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Abstract: Doubly coupled designs (DCDs) have better space-filling properties between the qualitative
and quantitative factors than marginally coupled designs (MCDs) which are suitable for computer
experiments with both qualitative and quantitative factors. In this paper, we propose a new class of
DCDs, called group doubly coupled designs (GDCDs), and provide methods for constructing two
forms of GDCDs, within-group doubly coupled designs and between-group doubly coupled designs.
The proposed GDCDs can accommodate more qualitative factors than DCDs, when the subdesigns
for the qualitative factors are symmetric. The subdesigns of qualitative factors are not asymmetric in
the existing results on DCDs, and in this paper, we construct GDCDs with symmetric and asymmetric
designs for the qualitative factors, respectively. Moreover, detailed comparisons with existing MCDs
show that GDCDs have better space-filling properties between qualitative and quantitative factors.
Finally, the methods are particularly easy to implement.

Keywords: computer experiment; doubly coupled design; orthogonal array; sliced latin hypercube
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1. Introduction

Computer experiments are an effective method for exploring complex systems and
scientific problems [1,2].The space-filling properties, which measure the uniformity of the
design points in the experimental space, are critical for effectively exploring the experi-
mental region of computer experiments [2]. Latin hypercube designs (LHDs), proposed
by [3], are widely used space-filling designs for computer experiments. Such designs are
often used in computer experiments with quantitative factors because they achieve optimal
univariate uniformity. Computer experiments involving only quantitative factors have
received considerable attention [1,2]. However, researchers usually encounter computer
experiments involving both qualitative and quantitative factors; see [1,4–13].

Sliced Latin hypercube designs (SLHDs) proposed by [14] are LHDs that can be parti-
tioned into some LHD slices, which not only maintain the optimal univariate uniformity but
for each slice as well. SLHDs are popular for computer experiments with both qualitative
and quantitative factors; see [9,10,15] and the references therein. Each slice of an SLHD can
be used at one level combination of the qualitative factors. However, its number of runs
increases dramatically with the number of level combinations of the qualitative factors.
This is thus suitable for situations where there are few level combinations of the qualitative
factors or where the cost of runs is low.

Inspired by the notion of SLHD, [16] proposed the marginally coupled designs (MCDs).
Their key feature is that for each level of any qualitative factor, the design points for the
quantitative factors can form a small LHD, and they have fewer runs than SLHDs. In recent
years, improvements for MCDs include, but are not limited to, its quantitative factors
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design with column orthogonality and multi-dimensional stratifications; for more details,
refer to [17–20]. MCD, however, appears to be inapplicable when it is necessary to study
the stratification between multiple qualitative factors and quantitative factors, whereas
a design with such properties can be useful for studying the interaction between two
qualitative factors and quantitative factors.

To this end, [21] proposed the doubly coupled designs (DCDs). It not only maintains
the properties of MCDs, but also ensures that the design points for the quantitative factors
can form an LHD corresponding to any level combination of any two qualitative factors. In
a DCD, the subdesign for qualitative factors is an orthogonal array (OA). Equal-level and
mixed-level orthogonal arrays are called symmetric and asymmetric orthogonal arrays,
respectively. In the DCDs constructed by [21], the subdesign for qualitative factors is a
symmetric orthogonal array. However, in real-world problems, there exist qualitative
factors with mixed levels, and the design of the qualitative factors is usually an asymmetric
OA. At present, there are no studies of DCDs with qualitative factors being asymmetric
OAs. The latter construction cannot be a simple extension of the former. Moreover, the
existing DCDs have an upper bound on the number of qualitative factors, namely, no more
than the number of levels of qualitative factors. Therefore, existing DCDs are inapplicable
when the qualitative factors are mixed-level or when the number of qualitative factors
exceeds the number of their levels.

For a computer experiment with q s-level qualitative factors and p quantitative factors,
an MCD is appropriate if there is no interaction effect between any two qualitative factors
and all quantitative factors; if q ≤ s and there is the interaction effect between any two
qualitative factors and all quantitative factors, a DCD is applicable. However, neither an
MCD nor a DCD is suitable, when q > s, some qualitative factors and all quantitative
factors have such interaction effects, and some do not. Suppose that in an experiment
there are four qualitative factors, the type of concentration of cell lysis reagent (A1, A2),
the type of stain (Blue, Red, Pink), the shape of the cell slides (Thick, Moderate, Thin), and
the cells’ activity (Dead, Alive) as well as other quantitative factors. We know that only
the two qualitative factors, the type of concentration of cell lysis reagent and the shape of
the cell slides, have the interaction effect with all quantitative factors. Obviously, both an
MCD and a DCD are not suitable for such an experiment. Thus, we need to adopt a design
that satisfies two properties: (i) the whole design is an MCD; and (ii) the columns of some
qualitative factors and the columns of all quantitative factors form a DCD. In this paper,
we focus on such designs and call them group DCD (GDCD).

In addition, not only can the GDCDs contain more qualitative factors, but the designs
for the qualitative factors can be asymmetric OAs. Therefore, the level types of GDCDs are
more flexible than those of DCDs. Our methods construct two forms of GDCDs, within-
group DCDs and between-group DCDs. In a within-group DCD (WGDCD), the design
of the qualitative factors can be divided into several groups, and the design of any two
qualitative factors from the same group coupled with the design of the quantitative factors
is a DCD. Thus, columns in the same group have excellent stratification properties between
qualitative and quantitative factors. In a between-group DCD (BGDCD), the design of
the qualitative factors can also be split into several groups, and the design of any two
qualitative factors from different level groups combined with the design of quantitative
factors is a DCD. The methods for constructing WGDCDs and BGDCDs are similar and
easy to implement and are given in Section 3.1 and Section 3.2, respectively. Since the
space-filling property of GDCDS is similar to that of DCDs, the space-filling property of
GDCDs is better than that of MCDs.

The article is organized as follows: Section 2 introduces the basic notation and def-
initions. Methods for constructing GDCDs and the corresponding examples are given
in Section 3. Comparison was made in Section 4. Section 5 provides conclusions and
discussion. All proofs are deferred to Appendix A.
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2. Definitions and Notation

Let GF(s) = {α0, α1, . . . , αs−1} denote the Galois field of order s, where α0 = 0 and
α1 = 1. An r × c matrix D is called a difference scheme over GF(s), denoted by D(r, c, s), if
it has the property that every element of GF(s) in the vector difference between any two
distinct columns in D occurs r/s times equally. For details of the difference schemes, refer
to Section 6.1 of [22]. An n × m matrix is called an asymmetric orthogonal array of strength
t, denoted by OA(n, sm1

1 sm2
2 · · · smc

c , t), m1 + m2 + · · ·+ mc = m, if any of its n × t submatrix
satisfies all possible t-tuples occur equally often, where the level of the first m1 columns is
taken from {0, . . . , s1 − 1}, the level of the next m2 columns is taken from {0, . . . , s2 − 1},
and so on. When all the sj’s are equal to s, the orthogonal array is symmetric, denoted by
OA(n, sm, t).

We now review the Rao-Hamming construction in Section 3.4 of [22]. For a prime
power s, let z1 and z2 be two s-level columns of length s2 with entries from GF(s),
GF(s) = {α0, α1, . . . , αs−1}, where α0 = 0 and α1 = 1. Suppose that z1 and z2 are in-
dependent. We apply the Rao-Hamming construction in [22] to obtain an OA(s2, ss+1, 2) Υ,

i.e., Υ = (z1, z2)Λ over GF(s), where Λ =

(
1 1 1 · · · 1 0
0 1 α2 · · · αs 1

)
.

An n× p matrix that each column is a permutation of integers {0, 1, . . . , n− 1} is called
an LHD, denoted by LHD(n, p). 0n and 1n are two n-dimensional column vectors with all
entries being zeros and ones, respectively. Let AT represent the transposition of matrix A.
For an n × m matrix A and an f × g matrix B, A ⊕ B=

(
aij + B

)
and A ⊗ B=

(
aijB

)
represent

the Kronecker sum and Kronecker product, respectively, where aij is the (i, j)th entry of A.
Suppose there is an OA(n, sq1

1 sq2
2 , 2), if its rows can be divided into n

αjsj
OA(αjsj, sq1

1 sq2
2 , 1)’s,

and for j = 1, 2, αjsj remains the same, then called the array as (α1×α2)-resolvable orthogonal
array, denoted by (α1×α2)-ROA(n, sq1

1 sq2
2 , 2). Especially, when s1=s2=s, α1=α2=α, then the

array reduces to α-ROA(n, sq1+q2 , 2). If α=1, the array is called a completely resolvable
orthogonal array (CROA).

Let D = (A, L) be an n-run design with q qualitative factors and p quantitative factors,
where the subdesigns A and L are qualitative factors and quantitative factors, respectively.
The design D is called a marginally coupled design, denoted by MCD(n, sq1

1 sq2
2 · · · sqc

c , p),
q1 + q2 + · · ·+ qc = q, if it satisfies: (i) A is an OA(n, sq1

1 sq2
2 · · · sqc

c , 2); (ii) L is an LHD(n, p);
and (iii) the rows in L, corresponding to each level of any factor in A, form a small LHD.
When si = s, i = 1, 2, . . . , c, the MCD is denoted as MCD(n, sq, p).

Let D0 = (D1, D2) be an MCD(n, sq1
1 sq2

2 · · · sqc
c , p). The design D0 is called a doubly

coupled design, denoted by DCD(n, sq1
1 sq2

2 · · · sqc
c , p), if it satisfies that the rows in D2,

corresponding to each level combination of any two factors in D1, form a small LHD.
When si = s, i = 1, 2, . . . , c, the DCD is denoted as DCD(n, sq, p). Obviously, D1 is an
OA(n, sq1

1 sq2
2 · · · sqc

c , 2), D2 is an LHD(n, p), and the rows in D2, corresponding to each level
combination of any t factors in D1, form a small LHD for t = 1, 2.

Definition 1. Let D = (A, L) be an MCD(n, sq1
1 sq2

2 · · · sqc
c , p), q1 + q2 + · · ·+ qc = q, where

A = (A1, A2, . . . , Ac) is an OA(n, sq1
1 sq2

2 · · · sqc
c , 2), L is an LHD(n, p), Ai is an OA(n, sqi

i , 2),
i = 1, 2, . . . , c.

(i) The D is called a within-group DCD (WGDCD), denoted by WGDCD(n, sq1
1 sq2

2 · · · sqc
c , p),

if (Ai, L) is a DCD for i = 1, 2, . . . , c. When s1 = s2 = . . . = sc = s and q1 = q2 = . . . = qc = u
, then we denote such D by WGDCD(n, su·c, p).

(ii) The D is called a between-group DCD (BGDCD), denoted by BGDCD(n, sq1
1 sq2

2 · · · sqc
c , p),

if ((Aj
i , An

m), L) is a DCD, where Aj
i and An

m are the jth column in Ai and the nth column in Am,
respectively, for 1 ≤ i ̸= m ≤ c, j = 1, 2, . . . , qi, n = 1, 2, . . . , qm. When s1 = s2 = . . . = sc = s
and q1 = q2 = . . . = qc = u , then we denote such D by BGDCD(n, su·c, p).
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From Definition 1, it is easy to see that (Ai, L) is a DCD(n, sqi
i , p) in a

WGDCD(n, sq1
1 sq2

2 · · · sqc
c , p), for i = 1, 2, . . . , c. For any DCD(n, sq, p), Corollary 1 of [21]

shows that q ≤ s. Similarly, we have the following Corollary 1.

Corollary 1. If a WGDCD D = (A, L) with A being an OA(n, sq1
1 sq2

2 · · · sqc
c , 2) exists, then

qj ≤ sj, j = 1, 2, . . . , c.

Corollary 1 above tells us that the WGDCD(n, sq1
1 sq2

2 · · · sqc
c , p) can accommodate up

to s1 + s2 + · · ·+ sc qualitative factors.
Here we provide some results on the existence of GDCDs. Recall the definition of

GDCDs, a GDCD of n runs has two subdesigns, A and L, which are for q qualitative factors
and p quantitative factors, respectively. Theorems 1 and 2 below establish the necessary
and sufficient conditions of the existence of WGDCDs and BGDCDs, respectively. For ease
of expression, for an n × 1 column vector d, define d(si) and d(si ·sm) based on d. Let d(v)

be the vth entry of d, 1 ≤ v ≤ n and d(v,si) =
⌊

d(v)
si

⌋
, d(v,si ·sm) =

⌊
d(v)
sism

⌋
, where d(v,si) and

d(v,si ·sm) are the vth entries in d(si) and d(si ·sm), respectively, and ⌊a⌋ represents the largest
integer not exceeding a.

Theorem 1. Suppose A = (A1, A2, . . . , Ac) is an OA(n, sq1
1 sq2

2 · · · sqc
c , 2), L = (l1, l2, . . . , lp) is

an LHD(n, p), where lk is the kth column of L, k = 1, 2, . . . , p. Let Aj
i be the jth column of Ai for

i = 1, 2, . . . , c, j = 1, 2, . . . , qi. Then design D = (A, L) is a WGDCD(n, sq1
1 sq2

2 · · · sqc
c , p) if and

only if:
(i) (Aj

i , l(si)
k ) is an OA(n, 2, si(n/si), 2), for any i = 1, 2, . . . , c, j = 1, 2, . . . , qi, k = 1, 2, . . . , p;

and
(ii) (Aj

i , A f
i , l(si ·si)

k ) is an OA(n, 3, s2
i (n/s2

i ), 3), for any i = 1, 2, . . . , c, 1 ≤ j ̸= f ≤ qi, k =
1, 2, . . . , p.

Theorem 2. Suppose A = (A1, A2, . . . , Ac) is an OA(n, sq1
1 sq2

2 · · · sqc
c , 2), L = (l1, l2, . . . , lp) is

an LHD(n, p), where lk is the kth column of L, k = 1, 2, . . . , p. Let Aj
i be the jth column of Ai

for i = 1, 2, . . . , c, j=1, 2, . . . , qi. Then design D = (A, L) is a BGDCD(n, sq1
1 sq2

2 · · · sqc
c , p) if and

only if:
(i) (Aj

i , l(si)
k ) is an OA(n, 2, si(n/si), 2), for any i = 1, 2, . . . , c, j = 1, 2, . . . , qi, k = 1, 2, . . . , p;

and
(ii) (Aj

i , An
m, l(si ·sm)

k ) is an OA(n, 3, sism(n/sism), 3), for any 1 ≤ i ̸= m ≤ c, j = 1, 2, . . . , qi,
n = 1, 2, . . . , qm, k = 1, 2, . . . , p.

Theorems 1 and 2 establish the existence of GDCDs in terms of the relations between the
individual columns in A and l(si)

k , and between any pair of columns in A and l(si·si)
k or l(si·sm)

k .

3. Construction of GDCDs

Since the existing DCDs in [21] have an upper bound on the number of qualitative
factors, that is not exceeding the number of levels. The subdesigns for qualitative factors
are all symmetric OAs, in the DCDs constructed by [21]. This section, therefore, describes
four main construction algorithms to produce different GDCDs that can contain more
qualitative factors. Two forms of GDCDs, WGDCDs and BGDCDs, are provided for
different needs. In Section 3.1, two algorithms were proposed for constructing WGDCDs
with equal-level and mixed-level qualitative factors, respectively. In Section 3.2, two
algorithms were proposed for generating different BGDCDs with mixed-level qualitative
factors. These newly constructed designs with qualitative factors can be either symmetric
or asymmetric. Different initial DCDs are used in the construction Algorithms 1, 3 and 5.
The above constructions lead the resulting designs to entertain more qualitative factors and
mixed-level qualitative factors, compared with the existing DCDs.
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3.1. Construction of WGDCDs

Existing DCDs have few columns and do not work if the problem under study has
s + 1 or more factors (s is the number of levels of qualitative factors). To be able to study
the relationship between more qualitative and quantitative factors, this section presents
WGDCDs, which can accommodate more qualitative factors with equal or mixed levels
than DCDs. The construction of WGDCDs is presented in the next two subsections.

3.1.1. Construction of WGDCDs with Symmetric Qualitative Factors

Suppose there exists a difference scheme D(r, c, s) of strength 2, denoted by D(1),
where r is a multiple of s, c ≤ r, and an initial DCD(n, sq, p) D0 = (D1, D2). Such difference
scheme and D0 are used in the following algorithm to construct a WGDCD(rn, sq·c, p f )
D = (A, L), where A is an OA(rn, sq·c, 2), each group of the subdesign A is a symmetric
OA(rn, sq, 2). For clarity, let Kronecker sum ⊕ in Algorithm 1 be defined over the Galois
field of order s (GF(s)).

Algorithm 1 Construction of WGDCDs with symmetric qualitative factors

Step 1. Given that D(1) is a difference scheme D(r, c, s), D1 is an OA(n, sq, 2), D2 is an
LHD(n, p) and D0 = (D1, D2) is a DCD(n, sq, p), then construct a (rn) × (qc)
matrix, as A = (D(1)⊕ D1) over GF(s).

Step 2. Let C be an r× f matrix with all elements being ones, H be an LHD(r, p f ), construct
an (rn)× (p f ) matrix, as L = C ⊗ D2 + nH ⊗ 1n.

Step 3. The resulting design is D = (A, L).

Proposition 1. The design D = (A, L) obtained by Algorithm 1 is a WGDCD(rn, sq·c, p f ).

The initial design D0 in Step 1 is a DCD, which can be obtained from [21]. The
subdesign A of the design D constructed by Algorithm 1 is an OA(rn, scq, 2) and can be
divided into c groups of q columns each, forming an OA(rn, sq, 2). There are excellent
stratification properties between the columns in the same group and L. DCDs with s-level
qualitative factors can accommodate up to s qualitative factors according to Corollary 1
of [21]. However, the WGDCDs constructed by Algorithm 1 can accommodate up to cs
qualitative factors. The following example gives an illustration of Algorithm 1, where the
initial DCD D0 is taken from the first four columns of Table 1 in [21].

Example 1. Consider a design WGDCD(32, 22·4, 4) with the initial DCD D0 as in Table 1. By
using the following difference scheme D(1), 4× 2 matrix C and any LHD(4, 4) H, we can obtain A
and L in Algorithm 1, respectively. The resulting design
D = (A, L) is listed in Table 2. It is easy to check that the D is a WGDCD(32, 22·4, 4).
Obviously, the subdesign A can be divided into 4 groups of 2 columns each, forming an OA.
Let A = (A1, A2, A3, A4), where Ai is an OA(16, 22, 2), then (Ai, L)is a DCD(16, 22, 4),
i = 1, 2, 3, 4. The WGDCD(32, 22·4, 4) outperforms DCD(32, 22, 4) obtained by [21] in terms of
the number of qualitative factors. Figure 1 shows that the maximum one-dimensional projection
uniformity of L with respect to each level combination of any one or two factors in A1.

D(1) =


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

, C =


1 1
1 1
1 1
1 1

 and H =


0 2 3 1
1 1 1 2
3 3 2 0
2 0 0 3

.
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Table 1. The DCD(8, 22, 2) used in Example 1.

DT
1

0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0

DT
2

1 0 6 7 4 5 3 2
0 4 2 6 5 1 7 3

Table 2. WGDCD(32, 22·4, 4) in Example 1.

Run A L Run A L

1 0 0 0 0 0 0 0 0 1 16 25 8 17 0 0 0 0 1 1 1 1 25 24 17 0
2 1 1 1 1 1 1 1 1 0 20 24 12 18 1 1 1 1 0 0 0 0 24 28 16 4
3 0 1 0 1 0 1 0 1 6 18 30 10 19 0 1 0 1 1 0 1 0 30 26 22 2
4 1 0 1 0 1 0 1 0 7 22 31 14 20 1 0 1 0 0 1 0 1 31 30 23 6
5 0 0 0 0 0 0 0 0 4 21 28 13 21 0 0 0 0 1 1 1 1 28 29 20 5
6 1 1 1 1 1 1 1 1 5 17 29 9 22 1 1 1 1 0 0 0 0 29 25 21 1
7 0 1 0 1 0 1 0 1 3 23 27 15 23 0 1 0 1 1 0 1 0 27 31 19 7
8 1 0 1 0 1 0 1 0 2 19 26 11 24 1 0 1 0 0 1 0 1 26 27 28 3
9 0 0 1 1 0 0 1 1 9 8 9 16 25 0 0 1 1 1 1 0 0 17 0 1 24

10 1 1 0 0 1 1 0 0 8 12 8 20 26 1 1 0 0 0 0 1 1 16 4 0 28
11 0 1 1 0 0 1 1 0 14 10 14 18 27 0 1 1 0 1 0 0 1 22 2 6 26
12 1 0 0 1 1 0 0 1 15 14 15 22 28 1 0 0 1 0 1 1 0 23 6 7 30
13 0 0 1 1 0 0 1 1 12 13 12 21 29 0 0 1 1 1 1 0 0 20 5 4 29
14 1 1 0 0 1 1 0 0 13 9 13 17 30 1 1 0 0 0 0 1 1 21 1 5 25
15 0 1 1 0 0 1 1 0 11 15 11 23 31 0 1 1 0 1 0 0 1 19 7 3 31
16 1 0 0 1 1 0 0 1 10 11 10 19 32 1 0 0 1 0 1 1 0 18 3 2 27

(a) (b) (c)

Figure 1. Projection of L in Example 1. Scatter plots of l1 versus l2 in Example 1: (a) points represented
by ◦ and • correspond to the levels 0, 1 of A1

1, respectively; (b) points represented by ◦ and •
correspond to the levels 0, 1 of A2

1, respectively; (c) points marked by □, solid □, ◦, and • correspond
to the level combinations (0, 0), (0, 1), (1, 0), and (1, 1) of (A1

1, A2
1).

3.1.2. Construction of WGDCDs with Asymmetric Qualitative Factors

Next, we provide another method to construct a WGDCD D = (A, L) with the
subdesign A for qualitative factors being an asymmetric OA. Without loss of generality, we
consider the case of c = 2, i.e., A = (A1, A2) is an OA(n, sq1

1 sq2
2 , 2) in this paper. Here we

assume that s2 = s2
1 and n must be a multiple of s2

2. The following algorithm is to construct
a WGDCD(λs2

2, ss1
1 ss2−1

2 , p) D = (A, L), with A = (A1, A2) being an OA(λs2
2, ss1

1 ss2−1
2 , 2),

where A1 is an OA(λs2
2, ss1

1 , 2) and A2 is an OA(λs2
2, ss2−1

2 , 2), L is an LHD(λs2
2, p).

We apply the Rao-Hamming construction in Section 3.4 of [22] to obtain the orthogonal
arrays E and F in Algorithm 2. For example, if s1 = 2, then an OA(4, 23, 2) E can be obtain
by the Rao-Hamming construction over GF(2), as

E =


0 0
1 0
1 1
0 1

(
1 1 0
0 1 1

)
=


0 0 0
1 1 0
1 0 1
0 1 1

.

After row permutation, E can be transformed into
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E =


0 0 0
0 1 1
1 0 1
1 1 0

.

It is easy to see that

E0 = (e2, E∗) =

(
0 1 0 1
0 1 1 0

)T

.

Algorithm 2 Construction of WGDCDs with asymmetric qualitative factors

Step 1. Given an OA(s2
1, ss1+1

1 , 2) E and an OA(s2
2, ss2+1

2 , 2) F, s2 = s2
1. After row permu-

tation, E and F can be transformed into E = (e1, e2, E∗) and F = ( f1, f2, F∗) ,

respectively, so that e1 =
(

0T
s1

, 1T
s1

, . . . , (s1 − 1)T
s1

)T
, e2 = 1s1 ⊗ (0, 1, . . . , s1 − 1)T ,

f1 =
(

0T
s2

, 1T
s2

, . . . , (s2 − 1)T
s2

)T
, f2 = 1s2 ⊗ (0, 1, . . . , s2 − 1)T . Delete the columns

e1 and f1 of E and F, respectively. Denote the remaining columns as E0 and F0,
respectively, i.e., E0 = (e2, E∗) and F0 = ( f2, F∗).

Step 2. On base of F0, the first to last rows of E0 are used to replace the s2 levels of f2, respectively, and
denote the replaced design as G, G is an asymmetric OA(s2

2, ss1
1 ss2−1

2 , 2). Let A = 1λ ⊗G.

Step 3. For a given λ and p, let πk be a random permutation of (0, 1, . . . , λ − 1)T, gk
be a random permutation of (0, 1, . . . , s2 − 1)T, and vk = (cT

1 , cT
2 , . . . , cT

s1
)T, k =

1, 2, . . . , p, where ci = (i − 1)s1 ⊕ z, z is a random permutation of (0, 1, . . . , s1 − 1)T,
i = 1, 2, . . . , s1. Construct an LHD L = (l1, l2, . . . , lp), where lk = s2

2(πk ⊗ 1s2
2
) +

s2(1λ ⊗ (gk ⊗ 1s2)) + 1λs2 ⊗ vk, for k = 1, 2, . . . , p.

Step 4. The resulting design is D = (A, L).

Theorem 3. The design D = (A, L) obtained by Algorithm 2 is a WGDCD(λs2
2, ss1

1 ss2−1
2 , p)

with s2 = s2
1.

Clearly, in Theorem 3, A can be divided into two groups, denoted as A = (A1, A2),
where A1 and A2 are OA(λs2

2, ss1
1 , 2) and OA(λs2

2, ss2−1
2 , 2), respectively. Obviously, (A1, L)

and (A2, L) are a DCD(λs2
2, ss1

1 , p) and a DCD(λs2
2, ss2−1

2 , p), respectively. It is not difficult
to find that the number of columns in each group of the subdesign A in the design D
constructed by Algorithm 2 almost reaches its number of levels. The total number of
qualitative factors is s1 + (s2 − 1). The designs constructed by Algorithm 2 cannot be
constructed in [21], because the subdesigns for qualitative factors, constructed by [21], are
all symmetric OAs. An illustration of Algorithm 2 is given in the following example.

Example 2. Construct a WGDCD(32, 2243, 2), when λ = 2. In Step 1, E and F (after rows
permuting) are obtained using the Rao-Hamming construction as follows,

ET =

0 0 1 1
0 1 1 0
0 1 0 1

, FT =


0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 2 3 1 1 3 2 0 2 0 1 3 3 1 0 2
0 3 1 2 1 2 0 3 2 1 3 0 3 0 2 1
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

. In

Step 2, obtain GT =


0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 2 3 1 1 3 2 0 2 0 1 3 3 1 0 2
0 3 1 2 1 2 0 3 2 1 3 0 3 0 2 1
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

. Let A =

12 ⊗ G. In Step 3, let π1 = (1, 0)T , π2 = (0, 1)T , g1 = (0, 3, 2, 1)T , g2 = (1, 3, 0, 2)T , v1 =
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(1, 0, 3, 2)T , v2 = (0, 1, 3, 2)T . We can get L is an LHD(32, 2). In Step 5, the resulting design
D = (A, L) is a WGDCD(32, 2243, 2) and shown in Table 3. A visualization of this example
is shown in Figure 2. Clearly, Figure 2 shows the design points of quantitative factors enjoy
the maximum one-dimensional stratification corresponding to each level combination of any two
qualitative factors in A1 and A2, respectively.

Table 3. WGDCD(32, 2243, 2) in Example 2.

Run A L Run A L

1 0 1 0 0 0 17 4 17 0 1 0 0 0 1 20
2 1 0 2 3 1 16 5 18 1 0 2 3 1 0 21
3 1 1 3 1 2 19 7 19 1 1 3 1 2 3 23
4 0 0 1 2 3 18 6 20 0 0 1 2 3 2 22
5 0 1 1 1 1 29 12 21 0 1 1 1 1 13 28
6 1 0 3 2 0 28 13 22 1 0 3 2 0 12 29
7 1 1 2 0 3 31 15 23 1 1 2 0 3 15 31
8 0 0 0 3 2 30 14 24 0 0 0 3 2 14 30
9 0 1 2 2 2 25 0 25 0 1 2 2 2 9 16

10 1 0 0 1 3 24 1 26 1 0 0 1 3 8 17
11 1 1 1 3 0 27 3 27 1 1 1 3 0 11 19
12 0 0 3 0 1 26 2 28 0 0 3 0 1 10 18
13 0 1 3 3 3 21 8 29 0 1 3 3 3 5 24
14 1 0 1 0 2 20 9 30 1 0 1 0 2 4 25
15 1 1 0 2 1 23 11 31 1 1 0 2 1 7 27
16 0 0 2 1 0 22 10 32 0 0 2 1 0 6 26

(a) (b)

Figure 2. Projection of L in Example 2. Scatter plots of l1 versus l2 in Example 2: (a) points marked
by □, solid □, ◦, and • correspond to the level combinations (0,0), (0,1), (1,0), and (1,1) of (A1

1, A2
1),

respectively; (b) points marked by ◦, △, long -, small •, and large •, rectangle, solid △, + correspond
to the level combinations (0,0), (0,1), (0,2), (0,3) and (1,0), (1,1), (1,2), (1,3) of (A1

2, A2
2), respectively;

and points marked by short -, ×, *, large solid □, and solid ♢, ♢, small solid □, □ correspond to the
level combinations (2,0), (2,1), (2,2), (2,3), and (3,0), (3,1), (3,2), (3,3) of (A1

2, A2
2), respectively.

If a small MCD can be constructed, then a large MCD with more columns can be
constructed following Construction 3 of [16]. Similar to Construction 3 of [16], based on the
WGDCDs obtained by Algorithm 2, a series of new WGDCDs with more columns can be
constructed by Corollary 2 as follows.

Corollary 2. Let A = (A1, A2) be an OA(λs2
2, ss1

1 ss2−1
2 , 2), where Aj is the orthogonal array

with sj levels, j = 1, 2. If for some u, there are difference schemes D(u, cj, sj) of strength two,
denoted by D(j), for j = 1,2, then the design Anew=(D(1)⊕ A1, D(2)⊕ A2) over GF(s1) and
GF(s2) is an OA(λus2

2, ss1·c1
1 s(s2−1)·c2

2 , 2). Let C be an u × f matrix with all elements being ones,
H be an any LHD(u, p f ), obtain an LHD Lnew=C ⊕ L + λs2

2H ⊕ 1λs2
2
, then (Anew,Lnew) is a

WGDCD(λus2
2, ss1·c1

1 s(s2−1)·c2
2 , p f ).
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3.2. Construction of BGDCDs

Section 3.1 is devoted to constructing WGDCDs with either equal-level or mixed-
level qualitative factors, where each group of A in a WGDCD achieves excellent strat-
ification between any two qualitative factors and quantitative factors. We now con-
struct the second type of GDCDs, the BGDCDs with mixed-level qualitative factors. In a
WGDCD(n, sq1

1 sq2
2 , p), a multiple relation between s1 and s2 is required, i.e., s2 = s2

1. But, in
a BGDCD(n, sq1

1 sq2
2 , p), this relation may or may not be present. Compared to WGDCDs,

the BGDCDs have better stratification properties between any two qualitative factors from
different groups of A and quantitative factors. Since the qualitative factor designs in DCDs
constructed by [21] are symmetric OAs, we focus on the case that the qualitative factor
designs are asymmetric OAs in Section 3.2.

3.2.1. Construction of BGDCDs Based on OA(s1s2, s1
1s1

2, 2)

In this section, we also construct BGDCDs using an initial DCD D0. Here we only
discuss the case of BGDCDs with asymmetric qualitative factors. Since D1 in an initial
DCD D0 is a symmetric OA, then WGDCDs like the one in Section 3.1.1 can be obtained
by Algorithm 3 below. In light of Corollary 2, we propose Algorithm 3 below. In Step 2 of
Algorithm 3, the ⊕ operator is based on GF(s1) and GF(s2).

Algorithm 3 Construction of BGDCDs based on OA(s1s2, s1
1s1

2, 2)

Step 1. Let (M, B) be an MCD(s1s2, s1
1s1

2, p) , where M is an OA(s1s2, s1
1s1

2, 2) and B is an
LHD(s1s2, p). Let D1 = 1λ ⊗ M and D2 = (BT , (s1s2 ⊕ B)T , (2s1s2 ⊕ B)T , . . . , ((λ−
1)s1s2 ⊕ B)T)T , then construct an initial DCD(λs1s2, s1

1s1
2, p) D0, as D0 = (D1, D2),

where D1 = (D11, D12), D1j is an OA(λs1s2, s1
j , 1), j=1,2.

Step 2. Obtain two designs A = (A1, A2) = (D(1)⊕ D11, D(2)⊕ D12) over GF(s1) and
GF(s2), and L = C ⊗ D2 + λs1s2H ⊗ 1λs1s2 , where D(j) is a difference scheme
D(u, cj, sj) for j=1, 2, C is an u × f matrix with all elements being ones, and H is
any LHD(u, p f ).

Step 3. The resulting design D = (A, L).

Remark 1. The design (M, B) is an MCD which can be obtained from [23]. The D0 generated
by Algorithm 3 has two cases: (i) When s1 = s2 in M, the design D0 is a DCD with equal-level
qualitative factors; (ii) Otherwise the obtained design D0 is a DCD with mixed-level qualitative
factors. In addition, design A = (A1, A2) obtained from Step 2 is an OA(uλs1s2, sc1

1 sc2
2 , 2), where

Aj is an OA(uλs1s2, s
cj
j , 2), j=1,2.

Proposition 2. According to Algorithm 3, we have the following results:
(i) The design D0 = (D1, D2) obtained from Step 1 is a DCD(λs1s2, s1

1s1
2, p), where D1 is an

OA(λs1s2, 2, s1s2, 2), D2 is an LHD(λs1s2, p);
(ii) The design D = (A, L) obtained from Algorithm 3 is a BGDCD(uλs1s2, sc1

1 sc2
2 , p f ).

In a WGDCD(n, sq1
1 sq2

2 , p) requires s2 = s2
1. But, for the BGDCDs constructed by

Algorithm 3, this multiple relation is unnecessary. Next, we give an illustrative example of
Algorithm 3.

Example 3. First, the design (M, B) in Table 4 is an MCD(6, 2131, 2) of 6 runs for two qualitative
factors m1, m2 and two quantitative factors b1, b2. Here M is an asymmetric OA(6, 2131, 2) and B
is an LHD(6, 2). In Step 1, let λ = 2 and juxtapose the two M’s row by row to obtain D1, which is
an OA(12, 2131, 2) and can be partitioned into two full factorial designs, while using B to obtain
D2. Then we can obtain design D0 = (D1, D2) in Table 5 is a DCD(12, 2131, 2). It can be easily
checked that the rows in D2 corresponding to any level combination of any one or two factors in D1
form an LHD.
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Table 4. MCD(6, 2131, 2) in Example 3.

Run M B

1 0 0 0 3
2 0 1 2 5
3 0 2 4 1
4 1 0 3 0
5 1 1 5 2
6 1 2 1 4

Table 5. The DCD(12, 2131, 2) used in Example 3.

DT
1

DT
11 0 0 0 1 1 1 0 0 0 1 1 1

DT
12 0 1 2 0 1 2 0 1 2 0 1 2

DT
2

0 2 4 3 5 1 6 8 10 9 11 7
3 5 1 0 2 4 9 11 7 6 8 10

Second, take D(1)T =

[
0 0 0 0 0 0
0 1 0 1 0 1

]
, D(2)T =

 0 0 0 0 0 0
0 1 2 0 1 2
0 2 1 0 2 1

, CT =

[
1 1 1 1 1 1
1 1 1 1 1 1

]
and HT =


0 1 2 3 4 5
2 1 5 3 0 4
3 4 2 5 1 0
4 3 0 1 5 2

. Then by Step 2 and Step 3, we

obtain that the design D is a BGDCD(72, 2233, 4). The final design D = (A, L) is shown in
Table 6. Figure 3 reflects the projection property of L, with respect to level combinations of (A1

1, A1
2)

and (A2
1, A2

2), respectively.

Table 6. BGDCD(72, 2233, 4) in Example 3.

Run A L Run A L

1 0 0 0 0 0 0 27 36 51 37 0 1 0 0 0 36 39 60 15
2 0 0 1 1 1 2 29 38 53 38 0 1 1 1 1 38 41 62 17
3 0 0 2 2 2 4 25 40 49 39 0 1 2 2 2 40 37 64 13
4 1 1 0 0 0 3 24 39 48 40 1 0 0 0 0 39 36 63 12
5 1 1 1 1 1 5 26 41 50 41 1 0 1 1 1 41 38 65 14
6 1 1 2 2 2 1 28 37 52 42 1 0 2 2 2 37 40 61 16
7 0 0 0 0 0 6 33 42 57 43 0 1 0 0 0 42 45 66 21
8 0 0 1 1 1 8 35 44 59 44 0 1 1 1 1 44 47 68 23
9 0 0 2 2 2 10 31 46 55 45 0 1 2 2 2 46 43 70 19

10 1 1 0 0 0 9 30 45 54 46 1 0 0 0 0 45 42 69 18
11 1 1 1 1 1 11 32 47 56 47 1 0 1 1 1 47 44 71 20
12 1 1 2 2 2 7 34 43 58 48 1 0 2 2 2 43 46 67 22
13 0 1 0 1 2 12 15 48 39 49 0 0 0 1 2 48 3 12 63
14 0 1 1 2 0 14 17 50 41 50 0 0 1 2 0 50 5 14 65
15 0 1 2 0 1 16 13 52 37 51 0 0 2 0 1 52 1 16 61
16 1 0 0 1 2 15 12 51 36 52 1 1 0 1 2 51 0 15 60
17 1 0 1 2 0 17 14 53 38 53 1 1 1 2 0 53 2 17 62
18 1 0 2 0 1 13 16 49 40 54 1 1 2 0 1 49 4 13 64
19 0 1 0 1 2 18 21 54 45 55 0 0 0 1 2 54 9 18 69
20 0 1 1 2 0 20 23 56 47 56 0 0 1 2 0 56 11 20 71
21 0 1 2 0 1 22 19 58 43 57 0 0 2 0 1 58 7 22 67
22 1 0 0 1 2 21 18 57 42 58 1 1 0 1 2 57 6 21 66
23 1 0 1 2 0 23 20 59 44 59 1 1 1 2 0 59 8 23 68
24 1 0 2 0 1 19 22 55 46 60 1 1 2 0 1 55 10 19 70
25 0 0 0 2 1 24 63 24 3 61 0 1 0 2 1 60 51 0 27
26 0 0 1 0 2 26 65 26 5 62 0 1 1 0 2 62 53 2 29
27 0 0 2 1 0 28 61 28 1 63 0 1 2 1 0 64 49 4 25
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Table 6. Cont.

Run A L Run A L

28 1 1 0 2 1 27 60 27 0 64 1 0 0 2 1 63 48 3 24
29 1 1 1 0 2 29 62 29 2 65 1 0 1 0 2 65 50 5 26
30 1 1 2 1 0 25 64 25 4 66 1 0 2 1 0 61 52 1 28
31 0 0 0 2 1 30 69 30 9 67 0 1 0 2 1 66 57 6 33
32 0 0 1 0 2 32 71 32 11 68 0 1 1 0 2 68 59 8 35
33 0 0 2 1 0 34 67 34 7 69 0 1 2 1 0 70 55 10 31
34 1 1 0 2 1 33 66 33 6 70 1 0 0 2 1 69 54 9 30
35 1 1 1 0 2 35 68 35 8 71 1 0 1 0 2 71 56 11 32
36 1 1 2 1 0 31 70 31 10 72 1 0 2 1 0 67 58 7 34

(a) (b)

Figure 3. Projection of L in Example 3. Scatter plots of l1 versus l2 in Example 3: (a,b) points
represented by •, solid △, △, solid ♢, ×, □ correspond to the level combinations (0, 0), (0, 1), (0, 2),
and (1, 0), (1, 1), (1, 2) of (A1

1, A1
2) ( (A2

1, A2
2) ), respectively.

3.2.2. Construction of BGDCDs Based on (s1 × 1)-ROAs

For the BGDCD D = (A, L) constructed by Algorithm 3, the number of columns in
A is determined by the number of columns in D1, which is taken from the initial design
D0 = (D1, D2). Since the D1 has only two columns, the number of columns in A is
very small. To solve this problem, we propose Algorithms 4 and 5. The initial design
is constructed using Algorithm 4, and based on this initial design, a BGDCD with a
large number of qualitative factor columns can be constructed by Algorithm 5. Before
presenting Algorithm 4, we give Theorem 4 and Proposition 3, which are extremely useful
for Algorithm 4.

According to Lemma 1 derived by [17] and Lemma 2 derived by [21], we present the
necessary and sufficient condition for the existence of DCDs when D1 is an asymmetric
OA(n, sq1

1 s2, 2) with s2 = s2
1. To drive this result, we define matrices D

′
2, D

′′
2 and D

′′′
2 based

on D2. For D2 = (d1, d2, . . . , dp) in a DCD D0 = (D1, D2), dk is the kth column of D2,

dik is the (i, k)th entry of D2, 1 ≤ i ≤ n, 1 ≤ k ≤ p. Let d
′
ik =

⌊
dik
.

⌋
, d

′′
ik =

⌊
dik
s2

⌋
=
⌊

d
′
ik
.

⌋
,

and d
′′′
ik =

⌊
dik
s3

⌋
=
⌊

d
′′
ik
.

⌋
, where d

′
ik, d

′′
ik and d

′′′
ik are the (i, k)th entries in D

′
2, D

′′
2 and D

′′′
2 ,

respectively, and s is the number of levels of qualitative factors in D1, ⌊a⌋ represents the
largest integer not exceeding a. Let d

′
k, d

′′
k and d

′′′
k be the kth columns of D

′
2, D

′′
2 and D

′′′
2 ,

respectively. Refs. [17,21] derived Lemmas 1 and 2 below, respectively.

Lemma 1 ([17]). Given D1 is an OA(n, q, s, 2), D2 is an LHD(n, p) and D
′
2 is defined as above,

then (D1, D2) is an MCD(n, sq, p) if and only if for k = 1, 2, . . . , p, (D1, d
′
k) is an asymmetric

OA(n, sm(n/s), 2), where d
′
k is the kth column of D

′
2.

Lemma 2 ([21]). Suppose that D1=(z1, z2, . . . , zq) is an OA(n, q, s, 2) and D2=(d1, d2, . . . , dp)
is an LHD(n, p). The design D0 = (D1, D2) is a DCD(n, sq, p) if and only if
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(i) (zi, d
′
k) is an OA(n, 2, s(n/s), 2), for any 1 ≤ i ≤ q, 1 ≤ k ≤ p; and

(ii) (zi, zj, d
′′
k ) is an OA(n, 3, s2(n/s2), 3), for any 1 ≤ i ̸= j ≤ q, 1 ≤ k ≤ p.

Theorem 4. Suppose that D1 = (M, B) is an OA(λs1s2, sq1
1 s2, 2), where s2 = s2

1, λ ≥ 2, M and B
are the first q1 columns and the last column of D1, respectively, D2 is an LHD(λs3

1, p)=(d1, d2, . . . , dp),
then the design D0=(D1, D2) is a DCD(λs3

1, sq1
1 s2, p), if and only if, for 1 ≤ k ≤ p :

(i) (mi, d
′
k) is an OA(λs3

1, 2, s1(λs2
1), 2), mi is the ith column of M, 1 ≤ i ≤ q1;

(ii) (B, d
′′
k ) is an OA(λs3

1, 2, s2(λs1), 2);
(iii) (mi, mj, d

′′
k ) is an OA(λs3

1, 3, s2
1(λs1), 3) ,1 ≤ i ̸= j ≤ q1;

(iv) (mi, B, d
′′′
k ) is an OA(λs3

1, 3, s1s2λ, 3), 1 ≤ i ≤ q1.

Proposition 3. When D1=(M, B) is an OA(λs3
1, sq1

1 s2, 2), s2=s2
1, λ ≥ 2, DCD(λs3

1, sq1
1 s2, p) exists,

if and only if D1 can be divided into λ (s1 × 1)-ROA(s3
1, sq1

1 s2, 2)′s, and M is a CROA(λs3
1, sq1

1 , 2).

Inspired by Proposition 3, we give Algorithm 4 to construct a DCD, which can be used
as an initial design for Algorithm 5.

Algorithm 4 Construction of DCD(λs3
1, sq1

1 s2, p)′s

Step 1. Given Fi = (Mi, Bi) is an (s1×1)-ROA(s3
1, sq1

1 s2, 2), where Mi is an CROA(s3
1, sq1

1 , 2)
and Bi is an OA(s3

1, s2, 1), 1 ≤ i ≤ λ, then let D1 = (FT
1 , FT

2 , . . . , FT
λ )

T . Note that all
the Fi’s can be either the same or different.

Step 2. Let ek be a random permutation of (0, 1, . . . , λ − 1)T , fk be a random permutation of
(( fk1 ⊗ 1s2

1
)T , ( fk2 ⊗ 1s2

1
)T , . . . , ( fkλ ⊗ 1s2

1
)T)T , where fki is a random arrangement

of (0, 1, . . . , s1 − 1), i = 1, 2, . . . , λ.

Step 3. Let dk =
(

ek ⊗ 1s3
1

)
s3
1 + fks2

1 +
(

hT
k1, hT

k2, . . . , hT
kλs1

)T
, 1 ≤ k ≤ p. Let D2 = (d1, d2, . . . ,dp).

Here hki is a random arrangement of
(

hT
ki1, hT

ki2, . . . , hT
kis1

)T
and hkij is a random

arrangement of ((j − 1)s1, . . . , js1 − 1)T , 1 ≤ k ≤ p, 1 ≤ i ≤ λs1, 1 ≤ j ≤ s1.

Step 4. Obtain D0 = (D1, D2).

Theorem 5. The design D0 = (D1, D2) obtained by Algorithm 4 is a DCD(λs3
1, sq1

1 s2, p), where
D1 is an asymmetric OA(λs3

1, sq1
1 s2, 2), D2 is an LHD(λs3

1, p).

From Proposition 3, it is clear that Theorem 5 is true. According to Corollary 1 of [21],
we have the following Corollary 3.

Corollary 3. For the design D0 = (D1, D2) in Theorem 5, we have q1 ≤ s1.

The proof of Theorem 4 is straightforward. In Algorithm 4, Step 1 is devoted to
creating the D1 satisfying the requirements in Proposition 3. The above steps produce
λ! · (s1!)λ · λs1(s1!)s1 different quantitative columns. In other words, Algorithm 4 provides
the DCDs with many quantitative factors. The following example gives an illustration of
Algorithm 4.

Example 4. Consider a (2×1)-resolvable orthogonal array Fi=(Mi, Bi) is an OA(8, 224, 2), where

s1 = 2, s2 = s2
1 = 4, 1 ≤ i ≤ λ. Let λ = 2, p = 3, F1 =

 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 2 1 3 2 0 3 1

T

,

F2 =

 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 3 0 2 3 1 2 0

T

. According to Step 1, we obtain D1. In Step 2 and

Step 3, let e1 = e2 = e3 = (0, 1)T , f1 = (0, 1)T , f2 = (1, 0)T , f3 = (0, 1)T , h1i = h2i =
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(0, 1, 2, 3)T , h3i = (1, 0, 3, 2)T , for i = 1, 2 . . . , 4. Then we can obtain the corresponding d1, d2, d3
in D2. According to Step 4, a DCD(16, 224, 3) D0 is constructed as in Table 7. From Figure 4, we
can verify that the rows in D2 corresponding to each level combination of any one or two factors in
D1 form an LHD. Obviously, this satisfies the definition of DCD.

Table 7. DCD(16, 224, 3) D0 = (D1, D2) in Example 4, where λ = 2.

DT
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

DT
1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

DT
12 0 2 1 3 2 0 3 1 1 3 0 2 3 1 2 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DT

2 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
1 0 3 2 5 4 7 6 9 8 10 11 13 12 15 14

(a) (b) (c)

Figure 4. Projection of D2 in Example 4. Scatter plots of d1 versus d2 in Example 4: (a) points
represented by □,♢, △, ×, * and solid □, solid ♢, solid △ correspond to the level combinations (0, 0),
(0, 1), (0, 2), (0, 3) and (1, 0), (1, 1), (1, 2), (1, 3) of (m1, B); (b) points marked by □ and • correspond to
the levels 0 and 1 of m1; (c) points represented by □, ♢, △ and ◦ correspond to the levels 0, 1, 2 and 3
of B.

Next, we propose another algorithm to construct BGDCD(uλs3
1, sq1·c1

1 sc2
2 , p f ) based on

the DCD D0 = (D1, D2) constructed by Algorithm 4. Similar to Corollary 2, mixed-level
difference schemes are used in Algorithm 5.

Algorithm 5 Construction of BGDCDs based on (s1 × 1)-ROAs

Step 1. Obtain a DCD(λs3
1, sq1

1 s2, p) D0 = (D1, D2) from Algorithm 4, where D1 =

(D11, D12) is an OA(λs3
1, sq1

1 s2, 2), D2 is an LHD(λs3
1, p), s2=s2

1, D11 is an
OA(λs3

1, sq1
1 , 2), and D12 is an OA(λs3

1, s2, 1).
Step 2. Obtain two designs A = (D(1)⊕ D11, D(2)⊕ D12) over GF(s1) and GF(s2), and

L = C ⊗ D2 + λs3
1H ⊗ 1λs3

1
.

Step 3. Obtain a design D = (A, L).

Theorem 6. The design D = (A, L) obtained by Algorithm 5 is a BGDCD(uλs3
1, sq1·c1

1 sc2
2 , p f ) ,

where A is an asymmetric OA(uλs3
1, sq1·c1

1 sc2
2 , 2), L is an LHD(uλs3

1, p f ).

The result of Theorem 6 just follows from the proofs of Propositions 1 and 2.

Remark 2. In Algorithm 5, since D0 = (D1, D2) is a DCD(λs3
1, sq1

1 s2, p), (D11, D2) is also a
DCD(λs3

1, sq1
1 , p). Therefore (A1, L) = ((D(1)⊕ D11), L) is a WGDCD(uλs3

1, sq1·c1
1 , p f ), i.e.,

subgroup A1j of A1 satisfies (A1j, L) is a DCD(uλs3
1, sq1

1 , p f ), for 1 ≤ j ≤ c1.

Example 5. Consider a design BGDCD(64, 22·442, 4), using the initial DCD D0 as in Table 7,
and delete the first column in D2 (for saving space). By using the following difference schemes
D(1) and D(2), 4 × 2 matrix C and any LHD(4, 4) H, we can obtain A and L in Algorithm 5,
respectively. The resulting design D = (A, L) is listed in Table 8. As we can verify that (A1, L) is
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a WGDCD(64, 22·4, 4), where A1 is an OA(64, 28, 2).

D(1) =


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

, D(2) =


0 0
0 1
0 2
0 3

, C =


1 1
1 1
1 1
1 1

 and H =


0 2 3 1
1 1 1 2
3 3 2 0
2 0 0 3

.

Table 8. BGDCD(64, 22·442, 4) D = (A, L) in Example 5.

Run
A

L Run
A

L
A1 A2 A1 A2

1 0 0 0 0 0 0 0 0 0 0 4 33 52 17 33 0 0 0 0 1 1 1 1 0 2 52 49 36 1
2 1 1 1 1 1 1 1 1 2 2 5 32 53 16 34 1 1 1 1 0 0 0 0 2 0 53 48 37 0
3 0 1 0 1 0 1 0 1 1 1 6 35 54 19 35 0 1 0 1 1 0 1 0 1 3 54 51 38 3
4 1 0 1 0 1 0 1 0 3 3 7 34 55 18 36 1 0 1 0 0 1 0 1 3 1 55 50 39 2
5 0 0 0 0 0 0 0 0 2 2 0 37 48 21 37 0 0 0 0 1 1 1 1 2 0 48 53 32 5
6 1 1 1 1 1 1 1 1 0 0 1 36 49 20 38 1 1 1 1 0 0 0 0 0 2 49 52 33 4
7 0 1 0 1 0 1 0 1 3 3 2 39 50 23 39 0 1 0 1 1 0 1 0 3 1 50 55 34 7
8 1 0 1 0 1 0 1 0 1 1 3 38 51 22 40 1 0 1 0 0 1 0 1 1 3 51 54 35 6
9 0 0 0 0 0 0 0 0 0 0 12 41 60 25 41 0 0 0 0 1 1 1 1 0 2 60 57 44 9
10 1 1 1 1 1 1 1 1 2 2 13 40 61 24 42 1 1 1 1 0 0 0 0 2 0 61 56 45 8
11 0 1 0 1 0 1 0 1 1 1 14 42 62 26 43 0 1 0 1 1 0 1 0 1 3 62 58 46 10
12 1 0 1 0 1 0 1 0 3 3 15 43 63 27 44 1 0 1 0 0 1 0 1 3 1 63 59 47 11
13 0 0 0 0 0 0 0 0 2 2 8 45 56 29 45 0 0 0 0 1 1 1 1 2 0 56 61 40 13
14 1 1 1 1 1 1 1 1 0 0 9 44 57 28 46 1 1 1 1 0 0 0 0 0 2 57 60 41 12
15 0 1 0 1 0 1 0 1 3 3 10 47 58 31 47 0 1 0 1 1 0 1 0 3 1 58 63 42 15
16 1 0 1 0 1 0 1 0 1 1 11 46 59 30 48 1 0 1 0 0 1 0 1 1 3 59 62 43 14
17 0 0 1 1 0 0 1 1 0 1 20 17 20 33 49 0 0 1 1 1 1 0 0 0 3 36 1 4 49
18 1 1 0 0 1 1 0 0 2 3 21 16 21 32 50 1 1 0 0 0 0 1 1 2 1 37 0 5 48
19 0 1 1 0 0 1 1 0 1 2 22 19 22 35 51 0 1 1 0 1 0 0 1 1 0 38 3 6 51
20 1 0 0 1 1 0 0 1 3 0 23 18 23 34 52 1 0 0 1 0 1 1 0 3 2 39 2 7 50
21 0 0 1 1 0 0 1 1 2 3 16 21 16 37 53 0 0 1 1 1 1 0 0 2 1 32 5 0 53
22 1 1 0 0 1 1 0 0 0 1 17 20 17 36 54 1 1 0 0 0 0 1 1 0 3 33 4 1 52
23 0 1 1 0 0 1 1 0 3 0 18 23 18 39 55 0 1 1 0 1 0 0 1 3 2 34 7 2 55
24 1 0 0 1 1 0 0 1 1 2 19 22 19 38 56 1 0 0 1 0 1 1 0 1 0 35 6 3 54
25 0 0 1 1 0 0 1 1 0 1 28 25 28 41 57 0 0 1 1 1 1 0 0 0 3 44 9 12 57
26 1 1 0 0 1 1 0 0 2 3 29 24 29 40 58 1 1 0 0 0 0 1 1 2 1 45 8 13 56
27 0 1 1 0 0 1 1 0 1 2 30 26 30 42 59 0 1 1 0 1 0 0 1 1 0 46 10 14 58
28 1 0 0 1 1 0 0 1 3 0 31 27 31 43 60 1 0 0 1 0 1 1 0 3 2 47 11 15 59
29 0 0 1 1 0 0 1 1 2 3 24 29 24 45 61 0 0 1 1 1 1 0 0 2 1 40 13 8 61
30 1 1 0 0 1 1 0 0 0 1 25 28 25 44 62 1 1 0 0 0 0 1 1 0 3 41 12 9 60
31 0 1 1 0 0 1 1 0 3 0 26 31 26 47 63 0 1 1 0 1 0 0 1 3 2 42 15 10 63
32 1 0 0 1 1 0 0 1 1 2 27 30 27 46 64 1 0 0 1 0 1 1 0 1 0 43 14 11 62

4. Comparison

In this section, the GDCDs presented in this paper, including WGDCDs and BGDCDs,
are compared with the existing DCDs and MCDs in terms of qualitative factors.

Table 9 compares the qualitative factor designs of the WGDCDs constructed by Algorithm 1
with that of the DCDs constructed by [21]. As we can see in Table 9, as the run size of the
design increases, the number of qualitative factors in WGDCDs also increases, but the number
of qualitative factors in DCDs remains constant. Therefore, the WGDCDs constructed by
Algorithm 1 can accommodate more equal-level qualitative factors than DCDs constructed
by [21] under the same runs; details see Table 9. Moreover, the subdesigns for qualitative factors
in the DCDs from [21] are all symmetric OAs. To this end, from Algorithm 4 we construct the
DCDs with the qualitative factor subdesigns being asymmetric OAs.

On the other hand, we compare GDCDs, including WGDCDs and BGDCDs, with
MCDs. Firstly, because the GDCDs have similar space-filling properties to DCDs, the GD-
CDs have better stratification properties between two qualitative factors and quantitative
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factors than the MCDs in [16–20]. Secondly, when the subdesigns for qualitative factors are
mixed-level, Table 10 compares the qualitative factor designs of the GDCDs (WGDCDs and
BGDCDs) with that of the MCDs. In [16] there is a relation in an MCD, i.e., s2 = αs1, when
the subdesign for qualitative factors is an OA(n, sq1

1 sq2
2 , 2). When the constraint conditions

(s2 = s2
1) are the same, the designs constructed by Algorithms 2, 4 and 5 have better

space-filling properties between qualitative factors and quantitative factors than the MCDs
in [16]. Especially, the relation, s2 = αs1, is not required in the BGDCDs constructed by
Algorithm 3. Therefore, the level types of the BGDCDs constructed by Algorithm 3 are
more flexible than those of MCDs in [16].

Table 9. Comparisons between DCDs (D1, D2) in [21] and WGDCDs (A, L).

s Run D1 A

2 16 OA(16, 22, 2) * OA(16, 24, 2)
32 OA(32, 22, 2) * OA(32, 28, 2)

3 54 OA(54, 33, 2) * OA(54, 39, 2)
162 OA(162, 33, 2) * OA(162, 315, 2)

4 128 OA(128, 44, 2) * OA(128, 416, 2)
512 OA(512, 44, 2) * OA(512, 424, 2)

5 250 OA(250, 55, 2) * OA(250, 525, 2)
1250 OA(1250, 55, 2) * OA(1250, 535, 2)

6 216 OA(216, 62, 2) * OA(216, 64, 2)
1296 OA(1296, 62, 2) * OA(1296, 616, 2)

1 D1: The subdesigns for qualitative factors in DCDs generated from [21]. Symbol * represents that the number of
columns in D1 reaches the upper bound. 2 A: The subdesigns for qualitative factors in WGDCDs constructed by
Algorithm 1.

Table 10. Comparisons of GDCDs (WGDCDs and BGDCDs) with the existing MCDs.

s1 s2 A(1) A(2) A(3) A(4) A(5)

2 3 - - OA(72, 2233, 2) - -
2 4 OA(32, 2444, 2) OA(32, 2243, 2) OA(64, 2444, 2) OA(16, 224, 2) OA(64, 2842, 2)
2 5 - - OA(200, 2252, 2) - -
2 6 OA(72, 2262, 2) - OA(144, 2262, 2) - -
2 7 - - OA(392, 2272, 2) - -
2 8 OA(128, 2882, 2) - OA(256, 2882, 2) - -
3 4 - - OA(288, 3242, 2) - -
3 5 - - OA(450, 3255, 2) - -
3 6 OA(108, 3362, 2) - OA(216, 3362, 2) - -
3 7 - - OA(882, 3272, 2) - -
3 8 - - OA(1152, 3282, 2) - -
3 9 OA(243, 3592, 2) OA(162, 3398, 2) OA(486, 3592, 2) OA(81, 339, 2) OA(729, 32099, 2)
4 5 - - OA(800, 4252, 2) - -
4 6 - - OA(576, 4262, 2) - -
4 7 - - OA(1568, 4272, 2) - -
4 8 OA(256, 4282, 2) - OA(512, 4282, 2) - -

1 A(1): The subdesigns for qualitative factors in MCDs generated from Construction 3 of [16]. 2 A(2): The
subdesigns for qualitative factors in WGDCDs constructed by Algorithm 2. 3 A(3): The subdesigns for qualitative
factors in BGDCDs constructed by Algorithm 3. 4 A(4): The subdesigns for qualitative factors in DCDs constructed
by Algorithm 4. 5 A(5): The subdesigns for qualitative factors in BGDCDs constructed by Algorithm 5.

5. Conclusions and Future Research Directions

The existence of the interaction effects between any two qualitative factors and all
quantitative factors in a computer experiment involving both qualitative and quantitative
factors is very important for design selection. If no such effects exist, then an MCD is
chosen; if the effects exist and the number of qualitative factors is no greater than the
number of their levels, then a DCD is the best choice. When the number of qualitative
factors exceeds the number of levels, neither an MCD nor a DCD can be used if some
qualitative factors have the effects with quantitative factors and some do not. Inspired
by this, we propose a new class of DCDs, namely GDCDs. A GDCD is an MCD, and
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the columns of some qualitative factors and all quantitative factors form a DCD. DCDs
in [21] can only accommodate equal-level qualitative factors and the number of qualitative
factors is also limited. Unlike DCDs, GDCDs can not only entertain more qualitative
factors, but the qualitative factors can be either symmetric or asymmetric. In addition,
GDCDs are equipped with better stratification properties between the qualitative and
quantitative factors than the existing MCDs, whether the qualitative factors are symmetric
or asymmetric.

In this paper, we propose two classes of GDCDs, namely WGDCDs and BGDCDs.
While the algorithms for constructing WGDCDs and BGDCDs are similar and easy to
implement, they differ in the initial DCDs used to construct the subdesign A. Four algo-
rithms for constructing different GDCDs are provided. Algorithm 1 constructs WGDCDs
based on the initial DCD D0 = (D1, D2), where the design of the qualitative factors D1
is an OA(n, sq, 2). In contrast to DCDs in [21], whose number of qualitative factors is at
most s, the WGDCDs obtained from Algorithm 1 can accommodate cs qualitative factors.
The WGDCDs obtained from Algorithm 2 can entertain two different levels of qualitative
factors, and the number of qualitative factors in each group can almost reach its bound.
Similar to Algorithm 1, the designs obtained from Algorithm 2 with more qualitative factors
can be further extended by using the difference schemes with mixed levels. Algorithm 3 not
only constructs BGDCDs with two different levels of qualitative factors, but also constructs
DCDs with mixed-level qualitative factors, and there is no multiple relation between s1
and s2. Algorithm 4 provides the initial DCDs that contain more mixed-level qualitative
factors and are needed in Algorithm 5. The BGDCDs obtained by Algorithm 5 can also be
realized as WGDCDs in the groups extended by D1i being an OA. Moreover, according to
the comparisons in Section 4, the GDCDs in this paper, including WGDCDs and BGDCDs,
outperform both MCDs in [16–20] and DCDs in [21].

An interesting but challenging direction for future research is to construct initial DCDs
with more qualitative factors possessing different levels. Another possible direction is
to construct GDCDs with L having high-dimensional space-filling properties, such as 2
to 3 dimensions, or to consider adding column-orthogonality within or between groups.
The construction of such GDCDs is not trivial and cannot be easily extended. We hope to
investigate this and report the results in the near future.
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Appendix A. Proofs

Proof of Theorem 1. Since D = (A, L) is a special MCD, then (i) follows from the Proposition 1
of [17]. For part (ii), according to the property of a WGDCD, we know that (Ai, L) is a DCD,
therefore (ii) can be obtained from Theorem 1 of [21]. This completes the proof.

Proof of Theorem 2. Since D = (A, L) is a special MCD, then (i) follows from the Proposition 1
of [17]. For part (ii), when A = (A1, A2, . . . , Ac) is an OA(n, sq1

1 sq2
2 · · · sqc

c , 2), following the
property of a BGDCD, i.e., the rows in L corresponding to each of sism level combinations of
any two factors in Ai and Am, respectively, form an LHD(n/sism, p). This means that each of
all possible three-tuples in (Aj

i, An
m, l′′k ) occurs only once. This completes the proof.
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From the Construction 3 of [16], we have the following result.

Lemma A1 ([16]). Let B = (B1, . . . , Bv) be an OA(n, sq1
1 sq2

2 · · · sqv
v , 2), where Bi is an OA(n, sqi

i , 2),
for i = 1, 2, . . . , v, D(j) be a difference scheme D(u, cj, sj) (of strength 2), for j = 1, 2, . . . , v, C be
an u × f matrix with all elements being ones, H be an LHD(u, p f ), and M be an LHD(n, p).
If (B, M) is an MCD(n, sq1

1 sq2
2 · · · sqv

v , p), then (A, L) is an MCD(nu, sq1c1
1 sq2c2

2 · · · sqvcv
v , p f ),

where A = (D(1)⊕ B1, . . . , D(v)⊕ Bv) over the Galois field GF(si), i = 1, 2, . . . , v, and L =
C ⊗ M + nH ⊗ 1n.

When v = 1, Lemma A2 follows from Lemma A1.

Lemma A2. Let B be an OA(n, sq, 2), D(1) be a difference scheme D(u, c, s) (of strength 2),
C be an u × f matrix of all 1’s, H be an LHD(u, p f ), and M be an LHD(n, p). If (B, M) is
an MCD(n, sq, p), then (A, L) is an MCD(un, sqc, p f ), where A = D(1)⊕ B over GF(s) and
L = C ⊗ M + nH ⊗ 1n.

Lemma A3. Let U be an OA(ks2, s2, 2), V be an LHD(ks2, 1), r = ξs, h be an LHD(r, 1). η
is a permutation of (0T

ξ , 1T
ξ , . . . , s-1T

ξ )
T or η = 0T

. . Let T = η ⊕ U over GF(s), W = 1. ⊗ V +

(ks2)h ⊗ 1ks2). If (U, V) is a DCD(ks2, s2, 1), then (T, W) is a DCD(rks2, s2, 1).

Proof of Lemma A3. First, when k = 1, (T, W) is a DCD(rks2, s2, 1). When k = 1, U is a
full factorial design, i.e., if (a, b) is one row in U, then (a, b) occurs in U only once.

(i) According to Lemma A1, (T, W) is an MCD. From Lemma 1, (ti, w
′
) is an OA(rs2, s(rs), 2),

where ti is the ith column of T, i = 1, 2.
(ii) For α ∈ GF(s) = {α0, α1, . . . , αs−1}, α0 = 0, then α ⊕ U over GF(s) can be trans-

formed into U via row permutations, hence, T is r replicates of U. Therefore, (T, W) can be
transformed by row permutations into

U V + 0n
U V + n1n
...

...
U V + n(r − 1)1n

, (A1)

where n = s2. For i = 1, 2, . . . , s2, let (ai, bi) be the ith row of U, vi be the ith row of V, then

following (1) above and


ai bi vi + 0
ai bi vi + s2

...
...

...
ai bi vi + s2(r − 1)

, we know that


ai bi (vi + 0)

′′

ai bi (vi + s2)
′′

...
...

...
ai bi (vi + s2(r − 1))

′′

 =


ai bi 0
ai bi 1
...

...
...

ai bi r − 1

.

Since V is an LHD(s2, 1), for vi ∈ {0, 1, 2, . . . , s2 − 1}, ((vi + 0)
′′
, (vi + s2)

′′
, . . . , (vi +

s2(r − 1))
′′
)=(0, 1, . . . , r − 1).

Since U is a full factorial design, then (T, W
′′
) is an OA(rs2, s2(r), 3). According to

Lemma A2, we know that (T, W) is a DCD(rs2, s2, 1).
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The second, when k > 1, according to the case k = 1, we need to show that (T, W) can
be transformed by row permutations into

U∗ Ṽ + 0s2

U∗ Ṽ + s21s2

...
...

U∗ Ṽ + (rk − 1)s21s2

, (A2)

where U∗ is a full factorial design, i.e., U∗ is an OA(s2, s2, 2), Ṽ is an LHD(s2, 1). When
k > 1, U is k replicates of U∗, then T is rk replicates of U∗. Following the definitions of

T and W, (T, W) can be transformed into


1k ⊗U∗ V∗ + 0n
1k ⊗U∗ V∗ + n1n

...
...

1k ⊗U∗ V∗ + n(r − 1)1n

, where n = ks2,

V∗ = (0, 1, . . . , ks2 − 1). Since V∗ + in1n=(0 + in, 1 + in, . . . , (ks2 − 1) + in)= (0 + iks2, 1 +

iks2, . . . , (ks2 − 1)+ iks2), i = 0, 1, . . . , r− 1,
(
(V∗ + 0n)T, (V∗ + n1n)T, . . . , (V∗ + n(r − 1)1n)T)T

=
(
(Ṽ + 0s2)T, (Ṽ + s21s2)T, . . . , (Ṽ + s2(rk− 1)1s2)T)T. From (i) and (ii), we know that (T,W)

is a DCD(rks2, s2, 1). This completes the proof.

Proof of Proposition 1. (i) From Lemma A2, (D, L) is an MCD(rn, sqc, p f ).
(ii) Let (a, b) be any two columns of Ai, i = 1, 2, . . . , c, l be any column of L, then

(a, b) can be represented as (a, b) = d(1)(a,b) ⊕ D1(a,b)
over GF(s), where d(1)(a,b) is one

column of D(1) corresponding to (a, b), D1(a,b) are two columns in D1 corresponding to
(a, b), and l can be expressed as l = 1. ⊗ D2(l) + nh ⊗ 1n, where D2(l) is one column of D2

corresponding to l, h is LHD(r, 1). Since D1 is an OA(n, s2, 2), then there exist a k, such
that n = ks2. As D(1) is difference scheme D(r, c, s) of strength 2, and d(1)(a,b) is one
column in D(1), therefore, there exist g, such that r = gs, and d(1)(a,b) is a permutation of
(0T

g , 1T
g , . . . , s-1T

g )
T or d(1)(a,b) = 1T

. . Since D0 = (D1, D2) is a DCD(n, sq, p), (D1(a,b), D2(l))

is a DCD(n, s2, 1), where D1(a,b) is an OA(n, s2, 2), D2(l) is an LHD(n, 1).
According to Lemma A3, we know that (a, b, l) is a DCD(rn, s2, 1). From Lemma 2,

(i) both (a, l
′
) and (b, l

′
) are OA(rn, s(rn/s), 2); (ii) (a, b, l

′′
) is an OA(rn, s2(rn/s2), 2).

According to the randomness of a, b, l, it can be checked that (Ai, L) is a DCD(rn, sq, p f ),
i = 1, 2, . . . , c. From (i) and (ii) above, we know that D = (A, L) is a WGDCD(rn, sq·c, p f ).
This completes the proof.

Proof of Theorem 3. First, it is easily to check that lk is a permutation of {0, 1, . . . , λs2
2 −

1}, hence L constructed by Algorithm 2 is an LHD(λs2
2, p). Second, to prove that the

design D is an MCD, without loss of generality, we need to show that (Aj, l
′
k) is an

OA(λs2
2, s

qj
j (λs2

2/sj)
1, 2), j=1,2, k=1,2,. . . ,p. For j=2, according to lk = s2

2(πk ⊗ 1s2
2
) + s2(1λ ⊗

(gk ⊗ 1s2)) + 1λs2 ⊗ vk, s2 = s2
1, then l

′
k=⌊lk/s2⌋ = s2(πk ⊗ 1s2

2
) + 1λ ⊗ (gk ⊗ 1s2). Next,

we divide l
′
k into λ parts, correspondingly, A2 can be partitioned into λ parts, and since

each part is a completely resolvable orthogonal array, (A2, l
′
k) is an OA(λs2

2, sq2
2 (λs2)

1, 2).
The proof of the case when j=1 is similar to the proof for j=2, and thus omit it. Therefore,
the resulting design D is an MCD(λs2

2, ss1
1 ss2−1

2 , p). Finally, on account of replacing levels
0, 1, . . . , s2 − 1 of the column with the form 1s2 ⊗ (0, 1, . . . , s2 − 1)T in F0 by s2

1 level combi-
nations in E0 in order, and following the above proof of the case when j=2, we can verify
that for j=1, (A1, L) is a DCD(λs2

2, ss1
1 , p). Finally, it is easy to check that (A2, ⌊lk/s2

2⌋) is an
OA(λs2

2, ss2−1
2 λ, 2), then (A2, L) is a DCD(λs2

2, ss2−1
2 , p). This completes the proof.

Proof of Proposition 2. (i) We show that D0 = (D1, D2) is a DCD(λs1s2, s1s2, p). The first, it
can be easily checked that D2 is an LHD(λs1s2, p). Since (M, B) is an MCD, we denote m1 and
m2 are the first and the second column of M, respectively, bi is ith column of B, 1 ≤ i ≤ p. Then
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we have
(

m1,
⌊

bi
s1

⌋)
and

(
m2,

⌊
bi
s2

⌋)
are OA(s1s2, s1

1s1
2, 2) and OA(s1s2, s1

2s1
1, 2), respectively.

Second, to show that (D1, D2) is an MCD we only need to prove
(

D∼
11,

⌊
di
s1

⌋)
and

(
D∼

12,
⌊

di
s2

⌋)
are OA(λs1s2, 2, s1

1(λs2)
1, 2) and OA(λs1s2, 2, s1

2(λs1)
1, 2), where D∼

11 and D∼
12 are also the

first and the second column of D1, respectively , di is ith column of D2, 1 ≤ i ≤ p. Due to(
D∼

11,
⌊

bi
s1

⌋)
can be represented as (α ⊗ 1s2 , 1.1 ⊗ β), α = (0, 1, . . . , s1 − 1)T, β = (0, 1, . . . , s2 −

1)T, so that
(

D∼
11,

⌊
di
s1

⌋)
=
(

1λ ⊗ (α ⊗ 1s2), γ ⊕
⌊

di
s1

⌋)
, where γ = (0, s2, 2s2, . . . , (λ − 1)s2)

T.

After transferring
(

D∼
11,

⌊
di
s1

⌋)
into (α ⊗ 1λs2 , 1s1 ⊗ ξ), where ξ = (0, 1, 2, . . . , λs2 − 1)T. There-

fore
(

D∼
11,

⌊
di
s1

⌋)
is an OA(λs1s2, 2, s1

1(λs2)
1, 2). Similarly, it can be checked that

(
D∼

12,
⌊

di
s2

⌋)
is an OA(λs1s2, 2, s1

2(λs1)
1, 2). Therefore (D1, D2) is an MCD. Finally, in order to prove

(D1, D2) is a DCD, all that remains is for
(

D∼
11, D∼

12,
⌊

di
s1s2

⌋)
to be an OA(λs1s2, 3, s1

1s1
2λ1, 3).(

D∼
11, D∼

12,
⌊

di
s1s2

⌋)
can be represented as (1λ ⊗ (α ⊗ 1s2), 1λ ⊗ (1s1 ⊗ β), η ⊕ 0s1s2), where

η = (0, 1, . . . , λ − 1), i.e.,

(
D∼

11, D∼
12,

⌊
di

s1s2

⌋)
=


α ⊗ 1s2 1s1 ⊗ β 0s1s2

α ⊗ 1s2 1s1 ⊗ β 1s1s2
...

...
...

α ⊗ 1s2 1s1 ⊗ β (λ − 1)s1s2

. (A3)

It is easy to see that each of all possible three-tuples occurs exactly once in
(

D∼
11, D∼

12,
⌊

di
s1s2

⌋)
.

Thus, (i) of Proposition 2 is true.
(ii) Since (D1, D2) is a DCD(λs1s2, s1

1s1
2, p), from Lemma A1, (A, L) is an MCD(uλs1s2,

sc1
1 sc2

2 , p f ). Let A = (A1, A2), where Ai is an OA(uλs1s2, sci
i , 2), for i = 1, 2. Let Ai

1 and Aj
2

be the ith and jth column of A1 and A2, respectively, for i = 1, 2, . . . , c1, j = 1, 2, . . . , c2. Next,
we only prove that

(
Ai

1, Aj
2,
⌊

l
s1s2

⌋)
is an OA(uλs1s2, s1

1s1
2(uλ)1, 3), where l is any column

of L, for i = 1, 2, . . . , c1, j = 1, 2, . . . , c2. Since
λs1s2h⊕1λs1s2

s1s2
= λh ⊕ 1λs1s2=h ⊕ λ1λs1s2 , where

h is an LHD(u, 1) in H corresponding l in L, from (3),
(

Ai
1, Aj

2,
⌊

l
s1s2

⌋)
can be represented

as
(

Ai
1, Aj

2,
⌊

l
s1s2

⌋)
=(1u ⊗ (1λ ⊗ (α ⊗ 1s2 , 1s1 ⊗ β)),1u ⊗ (η ⊗ 1s1s2)+h ⊕ λ1λs1s2)=(1uλ ⊗

(α ⊗ 1s2 , 1s2 ⊗ β),ξ ⊕ 1s1s2), where ξ = (0, 1, . . . , λu − 1)T . Thus,
(

Ai
1, Aj

2,
⌊

l
s1s2

⌋)
is an

OA(uλs1s2, s1
1s1

2(uλ)1, 3). This completes the proof.

Proof of Theorem 4. It is clear that the sufficiency is true. Next, we show the necessity,
since the D0 = (D1, D2) is a DCD(λs3

1, sq1
1 s2, p) and D1 = (M, B), the (M, D2) and the

(B, D2) are a DCD(λs3
1, sq1

1 , p) and a DCD(λs3
1, s2, p), respectively. Thus, from Lemma 2,

conditions (i), (ii), and (iii) are true. Let mi be the ith column of M, i = 1, 2, . . . , q1. Thus,
(mi, B, D2) is a DCD(λs3

1, s1
1s1

2, p), for i = 1, 2, . . . , q1, since (D1, D2) is a DCD(λs3
1, sq1

1 s2, p).
For condition (iv), when (mi, B, D2) is a DCD, from the Definition of DCD, we have the
rows in D2 corresponding to each level combination between mi and B form an LHD(λ, p).
This indicates that all possible three-tuples occur equally once.

Proof of Proposition 3. First, we show if a DCD(λs3
1, sq1

1 s2, p) exists, then D1=(M, B) can
be partitioned into λ (s1×1)-ROA(s3

1, sq1
1 s2, 2)’s. Since DCD(λs3

1, sq1
1 s2, p) exists, so does

MCD(λs3, sq1
1 s2, p). Thus, M is a CROA(λs3

1, sq1
1 , 2) follows from Proposition 1 of [16]. Next,

according to the condition (iv) in Theorem 6, the rows in D1 can be split into λ OA(s3
1, sq1

1 s2, 2)’s,
say F1, F2, . . . , Fλ. It remains to show that each Fi is an (s1×1)-ROA(s3

1, sq1
1 s2, 2), i = 1, 2, . . . , λ,.

From conditions (ii) and (iii) of Theorem 6, the rows in D1 corresponding to each level of d
′′
k is

an OA(s2
1, sq1

1 s2, 1). Recall that the relationship
⌊

d
′′
k

s1

⌋
= d

′′′
k , which implies that each level in
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d
′′′
k corresponds to s1 levels in d

′′
k . Hence, for each Fi corresponding to each level of d

′′′
k can be

divided into s1 OA(s2
1, sq1

1 s2, 1)’s, and by definition, it is an (s1×1)-ROA(s3
1, sq1

1 s2, 2).
Second, we show if D1 = (M, B) can be partitioned into λ (s1×1)-ROA(s3

1, sq1
1 s2, 2)’s,

then a DCD(λs3, sq1
1 s2, p) exists. Since D1 can be represented as

(
FT

1 , FT
2 , . . . , FT

λ

)T , where

Fi =
(

FT
i1, FT

i2, . . . , FT
is1

)T
=(Mi,Bi), Fi is an (s1×1)-ROA(s3

1, sq1
1 s2, 2), s2 = s2

1, 1 ≤ i ≤ λ.

For each Fij = (Mij, Bij) is an OA(s2
1, sq1

1 s2, 1), where Mij is a CROA(s2
1, sq1

1 , 2), Bij is an
LHD(s2, 1). Known that Fi is an OA(s3

1, sq1
1 s2, 2), so each level combination between any

column of Mi and the column Bi occurs exactly once, and thus λ times in D1. In or-
der to verify the existence of a DCD, given such a D1 as above, then construct a D2.

Denote d as a column of D2, let d =
(
hT

1 , hT
2 , . . . , hT

λ

)T . Where hi =
(

hT
i1, hT

i2, . . . , hT
is1

)T
,

hij = (i − 1)s3
1 + (j − 1)s2, . . . , (i − 1)s3

1 + js2 − 1, for i = 1, 2, . . . , λ, j = 1, 2, . . . , s1.

Since s2 = s2
1, hij =

(
hT

ij1, hT
ij2, . . . , hT

ijs1

)T
, hijk = (i − 1)s3

1 + (j − 1)s2
1 + (k − 1)s1, . . . , (i −

1)s3
1 + (j − 1)s2

1 + ks1 − 1, for i = 1, 2, . . . , λ, j = 1, 2, . . . , s1, k = 1, 2, . . . , s1. Finally, we

show (D1, d) is a DCD(λs3
1, sq1

1 s2, 1). Obviously, d is an LHD(λs3
1, 1). Since

⌊ hijk
s1

⌋
=[

(i − 1)s2
1 + (j − 1)s1 + k − 1

]
· 1s1 , then the rows in d

′
corresponding to each level of any

column of M is an LHD(λs2
1, 1).

⌊
hij

s2
1

⌋
= [(i − 1)s1 + (j − 1)] · 1s2

1
reveals that correspond-

ing to both each level combination of any two columns of M and each level of B, the rows

of d
′′

forms an LHD(λs1, 1).
⌊

hi
s3

1

⌋
= (i − 1) · 1s3

1
shows that for each level combination

between any column of M and B with s1s2 level combinations, the corresponding λ entries
in d

′′′
are {0, 1, . . . , λ − 1}, that is to say, they form an LHD(λ, 1). Additionally, randomly

permuting hi in d, randomly permuting hij in hi, and the entries in hijk means D2 can
accommodate more quantitative factors. This completes the proof.

References
1. Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2003.

[CrossRef]
2. Fang, K.T.; Li, R.; Sudjianto, A. Design and Modeling for Computer Experiments; Chapman and Hall/CRC: New York, NY, USA,

2006. Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781420034899/design-modeling-computer-
experiments-kai-tai-fang-agus-sudjianto-runze-li (accessed on 14 March 2024).

3. McKay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics 1979, 21, 381–402. [CrossRef]

4. Schmidt, R.R.; Cruz, E.E.; Iyengar, M.K. Challenges of data center thermal management. Ibm J. Res. Dev. 2005, 49, 709–723.
Available online: https://ieeexplore.ieee.org/document/5388826 (accessed on 14 March 2024). [CrossRef]

5. Rawlinson, J.J.; Furman, B.D.; Li, S.; Wright T.M.; Bartel, D.L. Retrieval, experimental, and computational assessment of the
performance of total knee replacements. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2006, 24, 1384–1394. [CrossRef]

6. Long, J.P.; Bartel, D.L. Surgical variables affect the mechanics of a hip resurfacing system. Clin. Orthop. Relat. Res. 2006, 453,
115–122. [CrossRef]

7. Atkinson, A.C.; Donev, A.N.; Tobias, R.D. Optimum Experimental Designs, with SAS; Oxford University Press Inc.: New York, NY,
USA, 2007. Available online: https://academic.oup.com/book/52852?login=false (accessed on 14 March 2024).

8. Joseph, V.R.; Delaney, J.D. Functionally induced priors for the analysis of experiments. Technometrics 2007, 49, 1–11. [CrossRef]
9. Qian, P.Z.G.; Wu, H.; Wu, C.F.J. Gaussian process models for computer experiments with qualitative and quantitative factors.

Technometrics 2008, 50, 383–396. [CrossRef]
10. Gang, H.; Santner, T.J.; Notz, W.I.; Bartel, D.L. Prediction for computer experiments having quantitative and qualitative input

variables. Technometrics 2009, 51, 278–288. [CrossRef]
11. Hung, Y.; Joseph, V.R.; Melkote, S.N. Design and analysis of computer experiments with branching and nested factors. Technomet-

rics 2009, 51, 354–365. [CrossRef]
12. Zhou, Q.; Qian, P.Z.G.; Zhou, S. A simple approach to emulation for computer models with qualitative and quantitative factors.

Technometrics 2011, 53, 266–273. [CrossRef]
13. Huang, H.; Lin, D.K.J.; Liu, M.Q.; Yang, J. Computer experiments with both qualitative and quantitative variables. Technometrics

2016, 58, 495–507. [CrossRef]
14. Qian, P.Z.G. Sliced Latin hypercube designs. J. Am. Stat. Assoc. 2012, 107, 393–399. [CrossRef]

http://doi.org/10.1007/978-1-4939-8847-1
https://www.taylorfrancis.com/books/mono/10.1201/9781420034899/design-modeling-computer-experiments-kai-tai-fang-agus-sudjianto-runze-li
https://www.taylorfrancis.com/books/mono/10.1201/9781420034899/design-modeling-computer-experiments-kai-tai-fang-agus-sudjianto-runze-li
http://dx.doi.org/10.1080/00401706.1979.10489755
https://ieeexplore.ieee.org/document/5388826
http://dx.doi.org/10.1147/rd.494.0709
http://dx.doi.org/10.1002/jor.20181
http://dx.doi.org/10.1097/01.blo.0000238873.09390.6f
https://academic.oup.com/book/52852?login=false
http://dx.doi.org/10.1198/004017006000000372
http://dx.doi.org/10.1198/004017008000000262
http://dx.doi.org/10.1198/tech.2009.07132
http://dx.doi.org/10.1198/TECH.2009.07097
http://dx.doi.org/10.1198/TECH.2011.10025
http://dx.doi.org/10.1080/00401706.2015.1094416
http://dx.doi.org/10.1080/01621459.2011.644132


Mathematics 2024, 12, 1352 21 of 21

15. Deng, X.; Lin, C.D.; Liu, K.W.; Rowe, R.K. Additive Gaussian process for computer models with qualitative and quantitative
factors. Technometrics 2017, 59, 283–292. [CrossRef]

16. Deng, X.; Hung, Y.; Lin, C.D. Design for computer experiments with qualitative and quantitative factors. Stat. Sin. 2015, 25,
1567–1581. Available online: https://www3.stat.sinica.edu.tw/statistica/j25n4/J25N414/J25N414.html (accessed on 20 March
2024). [CrossRef]

17. He, Y.; Lin, C.D.; Sun, F. On construction of marginally coupled designs. Stat. Sin. 2017, 27, 665–683. Available online:
https://www3.stat.sinica.edu.tw/statistica/j27n2/J27N210/J27N210.html (accessed on 20 March 2024). [CrossRef]

18. He, Y.; Lin, C.D.; Sun, F.; Lv, B. Marginally coupled designs for two-level qualitative factors. J. Stat. Plan. Inference 2017, 187,
103–108. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0378375817300332 (accessed on 9 March
2024). [CrossRef]

19. He, Y.; Lin C.D.; Sun, F. Construction of marginally coupled designs by subspace theory. arXix 2019, arXiv:2203.06340. https:
//doi.org/10.48550/arXiv.2203.06340.

20. Zhou, W.; Yang, J.; Liu, M.Q. Construction of orthogonal marginally coupled designs. Stat. Pap. 2021, 62, 1795–1820. [CrossRef]
21. Yang, F.; Lin, C.D.; Zhou, Y.; He, Y. Doubly coupled designs for computer experiments with both qualitative and quantitative

factors. Stat. Sin. 2023, 33, 1923–1942. Available online: https://www3.stat.sinica.edu.tw/statistica/j33n3/J33N307/J33N307
.html (accessed on 20 March 2024). [CrossRef]

22. Hedayat, A.S.; Sloane, N.J.A.; Stufken, J. Orthogonal Arrays: Theory and Applications; Springer: New York, NY, USA, 1999.
[CrossRef]

23. Zhou, W.; He, W.; Wang W.; Huang, H. Construction of marginally coupled designs with mixed-level qualitative factors.
[Manuscript]. in press.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00401706.2016.1211554
https://www3.stat.sinica.edu.tw/statistica/j25n4/J25N414/J25N414.html
http://dx.doi.org/10.5705/ss.2013.388
https://www3.stat.sinica.edu.tw/statistica/j27n2/J27N210/J27N210.html
http://dx.doi.org/10.5705/ss.202015.0156
https://www.sciencedirect.com/science/article/abs/pii/S0378375817300332
http://dx.doi.org/10.1016/j.jspi.2017.02.010
https://doi.org/10.48550/arXiv.2203.06340
https://doi.org/10.48550/arXiv.2203.06340
http://dx.doi.org/10.1007/s00362-019-01156-1
https://www3.stat.sinica.edu.tw/statistica/j33n3/J33N307/J33N307.html
https://www3.stat.sinica.edu.tw/statistica/j33n3/J33N307/J33N307.html
http://dx.doi.org/10.5705/ss.202020.0317
http://dx.doi.org/10.1007/978-1-4612-1478-6

	Introduction
	Definitions and Notation
	Construction of GDCDs
	Construction of WGDCDs
	Construction of WGDCDs with Symmetric Qualitative Factors
	Construction of WGDCDs with Asymmetric Qualitative Factors

	Construction of BGDCDs
	Construction of BGDCDs Based on OA(s1s2,s11s21,2)
	Construction of BGDCDs Based on (s11)-ROAs


	Comparison
	Conclusions and Future Research Directions
	Appendix A. Proofs
	References

