C∞-
regularity of the weak solution to the non-degenerate parabolic p-Laplacian equation in
the Heisenberg group Hn, as follows:

∂tu =
2n

∑
i=1

Xi((1 + |Xu|2)
p−2

2 Xiu).

Recently, for the degenerate parabolic p-Laplacian equation in the Heisenberg group, Hn,
when 2 ≤ p ≤ 4, Capogna et al. [26] established the C0,1-regularity of the weak solution.

In this study paper, we focus on the C0,1-regularity of the weak solution u to (3) on
SU(3). As a consequence, when 2 ≤ p ≤ 4, we establish the C0,1

loc -regularity of u; that is,
∇Hu ∈ L∞

loc . See Theorem 1 below for details.

Theorem 1. Suppose u ∈ Lp((0, T), W1,p
H, loc (Ω)) is a weak solution to (1), satisfying condition

(2), in Q = Ω × (0, T). Then, ∇Hu ∈ L∞
loc (Q) for 2 ≤ p ≤ 4. Moreover, when 2 ≤ p ≤ 4, for

every Qµ,2r ⊂ Qµ,2r0 ⊂ Q, we have the following:

sup
Qµ,r

|∇Hu| ≤ Cµ
1
2 max

((
1

µrN+2

∫ ∫
Qµ,2r

(1 + |∇Hu|2)
p
2 dxdt

) 1
2

, µ
p

2(2−p)

)
, (4)
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where C = C(p, υ, Υ, r0) > 0, Qµ,r := B(x0, r)× (t0 − µr2, t0) and N = 10 is the homogeneous
dimension of SU(3).

Consequently, when 2 ≤ p ≤ 4, the weak solution to the parabolic p-Laplacian equation on
SU(3) has the C0,1-regularity and satisfies (4).

To prove Theorem 1, it requires us to contemplate the following regularized equation:

∂tuσ =
6

∑
i=1

XiAσ(∇Huσ) in Q; uσ = u on ∂pQ, (5)

where u is a weak solution to (1), and ∂pQ = Ω × {t = 0} ∪ ∂Ω × (0, T) is the parabolic
boundary of the cylinder Q, with the following condition: υ(σ + |ζ|2)

p−2
2 |ϱ|2 ≤

6
∑

i,j=1
Aσ

i,ζ j
(ζ)ϱiϱj ≤ Υ(σ + |ζ|2)

p−2
2 |ϱ|2,

|Aσ
i (ζ)| ≤ Υ(σ + |ζ|2)

p−1
2 .

(6)

for every ζ, ϱ ∈ R6, where σ ∈ (0, 1], Aσ
i,ζ j

(ζ) := ∂ζ jA
σ
i (ζ), p ∈ [2, ∞) and 0 < υ ≤ Υ < ∞.

Here, from [17], since {Xi}1≤i≤6 are the left-invariant vector fields, we have X∗
i = −Xi.

Simultaneously, we also need to consider the Riemannian approximation equation (see
Section 2 for details):

∂tuϵ =
8

∑
i=1

Xϵ
i A

σ,ϵ
i (∇ϵuϵ) in Q; uϵ = uσ on ∂pQ, (7)

where uσ is a weak solution to (5), with the following condition: υ(σ + |ζ|2)
p−2

2 |ϱ|2 ≤
8
∑

i,j=1
Aσ,ϵ

i,ζ j
(ζ)ϱiϱj ≤ Υ(σ + |ζ|2)

p−2
2 |ϱ|2,

|Aσ,ϵ
i (ζ)| ≤ Υ(σ + |ζ|2)

p−1
2 .

(8)

for every ζ, ϱ ∈ R8, where Aσ,ϵ
i,ζ j

(ζ) := ∂ζ jA
σ,ϵ
i (ζ), p ∈ [2, ∞) and 0 < υ ≤ Υ < ∞. Above,

υ, Υ depend only on υ′, Υ′. Let uϵ be a weak solution to (7). When 2 ≤ p < ∞, we write

Aσ(ζ) = A(ζ) + υσ
p−2

2 ζ and Aσ,ϵ
i (ζ) = Ãi(ζH) + υ(σ + |ζ|2ϵ)

p−2
2 ζi; see ([26], Section 2) for

details. The Riemannian approximation technique has become a mature technique widely
used in studying equations; see [17,19,25,26] for the definition and more details of the
technique. It is proven in [25,26] that Aσ → A and uσ → u as σ → 0, and that Aσ,ϵ → Aσ

and uϵ → uσ as ϵ → 0; also see [13,14,17,19] for an example.
Hence, to obtain Theorem 1, we only need to prove that {uϵ}σ,ϵ∈(0,1] have the following

C0,1
loc -regularity uniformly in σ, ϵ ∈ (0, 1]. Finally, letting ϵ → 0, σ → 0, from the following

theorem, we can apply the standard method as [25,26] to derive Theorem 1.

Theorem 2. Assume that uϵ ∈ Lp((0, T), W1,p
H, loc (Ω)) is a weak solution to (7) with condition

(8), in Q = Ω × (0, T). If 2 ≤ p ≤ 4, then ∇ϵu ∈ L∞
loc (Q). Moreover, when 2 ≤ p ≤ 4, for any

Qµ,2r ⊂ Qµ,2r0 ⊂ Q, we have the following:

sup
Qµ,r

|∇ϵuϵ| ≤ Cµ
1
2 max

((
1

µrN+2

∫ ∫
Qµ,2r

(σ + |∇ϵuϵ|2)
p
2 dxdt

) 1
2

, µ
p

2(2−p)

)
, (9)

where C = C(p, υ, Υ, r0) > 0 and Qµ,r := Bϵ(x0, r)× (t0 − µr2, t0).

The proof of Theorem 2 relies on Moser’s iteration; see Section 4 for details. The key
point, by the approach in [25,26], is to establish a crucial Caccioppoli-type estimate for
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∇ϵuϵ involving ∇ϵ∇ϵuϵ (see Lemma 6). To obtain the crucial Caccioppoli-type estimate,
when 2 ≤ p ≤ 4, we establish two Caccioppoli-type inequalities for ∇ϵ∇ϵuϵ and ∇Ruϵ in
Lemmas 4 and 5, proven in Section 3. Applying Lemma 5 to re-estimate the integral terms
on the right hand of (26) in Lemma 4, we prove the crucial Caccioppoli-type estimate in
Section 3.

Consequently, we construct a crucial Caccioppoli-type inequality (38). Based on
the inequality we establish, when 2 ≤ p ≤ 4, the C0,1-regularity for the parabolic p-
Laplacian equation on the group SU(3). Compared to the Heisenberg group Hn, our new
result achieves the same range of p as [26]. Unfortunately, the C0,1-regularity for the
range p ∈ (1, 2) ∪ (4, ∞) cannot be achieved with our current technology because our
argument rests in a crucial way on Lemma 5 with the condition p ∈ [2, 4]. The difficulties
in the proof arise from handling and estimating integral terms involving ∇R∇ϵuϵ. In
the Heisenberg group Hn, there exists the property that [Xi, R] = 0; however, it does not
hold true on SU(3). For example, [X1, R7] = 4X2 (see Table 1). This means that we need
to handle more integral terms when estimating integral terms involving ∇R∇ϵuϵ. Our
approach can also be applied to more general sub-Riemannian manifolds. For instance,
it can be used with a special class of semi-simple Lie groups as proposed in [17], and
Hörmander vector fields of step two as discussed in [19], to establish the regularity for the
parabolic p-Laplacian equation. Technically speaking, our method can also be extended to
other types of partial differential equations, for example, the non-homogeneous equation

∂tu = −
6
∑

i=1
X∗

i Ai(∇Hu) + B(x, t, u,∇Hu). The establishment of the regularity for the

range of p ∈ (1, 2) ∪ (4, ∞) will be the focus and difficulty of our next work.

Table 1. Lie bracket on SU(3).

X1 X2 X3 X4 X5 X6 R7 R8

X1 0 −R7 X5 −X6 −X3 X4 4X2 2X2

X2 R7 0 X6 X5 −X4 −X3 −4X1 −2X1

X3 −X5 −X6 0 −R8 X1 X2 2X4 4X4

X4 X6 −X5 R8 0 X2 −X1 −2X3 −4X3

X5 X3 X4 −X1 −X2 0 R8 − R7 2X6 −2X6

X6 −X4 X3 −X2 X1 R7 − R8 0 −2X5 2X5

R7 −4X2 4X1 −2X4 2X3 −2X6 2X5 0 0

R8 −2X2 2X1 −4X4 4X3 2X6 −2X5 0 0

2. Preliminaries

The group SU(3) is a special type of unitary group composed of 3× 3 complex matrices;
that is,

SU(3) := {A ∈ GL(3,C) : A · A∗ = E, det A = 1},

where E is the identity matrix. The Lie algebra of SU(3) is defined by the following:

su(3) := {B ∈ gl(3,C) : B + B∗ = 0, trB = 0}

granted with the inner product ⟨B, C⟩ := − 1
2 tr(BC).

The two-dimensional maximal torus on the group SU(3) is provided by the following:

S :=


 eis1 0 0

0 eis2 0
0 0 eis3

 : s1, s2, s3 ∈ R, s1 + s2 + s3 = 0

,
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whose Lie algebra is as follows:

S :=


 is1 0 0

0 is2 0
0 0 is3

 : s1, s2, s3 ∈ R, s1 + s2 + s3 = 0


is selected as the Cartan subalgebra. The following Gell–Mann matrices form a set of the
orthogonal basis of su(3), namely the following:

X1 =

 0 1 0
−1 0 0
0 0 0

, X2 =

 0 i 0
i 0 0
0 0 0

, X3 =

 0 0 0
0 0 1
0 −1 0

,

X4 =

 0 0 0
0 0 −i
0 −i 0

, X5 =

 0 0 1
0 0 0
−1 0 0

, X6 =

 0 0 i
0 0 0
i 0 0

,

S1 =

 −i 0 0
0 i 0
0 0 0

, S2 =


− i√

3
0 0

0 − i√
3

0

0 0 2i√
3

.

The following two vector fields are generated from [X1, X2] and[X3, X4], respectively;
that is,

R7 = −[X1, X2] =

 −2i 0 0
0 2i 0
0 0 0

 and R8 = −[X3, X4] =

 0 0 0
0 2i 0
0 0 −2i

.

Since S1 = 1
2 R7 and S2 = 1

2
√

3
R7 − 1√

3
R8, the vertical vector fields R7, R8 form a set of

orthogonal basis of S . Hence, the vertical gradient is defined by ∇R := (R7, R8).
We recall the Riemannian approximation technique. Given ϵ ∈ (0, 1], we define the

Riemannian approximation to the vector fields X1, X2, . . . , X6, as

Xϵ
1 = X1, Xϵ

2 = X2, . . . , Xϵ
6 = X6, Xϵ

7 = ϵR7, Xϵ
8 = ϵR8.

From which, we denote ∇ϵ = (X1, . . . , X6, ϵR7, ϵR8) as the gradient,
The following table ([17], Table 2.1), shows the total Lie bracket for any two vector

fields belonging to {X1, . . . , X6, R7, R8}.
Table 1 shows that

[Xi, Xj] = υ
(k)
i,j Xk + θ

(l)
i,j Rl , [Xi, Rj] = ϑ

(k)
i,j Xk, [Ri, Rj] = 0, (10)

and that
[Xϵ

i , Xϵ
j ] = υ

(k)
i,j Xk + θ

(l)
i,j Rl , (11)

where υ
(k)
i,j , θ

(l)
i,j , ϑ

(k)
i,j ∈ R are constants determined entirely by Table 1. From Table 1, it is

not difficult for us to discover that the horizontal subspace H in SU(3) is generated by the
set of orthogonal bases {X1, X2, . . . , X6} satisfying the Hörmander condition. Hence, the
horizontal gradient is defined by ∇H = (X1, X2, . . . , X6). Here, the basis {X1, X2, . . . , X6}
is left-invariant due to the left-invariance of the Gell–Mann matrices. To summarize, the
basis {X1, X2, . . . , X6} generates the horizontal distribution of a sub-Riemannian manifold.



Mathematics 2024, 12, 1288 6 of 20

3. Several Caccioppoli-Type Inequalities and a Crucial Caccioppoli-Type Estimate

In this section, we establish the crucial Caccioppoli-type estimate for ∇ϵuϵ involving
∇ϵ∇ϵuϵ and some Caccioppoli-type inequalities, which are uniform in σ, ϵ ∈ (0, 1]. The
following two lemmas are prerequisites for the proofs of subsequent lemmas.

Lemma 1. Suppose uϵ is a weak solution to (7). Then, vϵ
l = Xϵ

l uϵ, with l = 1, . . . , 8, solves

∂tvϵ
l =

8

∑
i,j=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
l Xϵ

j uϵ) +
8

∑
i=1

[Xϵ
l , Xϵ

i ]A
σ,ϵ
i (∇ϵuϵ). (12)

Proof. From (7), by the Lie bracket, we have the following:

∂tvϵ
l = Xϵ

l ∂tuϵ =
8

∑
i=1

Xϵ
l (Xϵ

i A
σ,ϵ
i (∇ϵuϵ))

=
8

∑
i=1

Xϵ
i (Xϵ

l A
σ,ϵ
i (∇ϵuϵ)) +

8

∑
i=1

[Xϵ
l , Xϵ

i ]A
σ,ϵ
i (∇ϵuϵ)

=
8

∑
i=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
l Xϵ

j uϵ) +
8

∑
i,j=1

[Xϵ
l , Xϵ

i ]A
δ,ϵ
i (∇ϵuϵ)

Lemma 2. Suppose uϵ is a weak solution to (7). Then, Rluϵ, with l = 7, 8 solves the following:

∂tRluϵ =
8

∑
i,j=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j Rluϵ) +

8

∑
i,j=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)[Rl , Xϵ
j ]uϵ)

+
8

∑
i=1

[Rl , Xϵ
i ]A

σ,ϵ
i (∇ϵuϵ). (13)

Proof. Letting vϵ
l = ϵRluϵ in Lemma 1, we have the following:

∂tRluϵ =
8

∑
i,j=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)RlXϵ
j uϵ) +

8

∑
i=1

[Rl , Xϵ
i ]A

σ,ϵ
i (∇ϵuϵ).

From this, by RlXϵ
j = Xϵ

j Rl + [Rl , Xϵ
j ], we obtain (13).

3.1. Several Caccioppoli-Type Inequalities

The following lemma provides a Caccioppoli-type inequality for ∇Ruϵ involving
∇ϵ∇Ruϵ.

Lemma 3. Suppose uϵ is a weak solution to (7). Then, when p ∈ (1, ∞), for every γ ≥ 0 and
every ϱ ∈ C1([0, T], C∞

0 (Ω)), we have the following:∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵ∇Ruϵ|2ϱ4+γ|∇Ruϵ|γdxdt

≤ C
∫ t2

t1

∫
Ω
|∇ϵ∇Ruϵ|γ+2ϱ3+γ|∂tϱ|dxdt

+ C(γ + 1)2
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵϱ|2ϱ2+γ|∇Ruϵ|γ+2dxdt

+ C(γ + 1)2
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p
2 ϱ4+γ|∇Ruϵ|γdxdt, (14)

where C = C(υ, Υ) > 0.
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Proof. Applying ψ = ϱ2|∇Ruϵ|γRluϵ to test (13), we obtain the following:

Ll =
∫ t2

t1

∫
Ω

∂tRluϵϱ2|∇Ruϵ|γRluϵdxdt

=
∫ t2

t1

∫
Ω

8

∑
i,j=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j Rluϵ)ϱ

2|∇Ruϵ|γRluϵdxdt

+
∫ t2

t1

∫
Ω

8

∑
i,j=1

Xϵ
i (A

σ,ϵ
i,ξ j

(∇ϵuϵ)[Rl , Xϵ
j ]uϵ)ϱ

2|∇Ruϵ|γRluϵdxdt

+
∫ t2

t1

∫
Ω

8

∑
i=1

[Rl , Xϵ
i ]A

σ,ϵ
i (∇ϵuϵ)ϱ

2|∇Ruϵ|γRluϵdxdt = Sl
1 + Sl

2 + Sl
3. (15)

For Ll , integrating by parts, we have the following:

8

∑
l=7

Ll =
1

γ + 2

∫ t2

t1

∫
Ω

∂t(|∇Ruϵ|γ+2)ϱ2dxdt = − 2
γ + 2

∫ t2

t1

∫
Ω
|∇Ruϵ|γ+2ϱ∂tϱdxdt,

which yields

|
8

∑
l=7

Ll | ≤ 2
γ + 2

∫ t2

t1

∫
Ω
|∇Ruϵ|γ+2ϱ|∂tϱ|dxdt. (16)

For Sl
1, integrating by parts, we have the following:

8

∑
l=7

Sl
1 =−

8

∑
l=7

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j Rluϵ2ϱXϵ

i ϱ|∇Ruϵ|γRluϵdxdt

−
8

∑
l=7

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j Rluϵϱ2|∇Ruϵ|γXϵ

i Rluϵdxdt

− γ
∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j (|∇Ruϵ|2)ϱ2|∇Ruϵ|γ−2Xϵ

i (|∇Ruϵ|2)dxdt

=− S11 − S12 − S13. (17)

For Sl
2, integrating by parts, we have the following:

Sl
2 =−

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)[Rl , Xϵ
j ]uϵ2ϱXϵ

i ϱ|∇Ruϵ|γRluϵdxdt

−
∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)[Rl , Xϵ
j ]uϵϱ2|∇Ruϵ|γXϵ

i Rluϵdxdt

− γ
∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)[Rl , Xϵ
j ]uϵϱ2|∇Ruϵ|γ−2

8

∑
k=7

RkuϵXϵ
i Rkuϵdxdt

=− Sl
21 − Sl

22 − Sl
23. (18)
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For Sl
2, integrating by parts, we have the following:

Sl
3 =−

∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)2ϱ[Rl , Xϵ

i ]ϱ|∇Ruϵ|γRluϵdxdt

−
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2[Rl , Xϵ
i ]Rluϵdxdt

− γ
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2Rluϵ|∇Ruϵ|γ−2
8

∑
k=7

Rkuϵ[Rl , Xϵ
i ]Rkuϵdxdt

=− Sl
31 − Sl

32 − Sl
33. (19)

Combining (15) and (17)–(19), we obtain the following:

S12 + S13 = −
8

∑
l=7

Ll − S11 −
8

∑
l=7

3

∑
k=1

(Sl
2k + Sl

3k). (20)

Now, we use the condition inequality to estimate each term in (20) separately. Apply-
ing condition (8) to estimate S12, we obtain the following:

S12 ≥ υ
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵ∇Ruϵ|2ϱ2|∇Ruϵ|γdxdt. (21)

Applying condition (8) to estimate S13, we obtain the following:

S13 ≥ γυ

4

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵ(|∇Ruϵ|2)|2ϱ2|∇Ruϵ|γ−2dxdt ≥ 0. (22)

Applying condition (8) to estimate S13, we obtain the following:

|S11| ≤ 2Υ
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵ∇Ruϵ|ϱ|∇ϵϱ||∇Ruϵ|γ+1dxdt. (23)

Applying condition (8) to estimate Sl
21 and Sl

31, we obtain the following:

|
8

∑
l=7

Sl
21|+ |

8

∑
l=7

Sl
31| ≤ 4Υ

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1
2 ϱ|∇ϵϱ||∇Ruϵ|γ+1dxdt. (24)

Applying condition (8) to estimate Sl
22, Sl

32, Sl
23, and Sl

33, we obtain the following:

|
8

∑
l=7

Sl
22|+ |

8

∑
l=7

Sl
32|+ |

8

∑
l=7

Sl
23|+ |

8

∑
l=7

Sl
33|

≤ 4Υ(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1
2 ϱ2|∇Ruϵ|γ|∇ϵ∇Ruϵ|dxdt. (25)

Combining (16) and (20)–(25), by Young’s inequality, we obtain the following:∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵ∇Ruϵ|2ϱ2|∇Ruϵ|γdxdt

≤ C
γ + 2

∫ t2

t1

∫
Ω
|∇ϵ∇Ruϵ|γ+2ϱ|∂tϱ|dxdt

+ C
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇ϵϱ|2|∇Ruϵ|γ+2dxdt

+ C(γ + 1)2
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p
2 ϱ2|∇Ruϵ|γdxdt,
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where C = C(υ, Υ) > 0. Setting ϱ → ϱ2+γ/2 in the above inequality, we obtain (14).

The following lemma provides a Caccioppoli-type inequality for ∇ϵ∇ϵuϵ.

Lemma 4. Suppose uϵ is a weak solution to (7). Then, when p ∈ (1, ∞), for every γ ≥ 0 and
every ϱ ∈ C1([0, T], C∞

0 (Ω)), we have the following:

1
γ + 2

sup
t1<t<t2

∫
Ω
(σ + |∇ϵuϵ|2)

γ+2
2 ϱ2dx +

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇ϵ∇ϵuϵ|2ϱ2dxdt

≤ C(γ + 1)2
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p+γ
2 (ϱ2 + |∇ϵϱ|2 + ϱ|∇Rϱ|)dxdt

+ C(γ + 1)4
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇Ruϵ|2ϱ2dxdt

+
C

γ + 2

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

γ+2
2 |∂tϱ|ϱdxdt, (26)

where C = C(n, p, υ, Υ) > 0.

Proof. Applying ψ = ϱ2(σ + |∇ϵuϵ|2)
γ
2 Xϵ

l uϵ to test (12), then integrating by parts, we
obtain the following:

Ll =
1
2

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

γ
2 ∂t((Xϵ

l uϵ)
2)ϱ2dxdt

=−
∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
l Xϵ

j uϵ2ϱXϵ
i ϱ(σ + |∇ϵuϵ|2)

γ
2 Xϵ

l uϵdxdt

−
∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
l Xϵ

j uϵϱ2(σ + |∇ϵuϵ|2)
γ
2 Xϵ

i Xϵ
l uϵdxdt

− γ

2

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
l Xϵ

j uϵϱ2Xϵ
l uϵ(σ + |∇ϵuϵ|2)

γ−2
2 Xϵ

i (|∇ϵuϵ|2)dxdt

−
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)2ϱ[Xϵ

l , Xϵ
i ]ϱ(σ + |∇ϵuϵ|2)

γ
2 Xϵ

l uϵdxdt

−
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2(σ + |∇ϵuϵ|2)
γ
2 [Xϵ

l , Xϵ
i ]X

ϵ
l uϵdxdt

− γ
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2Xϵ
l uϵ(σ + |∇ϵuϵ|2)

γ−2
2

8

∑
k=1

Xϵ
k uϵ[Xϵ

l , Xϵ
i ]X

ϵ
k uϵdxdt

= −Sl
1 − Sl

2 − Sl
3 − Sl

4 − Sl
5 − Sl

6. (27)

For Sl
2, we use Xϵ

l Xϵ
j = Xϵ

j Xϵ
l + [Xϵ

l , Xϵ
j ] to obtain the following:

Sl
2 =

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j Xϵ

l uϵϱ2(σ + |∇ϵuϵ|2)
γ
2 Xϵ

i Xϵ
l uϵdxdt

+
∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)[Xϵ
l , Xϵ

j ]uϵϱ2(σ + |∇ϵuϵ|2)
γ
2 Xϵ

i Xϵ
l uϵdxdt

=Sl
21 + Sl

22. (28)
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For Sl
3, we use Xϵ

l Xϵ
j = Xϵ

j Xϵ
l + [Xϵ

l , Xϵ
j ] to obtain the following:

Sl
3 =

γ

4

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
j ((Xϵ

l uϵ)
2)ϱ2(σ + |∇ϵuϵ|2)

γ−2
2 Xϵ

i (|∇ϵuϵ|2)dxdt

γ

2

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)[Xϵ
l , Xϵ

j ]uϵϱ2Xϵ
l uϵ(σ + |∇ϵuϵ|2)

γ−2
2 Xϵ

i (|∇ϵuϵ|2)dxdt

=Sl
31 + Sl

32. (29)

Combining (27)–(29), we obtain

Ll + Sl
21 + Sl

31 = −Sl
1 − Sl

22 − Sl
32 − Sl

4 − Sl
5 − Sl

6. (30)

Now, we use the condition inequality to estimate each term in (30) separately. To
bound the first term in the left hand of (26), we note the following:

1
γ + 2

( ∫
Ω
(σ + |∇ϵuϵ|2)

γ+2
2 ϱ2dx

)∣∣∣∣t2

t1

= 2Ll +
2

γ + 2

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

γ+2
2 ϱ∂tϱdxdt.

Applying condition (8) to estimate Sl
21, we obtain the following:

8

∑
l=1

Sl
21 ≥ υ

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇ϵ∇ϵuϵ|2ϱ2dxdt.

Applying condition (8) to estimate Sl
31, we obtain the following:

8

∑
l=1

Sl
31 ≥ υγ

4

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−4+γ
2 |∇ϵ(|∇ϵuϵ|2)|2ϱ2dxdt.

Applying condition (8) to estimate Sl
1, we obtain the following:

|Sl
1| ≤ C

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 |∇ϵ∇ϵuϵ|ϱ|∇ϵϱ|dxdt,

where C = C(Υ) > 0. Applying condition (8) to estimate Sl
22 and Sl

32, we obtain
the following:

|Sl
22|+ |Sl

32| ≤ C(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 (|∇ϵuϵ|+ |∇Ruϵ|)ϱ2|∇ϵ∇ϵuϵ|dxdt,

where C = C(Υ) > 0. Applying condition (8) to estimate Sl
4, we obtain the following:

|Sl
4| ≤ C

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p+γ
2 ϱ(|∇ϵϱ|+ |∇Rϱ|)dxdt,

where C = C(Υ) > 0.
Below, we estimate Sl

5. We use (11) to Sl
5 and obtain the following:

Sl
5 =υk

∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2(σ + |∇ϵuϵ|2)
γ
2 XkXϵ

l uϵdxdt

+ θm

∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2(σ + |∇ϵuϵ|2)
γ
2 RmXϵ

l uϵdxdt

=υkSl
51 + θmSl

52,
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where υk, θm are constants completely determined by Table 1. Applying condition (8) to
estimate Sl

51, we obtain the following:

|Sl
51| ≤ C

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 |∇ϵ∇ϵuϵ|ϱ2dxdt,

where C = C(Υ) > 0. For Sl
52, by RmXϵ

l = Xϵ
l Rm + [Rm, Xϵ

l ], we obtain the following:

Sl
52 =

∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2(σ + |∇ϵuϵ|2)
γ
2 Xϵ

l Rmuϵdxdt

+
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2(σ + |∇ϵuϵ|2)
γ
2 [Rm, Xϵ

l ]uϵdxdt

=Sl
521 + Sl

522.

Using (10) to Sl
522, by condition (8), we obtain the following:

|Sl
522| ≤ C

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p+γ
2 ϱ2dxdt,

where C = C(Υ) > 0. For Sl
521, integrating by parts, we have the following:

Sl
521 =−

∫ t2

t1

∫
Ω

8

∑
i,j=1

Aσ,ϵ
i,ξ j

(∇ϵuϵ)Xϵ
l Xϵ

j uϵϱ2(σ + |∇ϵuϵ|2)
γ
2 Rmuϵdxdt

− γ

2

∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱ

2(σ + |∇ϵuϵ|2)
γ−2

2

8

∑
k=1

Xϵ
k uϵXϵ

l Xϵ
k uϵRmuϵdxdt

− 2
∫ t2

t1

∫
Ω

8

∑
i=1

Aσ,ϵ
i (∇ϵuϵ)ϱXϵ

l ϱ(σ + |∇ϵuϵ|2)
γ
2 Rmuϵdxdt.

Applying condition (8) to estimate Sl
521, we obtain the following:

|Sl
521| ≤C(γ + 1)

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇ϵ∇ϵuϵ|ϱ2|∇Ruϵ|dxdt

+ C
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 ϱ|∇ϵϱ||∇Ruϵ|dxdt,

where C = C(Υ) > 0. Combining these estimates, we obtain the estimate of Sl
5, as follows:

|Sl
5| ≤C

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 |∇ϵ∇ϵuϵ|ϱ2dxdt

+ C
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p+γ
2 ϱ2dxdt

+ C(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇ϵ∇ϵuϵ|ϱ2|∇Ruϵ|dxdt

+ C
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 ϱ|∇ϵϱ||∇Ruϵ|dxdt,

where C = C(Υ) > 0.
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For Sl
6, we use the same method as estimating Sl

5 and obtain the following:

|Sl
6| ≤Cγ

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 |∇ϵ∇ϵuϵ|ϱ2dxdt

+ Cγ
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p+γ
2 ϱ2dxdt

+ Cγ(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇ϵ∇ϵuϵ|ϱ2|∇Ruϵ|dxdt

+ Cγ
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−1+γ
2 ϱ|∇ϵϱ||∇Ruϵ|dxdt,

where C = C(Υ) > 0.
Combining all estimates to (30), then by Young’s inequality, we obtain (26).

Based on Lemma 3, we obtain the following lemma, which provides two Caccioppoli-
type inequalities for ∇Ruϵ.

Lemma 5. Suppose uϵ is a weak solution to (7). Then, when p ∈ [2, 4], for every γ ≥ 0 and every
ϱ ∈ C1([0, T], C∞

0 (Ω)), we have the following:∫ t2

t1

∫
Ω
|∇Ruϵ|p+γϱp+γdxdt

≤ C(p + γ)∥∇ϵϱ∥L∞

∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt

+ C(p + γ)
∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2
2 |∇Ruϵ|γ|∇ϵ∇ϵuϵ|2ϱ4+γdxdt, (31)

where C = C(p) > 0;

( ∫ t2

t1

∫
Ω
|∇Ruϵ|p+γϱp+γdxdt

) 1
p+γ

≤ C(p + γ)2(∥∇ϵϱ∥L∞ + ∥ϱ∥L∞)

( ∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt
) 1

p+γ

+ C(p + γ)∥ϱ∂tϱ∥
1
2
L∞ |spt(ϱ)|

p−2
2(p+γ)

( ∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt
) 4−p

2(p+γ)

, (32)

where C = C(υ, Υ) > 0.

Proof. First, we prove (31). Denote

U :=
∫ t2

t1

∫
Ω
|∇Ruϵ|p+γϱp+γdxdt, V :=

∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt.

According to Table 1, we write the following:

R7uϵ = −[X1, X2]uϵ = X2X1uϵ − X1X2uϵ

R8uϵ = −[X3, X4]uϵ = X4X3uϵ − X3X4uϵ.

From this and ∇Ruϵ = (R7uϵ, R8uϵ), we rewrite |∇Ruϵ|p+γ as

|∇Ruϵ|p+γ =|∇Ruϵ|p−2+γ((R7uϵ)
2 + (R8uϵ)

2)

=|∇Ruϵ|p−2+γ(R7uϵ(X2X1uϵ − X1X2uϵ) + R8uϵ(X4X3uϵ − X3X4uϵ)).
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Then U can be written as follows:

U =
∫ t2

t1

∫
Ω
|∇Ruϵ|p−2+γR7uϵ(X2X1uϵ − X1X2uϵ)ϱ

p+γdxdt

+
∫ t2

t1

∫
Ω
|∇Ruϵ|p−2+γR8uϵ(X4X3uϵ − X3X4uϵ)ϱ

p+γdxdt = U1 + U2.

For U1, we integrate by parts to obtain the following:

U1 =− (p − 2 − γ)
∫ t2

t1

∫
Ω
|∇Ruϵ|p−3+γR7uϵϱp+γ(X2|∇Ruϵ|X1uϵ − X1|∇Ruϵ|X2uϵ)dxdt

−
∫ t2

t1

∫
Ω
|∇Ruϵ|p−2+γϱp+γ(X2R7uϵX1uϵ − X1R7uϵX2uϵ)dxdt

− (p + γ)
∫ t2

t1

∫
Ω
|∇Ruϵ|p−2+γR7uϵϱp−1+γ(X2ϱX1uϵ − X1ϱX2uϵ)dxdt.

Thus,

U1 ≤2(p + γ)
∫ t2

t1

∫
Ω
|∇ϵuϵ||∇Ruϵ|p−2+γ|∇ϵ∇Ruϵ|ϱp+γdxdt

+ 2(p + γ)
∫ t2

t1

∫
Ω
|∇ϵuϵ||∇Ruϵ|p−1+γ|∇ϵ∇Ruϵ||∇ϵϱ|ϱp−1+γdxdt.

In the same way, we obtain the estimate of U2, as follows:

U2 ≤2(p + γ)
∫ t2

t1

∫
Ω
|∇ϵuϵ||∇Ruϵ|p−2+γ|∇ϵ∇Ruϵ|ϱp+γdxdt

+ 2(p + γ)
∫ t2

t1

∫
Ω
|∇ϵuϵ||∇Ruϵ|p−1+γ|∇ϵ∇Ruϵ||∇ϵϱ|ϱp−1+γdxdt.

Thus,

U ≤4(p + γ)
∫ t2

t1

∫
Ω
|∇ϵuϵ||∇Ruϵ|p−2+γ|∇ϵ∇Ruϵ|ϱp+γdxdt

+ 4(p + γ)
∫ t2

t1

∫
Ω
|∇ϵuϵ||∇Ruϵ|p−1+γ|∇ϵ∇Ruϵ||∇ϵϱ|ϱp−1+γdxdt = L1 + L2. (33)

Below, we estimate L1 and L2. For L1, applying Hölder’s inequality, we have the following:

L1 ≤ 4(p + γ)χ
1
2 V

4−p
2(p+γ) U

2p−4+γ
2(p+γ) , (34)

where

χ :=
∫ t2

t1

∫
Ω
|∇ϵuϵ|p−2|∇Ruϵ|γ|∇ϵ∇Ruϵ|2ϱ4+γdxdt. (35)

For L2, applying Hölder’s inequality, we have the following:

L2 ≤ 4(p + γ)∥∇ϵϱ∥L∞ V
1

p+γ U
p−1+γ

p+γ . (36)

Thus,

U ≤ 4(p + γ)χ
1
2 V

4−p
2(p+γ) U

2p−4+γ
2(p+γ) + 4(p + γ)∥∇ϵϱ∥L∞ V

1
p+γ U

p−1+γ
p+γ . (37)

From this, by Young’s inequality, we obtain (31).
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Second, we prove (32). Applying Lemma 3 to re-estimate M defined in (35), then we
apply Hölder’s inequality to obtain the following:

χ ≤C(γ + 1)2∥∇ϵϱ∥2
L∞ V

p−2
p+γ U

γ+2
p+γ + C∥ϱ∂tϱ∥L∞ |spt(ϱ)|

p−2
p+γ U

β+2
p+γ

+ C(γ + 1)2∥ϱ∥4
L∞ V

p
p+γ U

γ
p+γ ,

where C = C(υ, Υ) > 0. This, with (34), yields the following:

L1 ≤C(p + γ)2∥∇ϵϱ∥L∞ V
1

p+γ U
p−1+γ

p+γ + C(p + γ)∥ϱ∂tϱ∥
1
2
L∞ |spt(ϱ)|

p−2
2(p+γ) V

4−p
2(p+γ) U

p−1+γ
p+γ

+ C(p + γ)2∥ϱ∥2
L∞ V

2
p+γ U

p−2+γ
p+γ .

Combining the above inequality, (33) and (36), we obtain the following:

U ≤C(p + γ)2∥∇ϵϱ∥L∞ V
1

p+γ U
p−1+γ

p+γ + C(p + γ)∥ϱ∂tϱ∥
1
2
L∞ |spt(ϱ)|

p−2
2(p+γ) V

4−p
2(p+γ) U

p−1+γ
p+γ

+ C(p + γ)2∥ϱ∥2
L∞ V

2
p+γ U

p−2+γ
p+γ .

Dividing both sides of the above inequality by U
p−2+γ

p+γ simultaneously, we apply Young’s
inequality to obtain the following:

U
2

p+γ ≤C(p + γ)4∥∇ϵϱ∥2
L∞ V

2
p+γ + C(p + γ)2∥ϱ∂tϱ∥L∞ |spt(ϱ)|

p−2
p+γ V

4−p
p+γ

+ C(p + γ)2∥ϱ∥2
L∞ V

2
p+γ ,

which implies (32).

3.2. A crucial Caccioppoli-Type Estimate

Based on Lemmas 4 and 5, we obtain the crucial Caccioppoli-type estimate for ∇ϵuϵ

involving ∇ϵ∇ϵuϵ.

Lemma 6. Suppose uϵ is a weak solution to (7). Then, when p ∈ [2, 4], for every γ ≥ 0 and
ϱ ∈ C1([0, T], C∞

0 (Ω)), we have the following:

sup
t1<t<t2

∫
Ω
(σ + |∇ϵuϵ|2)

γ+2
2 ϱ2dx +

∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇ϵ∇ϵuϵ|2ϱ2dxdt

≤ C(p + γ)9(∥ϱ∥2
L∞ + ∥∇ϵϱ∥2

L∞ + ∥ϱ∇Rϱ∥L∞)
∫ ∫

spt(ϱ)
(σ + |∇ϵuϵ|2)

p+γ
2 dxdt

+ C(p + γ)7∥ϱ∂tϱ∥L∞ |spt(ϱ)|
p−2
p+γ

( ∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt
) γ+2

p+γ

, (38)

where C = C(p, υ, Υ) > 0.

Proof. To obtain (38), we need to re-estimate each integral term on the right-hand side of
(26), separately.
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First, we bind the second integral term on the hand side of (26). Applying Hölder’s
inequality, then by (32) in Lemma 5, we obtain the following:∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

p−2+γ
2 |∇Ruϵ|2ϱ2dxdt

≤
( ∫ ∫

spt(ϱ)
(σ + |∇ϵuϵ|2)

p+γ
2 dxdt

) p−2+γ
p+γ

( ∫ t2

t1

∫
Ω
|∇Ruϵ|p+γϱp+γdxdt

) 2
p+γ

≤ C(p + γ)4(∥ϱ∥2
L∞ + ∥∇ϵϱ∥2

L∞)
∫ ∫

spt(ϱ)
(σ + |∇ϵuϵ|2)

p+γ
2 dxdt

+ C(p + γ)2∥ϱ∂tϱ∥L∞ |spt(ϱ)|
p−2
p+γ

( ∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt
) γ+2

p+γ

,

where C = C(p, υ, Υ) > 0.
Second, we bind the final integral term on the hand side of (26). We apply Hölder’s

inequality to obtain the following:∫ t2

t1

∫
Ω
(σ + |∇ϵuϵ|2)

γ+2
2 |∂tϱ|ϱdxdt

≤ ∥ϱ∂tϱ∥L∞ |spt(ϱ)|
p−2
p+γ

( ∫ ∫
spt(ϱ)

(σ + |∇ϵuϵ|2)
p+γ

2 dxdt
) γ+2

p+γ

.

Combining the above estimates and (26), we obtain the following: (38).

4. Proof of Theorem 2

In this section, we apply the crucial Caccioppoli-type estimate to prove Theorem 2.

The Proof of Theorem 2. For every non-negative cut-off function ϱ ∈ C1([0, T], C∞
0 (Ω))

vanishing on the parabolic boundary of Q, satisfying |ϱ| ≤ 1 in Q, and for any γ ≥ 0, we
denote the following:

w := (σ + |∇ϵuϵ|2)
p+γ

4 ϱ2.

Then, (38) is rewritten as follows:

sup
t1<t<t2

∫
Ω

w
2(γ+2)

p+γ dx +
∫ t2

t1

∫
Ω
|∇ϵw|2dxdt

≤ C(p + γ)9(∥ϱ∥2
L∞ + ∥∇ϵϱ∥2

L∞ + ∥ϱ∇Rϱ∥L∞)
∫ ∫

spt(ϱ)
w2dxdt

+ C(p + γ)7∥ϱ∂tϱ∥L∞ |spt(ϱ)|
p−2
p+γ

( ∫ ∫
spt(ϱ)

w2dxdt
) γ+2

p+γ

. (39)

We denote q := 2 + 4(γ+2)
N(p+γ)

, where N = 10 is the homogeneous dimension of SU(3).
Applying Hölder’s inequality, we apply the Sobolev inequality to obtain the following:

∫ t2

t1

∫
Ω

wqdxdt ≤
∫ t2

t1

( ∫
Ω

w
2(γ+2)

p+γ dx
) 2

N
( ∫

Ω
w

2N
N−2 dx

) N−2
N

dt

≤C
(

sup
t1<t<t2

∫
Ω

w
2(γ+2)

p+γ dx
) 2

N ∫ t2

t1

∫
Ω
|∇ϵw|2dxdt,
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which, together with (39), yields the following:

( ∫ t2

t1

∫
Ω

wqdxdt
) N

N+2

≤C(p + γ)9(∥ϱ∥2
L∞ + ∥∇ϵϱ∥2

L∞ + ∥ϱ∇Rϱ∥L∞)
∫ ∫

spt(ϱ)
w2dxdt

+ C(p + γ)7∥ϱ∂tϱ∥L∞ |spt(ϱ)|
p−2
p+γ

( ∫ ∫
spt(ϱ)

w2dxdt
) γ+2

p+γ

, (40)

where C = C(p, υ, Υ) > 0.
For any µ, r > 0, we define the parabolic cylinder Qµ,r := Bϵ(x0, r)× (t0 − µr2, t0).

Given any Qµ,2r ⊂ Qµ,2r0 ⊂ Q, we denote ri = (1 + 2−i)r and γi = 2(κi − 1) with κ = N+2
N

such that

p + γi+1 = (p + γi)

(
1 +

2(γi + 2)
N(p + γi)

)
, i = 0, 1, 2, . . . ;

we write Qi = Qµ,ri with Q0 = Qµ,2r and Q∞ = Qµ,r, then choose a standard parabolic
cut-off function ϱi ∈ C∞(Qi) satisfying the following:{

ϱi = 1 in Qi+1,
|∇ϵϱi| ≤ 2i+8

r , |∇Rϱi| ≤ 22i+8

r2 , |∂tϱi| ≤ 22i+8

µr2 in Qi.

By (40) with ϱ = ϱi and γ = γi, writing ϑi = p + γi = p − 2 + 2κi, we obtain the following:

( ∫ ∫
Qi+1

(σ + |∇ϵuϵ|2)
ϑi+1

2 dxdt
) N

N+2

≤ C22iϑ9
i (r

−2 + 1)
[( ∫ ∫

Qi

(σ + |∇ϵuϵ|2)
ϑi
2 dxdt

) p−2
ϑi

+ µ−1(µrN+2)
p−2
ϑi

]

×
( ∫ ∫

Qi

(σ + |∇ϵuϵ|2)
ϑi
2 dxdt

) ϑi−p+2
ϑi

, (41)

where C = C(p, υ, Υ) > 0. To simplify writing, we denote

χi =

( ∫ ∫
Qi

(σ + |∇ϵuϵ|2)
ϑi
2 dxdt

) 1
ϑi

.

Then (41) becomes

χ
ϑi+1

κ
i+1 ≤ Cµ

2
N+2 22iϑ9

i (χ
p−2
i + µ−1)χ

ϑi−p+2
i ,

where C = C(p, υ, Υ, r0) = C(p, υ, Υ)(1 + r2
0) > 0. From this, letting χ̄i = max(χi, µ

1
2−p ),

we obtain the following:

χ̄
ϑi+1

κ
i+1 ≤ Cµ

2
N+2 22iϑ9

i χ̄
ϑi
i . (42)

Without loss of generality, we may assume C = C(p, υ, Υ, r0) ≥ 1. Iterating (42), we have
the following:

χ̄i+1 ≤
( i

∏
j=0

K
κi+1−j

ϑi+1
j

)
χ̄

ϑ0κi+1

ϑi+1
0 ,

where Kj = Cµ
2

N+2 22jϑ9
j , ϑi = p − 2+ 2κi and κ = N+2

N . From this, letting i → ∞, we obtain
the following:

χ̄∞ := lim sup
i→∞

χ̄i ≤ Cµ
1
2 χ̄

p
2
0 , (43)

where C = C(p, υ, Υ, r0) > 0. Since supQµ,r
|∇ϵuϵ| ≤ χ̄∞, combining (43), we obtain (9).
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5. Higher Integrability of ∂tu

In this section, based on Theorem 1, when 2 ≤ p ≤ 4, we prove the higher integrability
of ∂tu. Setting σ → 0 in the following theorem, we gain ∂tu ∈ Lq

loc for any 1 ≤ q < ∞.

Theorem 3. Suppose uσ is a weak solution to (5) in Ω × (0, T). Then, when 2 ≤ p ≤ 4, we have
∂tuσ ∈ Lq

loc (Ω × (0, T)) for any q ∈ [1, ∞). Moreover, when p ∈ [2, 4], for every γ ≥ 0 and
every ϱ ∈ C1([0, T], C∞

0 (Ω)), we have∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+2dxdt

≤ Cγ+2(γ + 2)γ+2|spt(ϱ)|(χ2p−2∥∇Hϱ∥2
L∞ + χp∥ϱ∂tϱ∥L∞)

γ+2
2 , (44)

where C = C(p, υ, Υ) > 0 and χ = supspt(ϱ)(σ + |∇Huσ|2)
1
2 .

Proof. For any γ ≥ 0, from (5), we have

|∂tuσ|γ+2 = |∂tuσ|γ∂tuσ

6

∑
i=1

Xi(Aσ(∇Huσ)).

From this, integrating by parts, we have

L =
∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+2dxdt =

∫ t2

t1

∫
Ω
|∂tuσ|γ∂tuσ

6

∑
i=1

Xi(Aσ
i (∇Huσ))ϱ

γ+2dxdt

=− (γ + 2)
∫ t2

t1

∫
Ω
|∂tuσ|γ∂tuσ

6

∑
i=1

Aσ
i (∇Huσ)ϱ

γ+1Xiϱdxdt

− (γ + 1)
∫ t2

t1

∫
Ω
|∂tuσ|γXi∂tuσ

6

∑
i=1

Aσ
i (∇Huσ)ϱ

γ+2dxdt = I1 + I2. (45)

We apply condition (6) and Hölder’s inequality to obtain the following:

|I1| ≤C(γ + 2)
∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

p−1
2 |∂tuσ|γ+1ϱγ+1|∇Hϱ|dxdt

≤C(γ + 2)
( ∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+2dxdt

) γ+1
γ+2

×
( ∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

(p−1)(γ+2)
2 |∇Hϱ|γ+2dxdt

) 1
γ+2

≤C(γ + 2)∥∇Hϱ∥L∞ |spt(ϱ)|
1

γ+2 χp−1L
γ+1
γ+2 ; (46)

|I2| ≤C(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

p−1
2 |∂tuσ|γ|∇H∂tuσ|ϱγ+2dxdt

≤C(γ + 1)
( ∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+2dxdt

) γ
2(γ+2)

×
( ∫ ∫

spt(ϱ)
(σ + |∇Huσ|2)

p(γ+2)
4 dxdt

) 1
γ+2

J
1
2

≤C(γ + 1)|spt(ϱ)|
1

γ+2 χ
p
2 L

γ
2(γ+2) J

1
2 , (47)
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where χ = supspt(ϱ)(σ + |∇Huσ|2)
1
2 and

J =
∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

p−2
2 |∂tuσ|γ|∇H∂tuσ|2ϱγ+4dxdt.

Below, we estimate J. Differentiating (5) with respect to t, we obtain the following:

∂t(∂tuσ) =
6

∑
i=1

Xi(∂tAσ
i (∇Huσ)) =

6

∑
i,j=1

Xi(Aσ
i,ξ j

(∇Huσ)Xj∂tuσ). (48)

Applying ψ = |∂tuσ|γ∂tuσϱγ+4 to test (48), we integrate by parts to obtain the following:

L =
∫ t2

t1

∫
Ω

∂t(∂tuσ)|∂tuσ|γ∂tuσϱγ+4dxdt

=− (γ + 1)
6

∑
i,j=1

∫ t2

t1

∫
Ω
Aσ

i,ξ j
(∇Huσ)Xj∂tuσ|∂tuσ|γXi∂tuσϱγ+4dxdt

− (γ + 4)
6

∑
i,j=1

∫ t2

t1

∫
Ω
Aσ

i,ξ j
(∇Huσ)Xj∂tuσ|∂tuσ|γ∂tuσϱγ+3Xiϱdxdt = −S1 − S2.

Thus,
S1 = −L− S2.

For L, we integrate by parts to obtain

L =
1

γ + 2

∫ t2

t1

∫
Ω

∂t(|∂tuσ|γ+2)ϱγ+4dxdt = −γ + 4
γ + 2

∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+3∂tϱdxdt,

which, together with condition (6), yields

|L| ≤ C
∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+3|∂tϱ|dxdt.

For S1, condition (6) implies
S1 ≥ υ(γ + 1)J.

For S2, by condition (6), by Young’s inequality, we have the following:

|S2| ≤C(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

p−2
2 |∂tuσ|γ+1|∇H∂tuσ|ϱγ+3|∇Hϱ|dxdt

≤υ(γ + 1)
2

J + C(γ + 1)
∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

p−2
2 |∂tuσ|γ+2ϱγ+2|∇Hϱ|2dxdt.

Combining these estimates, we obtain the estimate of J, as follows:

J ≤C
∫ t2

t1

∫
Ω
(σ + |∇Huσ|2)

p−2
2 |∂tuσ|γ+2ϱγ+2|∇Hϱ|2dxdt

+
C

γ + 1

∫ t2

t1

∫
Ω
|∂tuσ|γ+2ϱγ+3|∂tϱ|dxdt

≤C(χp−2∥∇Hϱ∥2
L∞ +

1
γ + 1

∥ϱ∂tϱ∥L∞)L. (49)

Combining (47) and (49), we obtain the following:

|I2| ≤ C(γ + 1)|spt(ϱ)|
1

γ+2 χ
p
2 L

γ+1
γ+2 (χp−2∥∇Hϱ∥2

L∞ + ∥ϱ∂tϱ∥L∞)
1
2 . (50)
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Combining (45), (46) and (50), we obtain the following:

L ≤C(γ + 2)∥∇Hϱ∥L∞ |spt(ϱ)|
1

γ+2 χp−1L
γ+1
γ+2

+ C(γ + 1)|spt(ϱ)|
1

γ+2 χ
p
2 L

γ+1
γ+2 (χp−2∥∇Hϱ∥2

L∞ + ∥ϱ∂tϱ∥L∞)
1
2 .

From this, we obtain (44).

6. Conclusions

In this article, we construct a crucial Caccioppoli-type inequality (38). Based on
the inequality, when p ∈ [2, 4], we built up the C0,1

loc -regularity of weak solutions to the
degenerate parabolic p-Laplacian equation on the group SU(3) granted with the horizontal
vector fields X1, . . . , X6. Compared to the Heisenberg group Hn, our new result achieves the
same range of p as [26]. Unfortunately, the C0,1-regularity for the range p ∈ (1, 2) ∪ (4, ∞)
cannot be achieved with our current technology because our argument rests in a crucial
way on Lemma 5 with the condition p ∈ [2, 4]. Our approach can also be used for more
general sub-Riemannian manifolds, for instance, a special class of the semi-simple Lie group
proposed in [17] and Hörmander vector fields of step two in [19], to establish regularity for
the parabolic p-Laplacian equation. Technically speaking, our method can also be extended
to other types of partial differential equations, for example, the non-homogeneous equation

∂tu = −
6
∑

i=1
X∗

i Ai(∇Hu) + B(x, t, u,∇Hu). The establishment of the regularity for the

range p ∈ (1, 2) ∪ (4, ∞) will be the focus and difficulty of our next work.
In conclusion, the results shown in this article are original. We believe that our results

will be widely applied in the study of regularities for equations involving the p-Laplacian
operator and other areas of applied science.
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