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Abstract: The Solow residual method, traditionally pivotal for calculating total factor productivity
(TFP), is typically not applied to green TFP calculations due to its exclusion of undesired outputs.
Diverging from traditional approaches and other frontier methodologies such as Data Envelopment
Analysis (DEA) and Stochastic Frontier Analysis (SFA), this paper integrates undesired outputs and
three types of spatial spillover effects into the conventional Solow framework, thereby creating a
new spatiotemporal econometric Solow residual method (STE-SRM). Utilizing this novel method, the
study computes the industrial green TFPs for 280 Chinese cities from 2003 to 2019, recalculates these
TFPs using DEA-SBM and Bayesian SFA for the same cities and periods, and assesses the accuracy
of the STE-SRM-derived TFPs through comparative analysis. Additionally, the paper explores
the statistical properties of China’s urban industrial green TFPs as derived from the STE-SRM,
employing Dagum’s Gini coefficient and spatial convergence analyses. The findings first indicate
that by incorporating undesired outputs and spatial spillover into the Solow residual method, green
TFPs are computable in alignment with the traditional Solow logic, although the allocation of per
capita inputs and undesired outputs hinges on selecting the optimal empirical production function.
Second, China’s urban industrial green TFPs, calculated using the STE-SRM with the spatial Durbin
model with mixed effects as the optimal model, show that cities like Huangshan, Fangchenggang,
and Sanya have notably higher TFPs, whereas Jincheng, Datong, and Taiyuan display lower TFPs.
Third, comparisons of China’s urban industrial green TFP calculations reveal that those derived from
the STE-SRM demonstrate broader but more concentrated results, while Bayesian SFA results are
narrower and less concentrated, and DEA-SBM findings sit between these extremes. Fourth, the study
highlights significant spatial heterogeneity in China’s urban industrial green TFPs across different
regions—eastern, central, western, and northeast China—with evident sigma convergence across the
urban landscape, though absolute beta convergence is significant only in a limited subset of cities
and time periods.

Keywords: green TFPs; spatiotemporal econometric Solow residual method (STE-SRM); general
nesting spatial model; undesired outputs

MSC: 91B72; 91B62; 62P20

1. Introduction

TFP, or Total Factor Productivity, is a metric that highlights efficiency by subtracting
input factors and intermediate inputs from outputs. This calculation offers insights into
how effectively resources are being utilized in production processes, especially within
specific sectors like industry. By focusing on TFP, analysts can better understand produc-
tivity growth, identify areas for improvement, and track changes in efficiency over time.
Academic convention typically dictates that TFPs be calculated across two dimensions:
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the frontier and the non-frontier dimensions [1,2]. The frontier dimension encompasses
methods such as Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis
(SFA) [3], while the non-frontier dimension includes algebraic or exponential methods [4–6]
and the Solow residual method [7–10]. Green Total Factor Productivities (TFPs) are those
that incorporate considerations of green inputs or undesirable outputs [11]. The so-called
non-desired output refers to the portion of output generated during the production pro-
cess, such as wastewater, emissions, particulate matter, noise, and other outputs, that
do not meet people’s expectations. In essence, the methodologies for calculating green
TFPs mirror those of conventional TFPs, with the primary distinction being whether green
input factors or undesirable outputs are considered. Currently, green TFPs are predomi-
nantly calculated using frontier methods, particularly through DEA, SFA, and their hybrid
applications [12–14].

The computation of green Total Factor Productivities (TFPs) using Data Envelopment
Analysis (DEA) is primarily based on foundational research by Caves et al. (1982) [15] and
Färe et al. (1994) [16]. Within the DEA framework, the DEA-Slack Based Measure (DEA-
SBM) emerges as a highly favored method for calculating green TFPs. Typically, the green
TFPs computed by DEA-SBM are further decomposed into four components: pure efficiency
change, pure technology change, scale efficiency change, and technology scale change,
using the Malmquist–Luenberger (ML) index. Three significant advancements have been
made in the DEA methodology for calculating green TFPs. First, the SBM algorithm has
been expanded to include other algorithms such as the BWMRM and BBAM [17]. Second,
the ML index has been extended to incorporate additional indices, such as the Malmquist
index, the Luenberger index, the Sequential Malmquist–Luenberger index (SML) [18–20],
and the ML index enhanced with the bootstrap method [21]. Third, the concept of a single
frontier has been broadened to encompass multiple frontiers, including general, scale, and
regional frontiers [22]. Utilizing these multiple frontiers, DEA has been extended to a
three-level meta-frontier DEA framework for the calculation of green TFPs [13,23].

There are numerous shortcomings in calculating green Total Factor Productivities
(TFPs) through Data Envelopment Analysis (DEA), including non-proportional changes in
desired and undesired outputs, bias from the assumption of constant returns to scale, and
the neglect of random disturbances [24]. Stochastic Frontier Analysis (SFA) can mitigate
these issues to a certain extent. The methods within the SFA framework, largely developed
and advanced based on the work of Battese et al. (1995) [25], typically break down green
TFPs into several components, including the rate of frontier technological progress, the rate
of change in technology inefficiency, the rate of change in factor returns to scale, and the
rate of change in factor allocation efficiency [26]. Recent advancements in SFA methodology
primarily focus on the detailed breakdown of core explanatory variables within the frontier
production function, particularly the disaggregation of inputs such as capital and labor. For
instance, Zhu et al. (2020) categorized capital into three types: construction and installation
engineering, equipment and tools, and other investment types [12]. They also classified
labor into skilled and unskilled categories, enabling a more nuanced analysis of input
contributions to productivity.

Although Stochastic Frontier Analysis (SFA) addresses some of the limitations of Data
Envelopment Analysis (DEA), it has its own shortcomings. These include a relatively
limited variety of stochastic frontier function models and the potential for errors in model
specification. Recognizing the limitations inherent in both DEA and SFA methodologies,
researchers have begun to develop hybrid approaches that integrate both techniques, such
as the three-stage DEA analysis [14,27]. This three-stage DEA analysis differs from the
previously mentioned three-levels meta-frontier DEA. While the latter expands from a
single frontier to multiple frontiers, the three-stage DEA focuses on extending the analysis
from a single step to multiple steps, involving an initial DEA, followed by SFA, and then
DEA again. In this three-stage approach, the first step calculates the green TFPs and
their input slackness using DEA. The second step removes the influences of management
inefficiency factors, environmental factors, and random errors from the input slackness,
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and reconstructs the adjusted inputs based on SFA. The third step then recalculates the
green TFPs using these adjusted inputs and another round of DEA analysis. This sequential
method aims to enhance the precision and reliability of green TFP measurements by
integrating the strengths of both DEA and SFA.

There are limited methods for calculating green Total Factor Productivities (TFPs) from
the non-frontier perspective, particularly through the Solow residual method. Recent stud-
ies, such as those by Cheng and Jin (2022) and Song et al. (2022) [28,29], have extensively
examined the correlations between green TFPs and factors like foreign direct investment,
economic agglomeration, and climate change, often employing the Cobb–Douglas pro-
duction function for analysis. In these studies, green TFPs are typically defined as the
output surplus remaining after accounting for inputs and their shares, and are influenced
by factors such as foreign direct investment and climate change [30]. However, a critical
discrepancy arises in these analyses: the theoretical definition of green TFPs as derived
from the conceptual framework of the Solow residual method is often disconnected from
their actual empirical measurement. In practice, green TFPs are calculated using methods
like the directional distance function (DDF), DEA, or SFA, leading to a significant “two
skins” problem where theoretical and practical approaches do not align [29]. This discon-
nection underscores an urgent need for innovation in the methodology for calculating green
TFPs from the Solow residual perspective. Furthermore, the prevailing misconceptions
in current research regarding the relationship between green TFPs and other economic
or social development variables also highlight the critical necessity for innovative and
advanced research that adheres to the core principles of the Solow residual method.

This paper seeks to enhance the methodology for calculating green Total Factor Produc-
tivities (TFPs) by integrating undesired outputs and spatiotemporal econometric models
into the traditional Solow residual method, thereby creating a novel spatiotemporal econo-
metric Solow residual method (STE-SRM). This new approach is applied to compute the
industrial green TFPs of 280 major Chinese cities from 2003 to 2019. Additionally, the
accuracy of this novel method will be evaluated through comparative analysis with results
obtained from the DEA-SBM and Bayesian SFA. The statistical characteristics of the indus-
trial green TFPs calculated by the new method will also be explored, utilizing Dagum’s
Gini coefficient and convergence analyses, including sigma and beta convergence. This in-
novation is expected to significantly enhance the application of the Solow residual method
in calculating industrial green TFPs and contribute to advancing the methodology for green
TFP calculation from the non-frontier perspective.

2. Redefining Green TFP Calculation: Innovations from the Solow Residual Method to
the Spatiotemporal Econometric Solow Residual Method (STE-SRM)
2.1. Preliminary Extension of the Solow Residual Method: Incorporating Undesired Outputs

The Solow residual method is a widely utilized technique for Total Factor Productivity
(TFP) calculation. Its fundamental principle involves determining the ratio of per capita
outputs to per capita inputs and their respective shares. Operating under assumptions
of neutral technological progress and constant returns to scale, this method typically
employs the Cobb–Douglas production function, represented as Y = AKαLβ, and the Solow
residual method calculates Total Factor Productivity (TFP) using the formula A = y/kα.
In the production function, Y, A, K, and L represent total output, technology, capital, and
labor, respectively. Conversely, y and k are the per capita measures of output and capital.
Additionally, α signifies the input share of capital.

Green Total Factor Productivities (TFPs) account for undesired outputs. By incorporat-
ing these outputs as environmental inputs within the Cobb–Douglas production function,
we can calculate green TFPs in a manner akin to previous analyses. This adaptation in-
volves redefining the Cobb–Douglas production function to include undesired outputs, as
shown in Equation (1). (

J

∏
j=1

Y
β j
j

)
Yβ0 = ALα0

Q

∏
q=1

X
αq
q (1)
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In Equation (1), A represents neutral technological progress; L denotes labor, and α0
represents the input share of labor; Xq represents the qth inputs, q = 1, 2, · · · , Q, αq denote
the share of Xq, and ∏(·) is a symbol representing a continuous multiplicative factor. Under

the assumption of constant returns to scale, α0 +
Q
∑

q=1
αq = 1. In Equation (1), Y indicates

desired outputs, while Yj indicates the jth undesired outputs, j = 1, 2, · · · , J; β0 and β j

indicate the share of desired outputs and the jth undesired outputs, respectively. We define

β0 +
J

∑
j=1

β j = 1, then β0 presents the share of the desired outputs in the constitution of the

whole outputs. A higher value of β0 means better efficiency of outputs. Equation (1) can
be transformed into Equation (2) if the absolute inputs and outputs are replaced with per
capita values. [

J

∏
j=1

(Yj

Y

)β j
](

Y
L

)
= A

Q

∏
q=1

(
Xq

L

)αq

(2)

We define yy = Y/L, xxq = Xq/L, yyj = Yj/Y, the production function with Log form
can be shown as in Equation (3), where ε1 is the random disturbance term,ε1 ∼ I.I.D

(
0, σ2

1
)
.

Ln(yy) = Ln(A) +
Q

∑
q=1

αqLn
(
xxq
)
−

J

∑
j=1

β jLn
(
yyj
)
+ ε1 (3)

From the parameters estimated in Equation (3), the green TFP can be determined as
outlined in Equation (4), where GTFP0 represents the green TFP that incorporates undesired
outputs. In Equation (4), the symbol of ˆ indicates the estimators of the corresponding
parameters, while other symbols are defined the same as in Equation (3).

GTFP0 =
yy

Q
∏

q=1

(
xxq
)α̂q

J
∏
j=1

(
yyj
)β̂ j

(4)

2.2. Further Extension: Defining the STE-SRM with Consideration of Three Types of
Spillover Effects

Further discussion is warranted if the spillover effects from spatial neighbors are
integrated into the production function. The general nesting spatial model, a comprehen-
sive formulation in spatial econometrics, encapsulates various types of spillover effects
emanating from the outputs, inputs, or disturbance factors of neighboring regions [31,32].
By embedding this model into the logarithmic form of the production function in Equation
(3), it can be transformed into a revised version, as detailed in Equations (5) and (6).

y = ρSTWy + Xβ + STWXθ + u + v + µ1 (5)

µ1 = λ(STW × µ1) + ε2 (6)

In Equations (5) and (6), the parameters are set such that y = Ln(yy) and
X =

[
Ln(xx1) · · · Ln

(
xxQ

)
Ln(yy1) · · · Ln

(
yyJ
)]

; the spatial-temporal weight ma-
trix (STW) is typically constructed as the Kronecker product of the temporal weight matrix
and the spatial weight matrix, effectively integrating both spatial and temporal dimen-
sions; in the model, ρ and λ represent spatial correlation coefficients; β and θ are ex-
ogenous parameters of the independent variables, β =

[
α1 · · · αQ −β1 · · · −β J

]′,
θ =

[
θ1 · · · θQ −γ1 · · · −γJ

]′; u and v represent the period effect and individ-
ual effect, respectively. These effects can either be fixed or random, depending on the
specific requirements and assumptions of the analysis; µ1 and ε2 are disturbance terms,
ε2 ∼ I.I.D

(
0, σ2

2
)
, and the distribution of µ1 is decided by Equation (6).
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Based on the framework outlined in Equations (5) and (6), and considering various
hypotheses such as ρ = 0, or λ = 0, or θ = 0, a total of seven reduced models can be
derived from the original specifications. These seven models are typically referred to as
the non-spatial model (NSM), the spatial X-lag model (SXL), the spatial autoregressive
model (SAR), the spatial error model (SEM), the spatial Durbin model (SDM), the spatial
autocorrelation model (SAC), and the spatial Durbin error model (SDEM), as described by
Zhao et al. (2022) [33]. In the aforementioned eight models, the parameters, the variance of
the disturbance terms, and the variance-covariance matrices can be estimated using the
robust analytical framework of spatial econometrics pioneered by LeSage (2009) and Elhorst
(2014) [31,32]. This estimation methodology integrates maximum likelihood estimation,
the Generalized Method of Moments, Bayesian Markov Chain Monte Carlo simulation
techniques, and other approaches.

The green Total Factor Productivity (TFP), which accounts for both undesired outputs
and spillover effects, can be calculated using Equation (7). This equation utilizes the data-
generating process from the optimal model selected among the estimated models from
Equations (5) and (6) and their corresponding reduced models.

GTFP =
yy

Q
∏

q=1

(
xxq
)η̂q

J
∏
j=1

(
yyj
)τ̂j

(7)

In Equation (7), GTFP is the green TFP considering both the undesired outputs and
spillover effects; the definition of yy, xxq, and yyj is the same as in Equation (4); η̂q is the
estimated share of the qth inputs per capita, η̂q = 1

NT trace
[
Θ̂
(
α̂q INT + θ̂qSTW

)]
, where

Θ̂ = (INT − ρ̂STW)−1, N and T respectively indicate the total number of the spatial units
and periods, INT is the unit matrix with both N*T rows and columns, and trace(·) is the
trace statistic; τ̂j is the estimated share of the jth undesired outputs in the constitution
of the whole outputs, τ̂j =

1
NT trace

[
−Θ̂

(
β̂ j INT + γ̂jSTW

)]
; the symbol of ˆ still indicates

the estimators.
The green Total Factor Productivity (TFP) calculated using Equation (7) resembles

that derived from Equation (4). However, the TFP from Equation (7) is deemed more
significant and valuable due to its consideration of the spatiotemporal impacts from spatial
neighbors. If the true values of ρ, λ, and θ are zero, the green TFPs calculated from both
equations would be equivalent. Given this context, the method of calculating green TFP
using Equations (5) and (6) can be termed the Spatiotemporal Econometric Solow Residual
Method (STE-SRM). This designation is appropriate because it adheres to the core analytical
logic of the Solow residual method while incorporating global spatiotemporal econometric
models into the analysis.

3. Applying the New Method to Calculate China’s Urban Industrial Green TFPs

Industry is a crucial component of the modern industrial system and plays a pivotal
role as both a carrier and cornerstone in advancing the construction of a manufacturing
powerhouse. In recent years, the share of industrial-added value in China’s GDP has been
on a decline. At the beginning of 2024, this proportion stood at 33.19%, which is 11.67%
lower than in 2003 when China launched its new industrialization strategy. Amidst the
ongoing reduction in the relative scale of industrial development, fully enhancing industrial
efficiency and fostering the green transformation of the sector are perpetual themes in the
high-quality development of China’s economy. Chinese cities serve as vital spatial units
for economic and particularly industrial development. The industrial green Total Factor
Productivities (TFPs) in these cities are integral to the broader national economic system
and the pursuit of sustainable industrial growth. This section will detail the calculation
of China’s urban industrial green TFPs using the innovative Spatiotemporal Econometric
Solow Residual Method (STE-SRM).



Mathematics 2024, 12, 1365 6 of 33

3.1. Configuration of the Empirical Production Function Model

The STE-SRM offers enhanced accuracy because it incorporates the spatiotemporal
spillover effects from various spatial units into the calculation of green TFPs. In this section,
the STE-SRM will be utilized to calculate the green TFPs of China’s urban industrial sectors.
In the production model for China’s urban industries, three types of inputs and three types
of undesired outputs are considered. The input factors include capital (K), labor (L), and
energy (E), while the undesired outputs comprise industrial wastewater emissions (YWW),
industrial sulfur dioxide emissions (YSO2 ), and industrial dust emissions (YS&D). We define
kk = K/L, ee = E/L, yww = YWW/Y, yso2 = YSO2 /Y, ys&d = YS&D/Y, where the empirical
production function model for China’s urban industrial sectors is specified in Equations (8)
and (9).

Ln(yy) = Ln(A) + ρ[STW × Ln(yy)] + α1Ln(kk) + α2Ln(ee)− β1Ln(yww)− β2Ln(yso2)
−β3Ln(ys&d) + θ1[STW × Ln(kk)] + θ2[STW × Ln(ee)]− γ1[STW × Ln(yww)]

−γ2[STW × Ln(yso2)]− γ3[STW × Ln(ys&d)] + u + v + µ2

(8)

µ2 = λSTWµ2 + ε3 (9)

In Equations (8) and (9), ρ and λ are spatial correlation coefficients; α, β, θ and γ are
exogenous parameters similar to those in Equations (5) and (6), and Q and J will be 2 and 3,
respectively; u and v are the period effect and individual effect, respectively; µ2 and ε3 are
disturbance terms, ε3 ∼ I.I.D

(
0, σ2

3
)
, and the distribution of µ2 is decided by Equation (9);

STW is the spatiotemporal weight matrix that represents the spatial and temporal spillover
effects of the spatial units during the research periods. The construction of this matrix will
be elaborated on in a subsequent section.

3.2. Variables and Data Overview

This paper focuses on 280 cities in mainland China as the spatial units and covers the
period from 2003 to 2019. The spatial units include 15 sub-provincial cities: Guangzhou,
Wuhan, Harbin, Shenyang, Chengdu, Nanjing, Xi’an, Changchun, Jinan, Hangzhou, Dalian,
Qingdao, Shenzhen, Xiamen, and Ningbo. Additionally, the study encompasses all the
prefectural cities in mainland China, with the exception of Danzhou and Sansha in Hainan,
Bijie and Tongren in Guizhou, Haidong in Qinghai, Turpan and Hami in Xinjiang, and
Xigaze, Changdu, Linzhi, Shannan, and Naqu in Tibet. These 12 cities are excluded due
to adjustments in their administrative levels between 2003 and 2019. The selection of the
research period is based on two factors: 2003 marks a significant milestone in the initiation
of China’s new industrialization strategy, and data post-2020 has not yet been updated.

This paper utilizes various significant statistical indices to illustrate the inputs and
outputs of China’s urban industrial sectors. Specifically, the gross value of industrial
outputs (in CNY 100 million) is used to represent industrial outputs. Inputs are quantified
using three measures: industrial capital stock (in CNY 100 million), calculated via the
perpetual inventory method; total industrial employment (in ten thousand people); and
industrial electricity consumption (in 100 million kWh). Additionally, three types of
undesired outputs are tracked: industrial wastewater emissions (in ten thousand tons),
industrial sulfur dioxide emissions (in ten thousand tons), and smoke (dust) emissions (in
ten thousand tons). It is important to note that all data concerning inputs and outputs are
collected at the city level for the cities mentioned previously. Most of the data is accessible
from several sources, including the EPS statistical database, China Economic and Social
Development Statistical Database, DRCnet Statistical Database, and published annual
reports such as the China Urban Statistical Yearbook, China Regional Statistical Yearbook,
and the China Statistical Yearbook.

In this paper, two important techniques are employed for data processing. First, the
gross value of industrial outputs and industrial capital stock are converted to real values
(constant 1990 prices) using the GDP deflator and the fixed assets investment price index,
respectively. Second, missing data are interpolated using the method of a five-year moving
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average. Additionally, the interpolated data are adjusted based on the development trends
of neighboring cities within the same provinces. Further details on the data processing
methods are thoroughly documented in previously published papers by the author. The
descriptive statistical characteristics of the data are presented in Table 1.

Table 1. Descriptive statistics of related variables (logarithmic form) for calculating China’s urban
industrial green TFPs.

Ln(yy) Ln(yww) Ln
(

yso2

)
Ln(ys&d) Ln(kk) Ln(ee)

Mean 3.5893 2.4134 -4.7971 −5.1456 2.6460 1.8661
Median 3.6953 2.3427 −4.7338 −5.1417 2.6632 1.8044

Maximum 6.2935 6.9681 −0.4706 3.2454 5.9188 5.9422
Minimum 0.1778 −0.8902 −11.6014 −12.3200 0.2191 −3.5941
Std. Dev. 0.7914 1.1041 1.4821 1.6388 0.8355 0.9109
Skewness −0.4191 0.3424 −0.3999 0.0775 0.1042 0.4612
Kurtosis 3.2116 3.0585 3.4107 3.8777 2.9826 4.8804

Jarque-Bera 148.2233 93.6619 160.3404 157.5696 8.6778 870.0061
Probability 0.0000 0.0000 0.0000 0.0000 0.0131 0.0000

Sum 17,084.96 11,487.66 −22,834.20 −24,492.83 12,595.08 8882.55
Sum Sq. Dev. 2980.62 5801.75 10,453.91 12,781.42 3322.28 3948.82
Observations 4760 4760 4760 4760 4760 4760

Note: the results were obtained based on MATLAB R2023a and EViews 11.0.

3.3. Development of the Spatiotemporal Weight Matrix

The spatiotemporal weight matrix (STW) is crucial for estimating the empirical pro-
duction function as outlined in Equations (8) and (9). This matrix is typically constructed
through the Kronecker product of the temporal weight matrix (TW) and the spatial weight
matrix (W), denoted as STW = Kron(TW, W), where Kron(·) represents the Kronecker
product operation. The spatial weight matrix reflects the spillover effects among spatial
units in a special year, and it is also the foundation for the construction of the temporal
weight matrix. Thus, construction of the spatiotemporal weight matrix will begin with the
designs of the elements of W.

Since the 280 cities included in this study do not form a complete set, the spa-
tial weight matrix W is not designed based on spatial proximity alone. Instead, it is
determined by the reciprocal of the square of the distance in longitude and latitude
between pairs of cities. Subsequently, the elements of W are adjusted according to the
boundaries of cities that have effective impacts. According to research by Guo and
Fan (2022) [34], the adaptive bandwidth for China’s urban industrial production is
46. This means that elements in W are set to zero if they are ranked lower than 46 in
each row, and are retained if their ranks are within the top 46 in each row. Following
these adjustments, W is row-stochastic standardized to ensure that the sum of each
row equals one, as depicted in Figure 1a. It is important to note that the order of the
280 cities significantly influences the structure of the spatial weight matrix. For this
study, cities are ranked according to their positions within each province as listed in
the EPS statistical database. The order of the provinces is as follows: Hebei, Shanxi,
Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi,
Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Sichuan, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.
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Figure 1. The weight matrices and global Moran’s I. This figure is composed of four parts: (a) shows
the spatial weight matrix; (b) displays the global Moran’s I; (c) illustrates the temporal weight matrix;
and (d) presents the spatiotemporal weight matrix. The figure was created using MATLAB R2023a.
In subgraph (d), both the horizontal and vertical axes represent the pooled series of 280 cities over
17 years, arranged first by cities and then by years. This arrangement provides a comprehensive view
of the spatiotemporal dynamics within the dataset.

The temporal weight matrix captures the variations in spillover effects among spatial
units across different years, and this study employs the ratios of global Moran’s I to illustrate
these changes. Typically, the global Moran’s I index is derived from the standardized spatial
weight matrix and the data for the dependent variable or one of the independent variables.
However, this method of index calculation can introduce endogeneity, which may affect the
validity of the results. To avoid possible endogeneity in the designs of the elements of TW,
this paper calculates the global Moran’s I using the estimated residuals (ε̂4) in the following
Equation (10), as shown in Figure 1b. The definitions of the variables and parameters in
Equation (10) are the same as in Equations (8) and (9), and ε4 is also the random disturbance
term, ε4 ∼ I ID

(
0, σ2

4
)
.

Ln(yy) = Ln(A) + α1Ln(kk) + α2Ln(ee)− β1Ln(yww)− β2Ln(yso2)− β3Ln(ys&d) + ε4 (10)

Based on the global Moran’s I indices depicted in Figure 1b, the temporal weight matrix
is determined, as illustrated in Figure 1c. From this figure, it is evident that the temporal
weight matrix is a lower triangular matrix with the number of rows and columns both
equal to T, where T represents the total number of periods analyzed. The characteristics of
this lower triangular structure are due to the fact that temporal spillover effects originating
from a specific year typically exhibit a time lag. Utilizing the Kronecker product of the
temporal weight matrix TW from Figure 1c and W from Figure 1a, the spatiotemporal
weight matrix is constructed, as shown in Figure 1d. This comprehensive matrix integrates
both spatial and temporal dynamics, enabling a nuanced analysis of spillover effects across
different times and locations.

3.4. Estimation and Model Selection for the Empirical Production Function

Using the spatiotemporal weight matrix shown in Figure 1d and integrating the
variables and data described in Section 3.2, the models from Equations (8) and (9), along
with their degraded versions, can be estimated. The results, as presented in Table 2, indicate
the absence of individual or period effects, suggesting that u = 0 and v = 0. From the
analysis presented in Table 2, it is evident that the Spatial X-lag Model (SXL) and the
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General Nested Spatial Model (GNSM) are not optimal choices. This conclusion is based
on the inability of some estimated parameters in these models to pass hypothesis tests
and achieve statistical significance. Similarly, the Spatial Durbin Model (SDM) is not
deemed optimal due to its negative goodness of fit and the lack of significance in some
of its parameters. Furthermore, although all parameters of the Spatial Autocorrelation
Model (SAC) are statistically significant, this model is also not suitable because its spatial
correlation coefficient ρ is negative, which contradicts the economic implications suggested
by the positive global Moran’s I indices shown in Figure 1b. Likewise, the Non-Spatial
Model (NSM) is not considered optimal as it lacks spatial spillover terms, despite the
significant positive values of the global Moran’s I indices, indicating the importance of
spatial effects in the data.

Three models remain under consideration: the Spatial Autoregressive Model (SAR),
the Spatial Error Model (SEM), and the Spatial Durbin Error Model (SDEM). This paper
employs Lagrange Multiplier (LM) tests and Likelihood Ratio (LR) tests to evaluate these
models, assessing their statistical robustness and suitability for the analysis presented.
For the model selection between SAR and SEM, LM tests play an important role, wherein
LM_Lag and LM_Error are 840.42 and 2576.83, respectively, bigger than the threshold of
the Chi-squared test at the level of 1% (6.64), while Robust_LM_Lag and Robust_LM_Error
are 1.13 and 1737.53, respectively. The LM tests show that the SEM will be better than the
SAR. Further selection can be carried out between SEM and SDEM by LR tests. Under the
null hypothesis of H0 : θ1 = θ2 = γ1 = γ2 = γ3, the LR statistic is 273.6, bigger than the
threshold of the Chi-squared test with a freedom of 5 and a significance level at 1%. This
suggests that the Spatial Durbin Error Model (SDEM) may perform better than the Spatial
Error Model (SEM) and could potentially be the optimal model for this analysis.

Further analyses to select among the Spatial Autoregressive Model (SAR), Spatial
Error Model (SEM), and Spatial Durbin Error Model (SDEM) include consideration of
these models with either individual or period effects. Given that the majority of cities are
included in the analysis of China’s urban industrial sectors, it is deemed unnecessary to
focus solely on models with random effects [35]. Therefore, versions of the SAR, SEM, and
SDEM that incorporate fixed effects—whether individual, period, or both—are estimated,
as detailed in Table 3. Models incorporating individual fixed effects and those with both
fixed effects show positive Log(L) values in Table 3, indicating that these configurations
may not be optimal. For the models with period fixed effects, the goodness of fit for SAR
and SEM is lower than their counterparts in Table 2, and some parameters in the SDEM with
period fixed effects lack significance. Thus, compared to their versions without fixed effects,
the models with fixed effects do not exhibit improved estimation results. In conclusion, the
SDEM without fixed or random effects emerges as the optimal model for analyzing China’s
urban industrial production. This model will also be used later to calculate China’s urban
industrial green TFPs.
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Table 2. Estimated results of eight spatial models without fixed or random effects.

NSM SXL SAR SEM SDM SDEM SAC GNSM

Const. 1.4267
(27.1) ***

0.8689
(7.91) ***

0.7545
(12.71) ***

2.3353
(20.04) ***

0.3893
(3.99) ***

2.9512
(11.30) ***

4.5441
(80.90) ***

3.3353
(12.12) ***

Ln(kk) 0.3254
(31.53) ***

0.3864
(35.13) ***

0.2919
(29.27) ***

0.3612
(36.96) ***

0.3830
(39.49) ***

0.3699
(37.43) ***

0.3812
(40.04) ***

0.3691
(37.29) ***

Ln(ee) 0.2232
(26.02) ***

0.2200
(24.87) ***

0.1887
(22.61) ***

0.1920
(24.16) ***

0.1991
(25.46) ***

0.2090
(25.43) ***

0.1928
(24.73) ***

0.2107
(25.66) ***

Ln(yww)
−0.1042

(−12.64) ***
−0.1580

(−17.40) ***
−0.0925

(−11.73) ***
−0.1402

(−16.79) ***
−0.1456

(−18.17) ***
−0.1474

(−17.49) ***
−0.1516

(−18.78) ***
−0.1486

(−18.26) ***

Ln(yso2 )
−0.0701

(−8.87) ***
−0.0519

(−6.29) ***
−0.0340

(−4.40) ***
−0.0260

(−3.59) ***
−0.0413

(−5.67) ***
−0.0296

(−3.99) ***
−0.0341

(−4.89) ***
−0.0297

(−4.05) ***

Ln(ys&d)
−0.1555

(−23.73) ***
−0.1306

(−19.27) ***
−0.1138

(−17.37) ***
−0.1008

(−16.52) ***
−0.1130

(−18.85) ***
−0.1211

(−19.53) ***
−0.1057

(−17.80) ***
−0.1242

(−20.10) ***

STW × Ln(kk) −0.2647
(−10.16) ***

−0.5436
(−22.56) ***

−0.2732
(−8.01) ***

−0.2158
(−4.98) ***

STW × Ln(ee) 0.1106
(5.36) ***

−0.1152
(−6.02) ***

0.1230
(4.93) ***

0.1544
(5.65) ***

STW × Ln(yww)
0.1696

(9.09) ***
0.1881

(11.43) ***
0.0784

(2.51) **
0.0398
(1.38)

STW × Ln(yso2 )
0.0369
(1.54)

0.1702
(7.96) ***

0.2359
(9.77) ***

0.2204
(9.09) ***

STW × Ln(ys&d)
−0.1773

(−11.16) ***
−0.0097
(−0.66)

−0.1866
(−8.36) ***

−0.2097
(−9.50) ***

ρ
0.3780

(21.27) ***
0.9010

(38.57) ***
−0.3050

(−89.77) ***
−0.2000

(−2.80) ***

λ
0.8860

(49.16) ***
0.9120

(85.53) ***
0.9400

(184.88) ***
0.9000

(74.52) ***
R̂2 0.7101 0.7308 0.6928 0.7785 −0.4350 0.7909 0.7849 0.7918
σ2 0.1816 0.1686 0.1653 0.1386 0.1311 0.1307 0.1346 0.1301

Log(L) −2690.40 −2511.90 −830.05 −430.42 −328.35 −293.62 −403.77 −1932.70

Note: the above outputs were collected based on MATLAB R2023a. ( ) denotes the T-statistic, *** and ** indicate that the hypothesis tests were passed at significance levels of 1% and 5%,
respectively.
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Table 3. Estimated results of SAR, SEM, and SDEM Models with fixed effects.

SAR SEM SDEM

Individual
Fixed Period Fixed Both Fixed Individual

Fixed Period Fixed Both Fixed Individual
Fixed Period Fixed Both Fixed

Const. 0.0775
(21.17) ***

−0.0117
(−2.19) **

−1.3077
(−24.98) ***

0.2537
(7.90) ***

−0.2291
(−4.63) ***

−1.6788
(−100.74) ***

0.0643
(1.80) *

−0.2107
(−4.18) ***

−1.6166
(−74.71) ***

Ln(kk) 0.4159
(39.18) ***

0.3643
(37.74) ***

0.5454
(53.53) ***

0.4329
(41.42) ***

0.4108
(43.12) ***

0.5508
(77.17) ***

0.4841
(44.26) ***

0.4057
(41.74) ***

0.5468
(54.21) ***

Ln(ee) 0.1918
(20.29) ***

0.1924
(24.98) ***

0.1345
(16.99) ***

0.1643
(18.14) ***

0.1943
(26.01) ***

0.1313
(16.65) ***

0.1712
(19.98) ***

0.2054
(25.89) ***

0.1326
(16.80) ***

Ln(yww)
−0.1986

(−23.47) ***
−0.1036

(−14.06) ***
−0.1725

(−24.17) ***
−0.1788

(−21.90) ***
−0.1437

(−18.67) ***
−0.1722

(−30.79) ***
−0.1907

(−24.29) ***
−0.1390

(−17.86) ***
−0.1720

(−24.93) ***

Ln(yso2 )
0.0633

(9.08) ***
−0.1139

(−15.28) ***
−0.0670

(−10.21) ***
0.0432

(6.42) ***
−0.0886

(−12.50) ***
−0.0665

(−11.01) ***
−0.0100
(−1.45)

−0.0844
(−11.33) ***

−0.0667
(−10.28) ***

Ln(ys&d)
−0.0932

(−14.43) ***
−0.0869

(−14.49) ***
−0.0581

(−10.71) ***
−0.0816

(−13.18) ***
−0.0902

(−15.87) ***
−0.0596

(−11.44) ***
−0.0851

(−14.43) ***
−0.0993

(−16.57) ***
−0.0589

(−10.91) ***

STW × Ln(kk) −0.4753
(−12.45) ***

−0.0360
(−1.04)

−0.0318
(−1.00)

STW × Ln(ee) 0.3861
(10.46) ***

0.1056
(4.39) ***

0.1172
(3.54) ***

STW × Ln(yww)
0.0074
(0.23)

0.0020
(0.07)

−0.0367
(−2.16) **

STW × Ln(yso2 )
0.3875

(13.05) ***
0.0404
(1.67) *

0.0108
(0.47)

STW ×
Ln(ys&d)

−0.2241
(−7.90) ***

−0.1131
(−5.35) ***

−0.0152
(−0.61)

ρ
0.1620

(66.49) ***
0.3850

(22.94) ***
0.1070

(53.95) ***

λ
0.7230

(35.54) ***
0.8730

(50.53) ***
0.3310

(87.89) ***
0.7520

(42.41) ***
0.8740

(43.91) ***
0.3100
(45.23)

R̂2 0.8032 0.5725 0.6043 0.8277 0.6805 0.6096 0.8464 0.6836 0.6105
σ2 0.0702 0.1339 0.0449 0.0639 0.1180 0.0446 0.0569 0.1167 0.0444

Log(L) 1217.00 −328.64 2281.40 1426.10 −45.60 2295.00 1700.40 −19.45 2303.40

Note: the above outputs were collected based on MATLAB R2023a. ( ) denotes the T-statistic, ***, **, and * mean having passed the hypothesis test with a significance level of 1%, 5%, and
10%, respectively.
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3.5. Calculation of China’s Urban Industrial Green TFPs Using the STE-SRM

Based on Equation (7) and the estimates derived from the Spatial Durbin Error Model
(SDEM) presented in Table 2, it is possible to compute the green total factor productivity
(TFP) of China’s urban industries, as depicted in Figure 2. It is important to highlight that
the SDEM, functioning as a degradation model in accordance with Equations (8) and (9),
operates under the condition where ρ̂ = 0, and then Θ̂ = INT ; thus, the estimated share of
inputs per capita in Equation (7) will be changed to η̂q = 1

NT trace
(
α̂q INT + θ̂qSTW

)
, while

the estimated share of the jth undesired outputs in the constitution of the whole outputs will
be also changed to τ̂j =

1
NT trace

[
−
(

β̂ j INT + γ̂jSTW
)]

correspondingly. The input shares of
per capita industrial capital and per capita industrial energy in China are 0.3699 and 0.2090,
respectively. This distribution suggests that China’s industrial growth remains significantly
dependent on labor inputs. Additionally, among the three undesired outputs—industrial
wastewater emissions, industrial sulfur dioxide emissions, and industrial smoke (dust)
emissions—their respective shares are 0.1474, 0.0296, and 0.1211. Consequently, these
figures imply that the proportion of expected output in China’s urban industrial sectors is
approximately 0.7019.Mathematics 2024, 12, x FOR PEER REVIEW  14  of  34 
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Figure 2. China’s urban industrial green TFPs from 2003 to 2019. The figure was generated using
MATLAB R2023a. The horizontal axis indicates the years, while the vertical axis indicates the ordered
280 cities.

Furthermore, this study identifies the 10th and 90th percentiles of all industrial Green
TFPs from 2003 to 2019 as critical benchmarks and details the cities whose industrial
green TFPs are in the top and bottom 10%, along with their occurrences, as illustrated
in Figure 3. In Figure 3a, nine cities—Huangshan, Fangchenggang, Sanya, Zhangjiajie,
Bazhong, Zhoushan, Haikou, Ziyang, and Qingyang—exhibit higher industrial green TFPs,
with occurrences in the top 10% exceeding 14 times. Conversely, Figure 3b highlights
another nine cities—Jincheng, Datong, Taiyuan, Suzhou, Tangshan, Quanzhou, Jiaxing,
Chengdu, and Harbin—that have lower industrial green TFPs, with their frequencies in the
lowest 10% surpassing 12 occurrences.
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3.6. Sensitivity Analysis of the Calculated Results

In Figure 3a,b, the calculated industrial green TFPs for cities such as Qingyang,
Chengdu, Suzhou, and Quanzhou deviate somewhat from initial expectations. Typically,
Suzhou, Quanzhou, and Chengdu are relatively affluent regions, which would suggest
higher industrial green TFPs, whereas Qingyang, being less developed, might be expected
to show lower TFPs. To further investigate the reasons behind the variations in urban
industrial green TFPs—whether notably high or low—this paper employs Equations (11)
to (14) to conduct a sensitivity analysis of the results.

Probmax,yy =

∑
T

∑
Num_Max

I{exp(YYnum_max) > prctile[exp(yy), p]}

T × Num_Max
(11)

Probmax,zzφ =

∑
T

∑
Num_Max

I
{

exp
(
ZZφ,num_max

)
< prctile

[
exp
(
zzφ

)
, 100 − p

]}
T × Num_Max

(12)

Probmin,yy =

∑
T

∑
Num_Min

I{exp(YYnum_min) < prctile[exp(yy), q]}

T × Num_Min
(13)

Probmin,zzφ
=

∑
T

∑
Num_Min

I
{

exp
(
ZZφ,num_min

)
> prctile

[
exp
(
zzφ

)
, 100 − q

]}
T × Num_Min

(14)

In Equations from (11) to (14), num_max represents the assigned numbers for the nine
cities depicted in Figure 3a, which exhibit relatively high industrial green TFPs. Conversely,
num_min denotes the assigned numbers for the nine cities shown in Figure 3b that display
relatively poor industrial green TFP outcomes; Num_Max and Num_Min are the total
number of cities that have relatively good or poor calculated results, Num_Max = 9,
Num_Min = 9; T represents the total number of years covered by the research period,
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T = 17; exp(·) is the power function based on natural number, while prctile[·] is the
percentile function, where p and q separately indicate the pth and qth percentiles; I{·} is an
indicator function that takes the value of 1 when the expression within the braces is true;
YY indicates the panel data of the desired industrial outputs per capita with the spatial
units in the rows and the periods in the columns, and yy is the stacked sequence of YY
with the spatial units pooled firstly and then the periods; ZZφ indicates the panel data
of both the industrial inputs per capita and the share of the undesired outputs in total
outputs, ZZφ = {kk, ee, yWW , yso2 , ys&d}, zzφ indicates the corresponding stacked sequences.
Furthermore, Probmax,yy, Probmax,zzφ , Probmin,yy, and Probmin,zzφ

are probabilities defined
as in equations from (11) to (14), wherein the former two are for the cities whose calculated
industrial green TFPs are good, while the latter two are for the cities whose calculated
results are poor. The thresholds of Probmax,zzφ and Probmin,zzφ

are defined separately as the
100 − p percentile and the 100 − q percentile of the corresponding data. Figure 4 presents
the results of the sensitivity analysis.
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Figure 4. Sensitive analysis of the calculated results in the cities ranked top and last 10%. This figure
was drawn with MATLAB R2023a.

In Figure 4a, the horizontal axis represents the value of p, p ∈ [50, 100), while the
vertical axis indicates both Probmax,yy and Probmax,zzφ ; in Figure 4b, the horizontal axis is
the value of q, q ∈ (0, 50], while the vertical axis indicates both Probmin,yy and Probmin,zzφ

.
Figure 4a illustrates that as the quantile point decreases from 100 to 50, the probability that
per capita outputs in the nine cities with superior industrial green TFP results exceed their
critical values increases. Additionally, the likelihood of per capita inputs and the ratio of
undesired to desired outputs falling below their critical values also rises. This indicates that
with higher per capita desired outputs, lower per capita inputs, and a smaller proportion
of undesired outputs relative to total outputs, the closer the critical value approaches to the
median and the higher the probability of achieving better industrial green TFP outcomes.
The primary factors contributing to excellent industrial green TFPs include high desired
outputs per capita, low inputs per capita, and a low share of undesired outputs in total
outputs. Conversely, Figure 4b shows that as the quantile point decreases from 50 to 1,
the probability of the per capita outputs in the nine cities with poorer TFP results being
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below the critical value increases, as does the likelihood of per capita inputs and the share
of undesired outputs relative to total outputs exceeding their critical values. This suggests
that the principal reasons for poor industrial green TFPs include lower desired outputs
per capita, higher inputs per capita, and a higher proportion of undesired outputs in
total outputs.

Figure 5 elucidates the varied reasons behind the relatively high or low industrial green
TFP results for individual cities. In Figure 5a–c, the vertical axis measures the frequency
with which the desired outputs per capita fall below their critical values, or the inputs per
capita and the shares of undesired outputs in total outputs exceed their respective critical
values over the period from 2003 to 2019. The critical values on the horizontal axes are set at
specific percentiles including 10, 20, 30, 40, and 50. Conversely, Figure 5d displays a vertical
axis that tracks the frequency of instances where the desired outputs per capita exceed
their critical value, or where the inputs per capita and the shares of undesired outputs in
total outputs are below their corresponding critical values. The critical values in this figure
are established at higher percentiles, specifically 55, 65, 75, 85, and 95, reflecting different
thresholds for assessing performance.
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Figure 5. Sensitive analysis of special cities including Suzhou, Quanzhou, Chengdu, and Qingyang.
This figure was drawn with MATLAB R2023a.

In Figure 5d, the industrial sector in Qingyang shows lower shares of undesired
outputs—including industrial wastewater, sulfur dioxide emissions, and smoke (dust)
emissions—which contribute to its relatively high calculated green TFPs. Conversely, in
Figure 5a, Suzhou’s industrial sector is characterized by lower desired outputs per capita
combined with higher shares of the three undesired outputs, leading to relatively poor
green TFP results. Similarly, in Figure 5b, the industrial sector in Quanzhou faces challenges
akin to those in Suzhou, resulting in poor green TFPs. Additionally, Quanzhou’s relatively
higher per capita industrial capital and energy inputs further contribute to its suboptimal
performance. In Figure 5c, Chengdu exhibits poor green TFPs for reasons similar to those
observed in Quanzhou. However, the share of smoke (dust) emissions in Chengdu’s total
outputs does not significantly impact its green TFP assessment, indicating that other factors
primarily drive its poor performance.
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4. Assessing the Accuracy of STE-SRM: Comparative Analysis with DEA-SBM and
Bayesian SFA

Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) represent
two additional methodological approaches for calculating green Total Factor Productivities
(TFPs). This paper recalculates the industrial green TFPs for over 280 cities from 2003 to
2019 using the DEA-SBM from the DEA family, and subsequently through the Bayesian
SFA from the SFA family. It then assesses the accuracy of the STE-SRM in calculating green
TFPs by comparing these results.

4.1. Reassessment of China’s Urban Industrial Green TFPs Using DEA-SBM

As an important method within the DEA family, the DEA-SBM is widely used in
the calculation of green Total Factor Productivities (TFPs). This model thoroughly con-
siders the slackness of input and output variables and evaluates changes in inputs and
outputs from both non-radial and non-angular perspectives simultaneously. The main
features of the DEA-SBM model include the following: firstly, the slackness of inputs and
outputs is incorporated into the objective function; secondly, changes in inputs and outputs
are examined simultaneously; thirdly, it allows for the examination of different propor-
tional changes in inputs and outputs; fourthly, undesirable outputs can be included in the
efficiency calculation.

We consider each city as an industrial production decision-making unit. We set
i = 1, 2, · · · , N as the number of the cities, and define xk,i, yr,i, and yπ,i as the kth input,
the rth desired output, and the πth undesired output of the city i respectively, wherein
k = 1, 2, · · · , m0, r = 1, 2, · · · , m1, and π = 1, 2, · · · , m2, then the production possibility
sets of the industrial sectors in the city i can be defined as in the following Equation (15).

Pi =

{
(xk,i, yr,i, yπ,i)

∣∣xk,i ≥ ∑
l

λl xk,l , yr,i ≤ ∑
l

λlyr,l , yπ,i ≥ ∑
l

λlyπ,l , λl ≥ 0

}
(15)

As detailed in Section 3.2, let us assume that within the industrial production decision-
making framework, the inputs consist of industrial capital, labor, and energy. The outputs
are categorized into one desired and three undesired types. The desired output is the
gross value of industrial production, whereas the undesired outputs encompass industrial
wastewater emissions, sulfur dioxide emissions, and smoke (dust) emissions. Thus, in
Equation (15), m0 = 3, m1 = 1, and m2 = 3. In Equation (15), l also represents the number
of cities, l = 1, 2, · · · , N; Pi represents the production possibility sets of the industrial
production of the city i; λl represents the weight of the city l. According to the DEA-SBM,
we define s−k , s+r , and s−π as the slacks of the kth input, the rth desired output, and the πth

undesired output, respectively; the green TFPs can be calculated by the following two
Equations (16) and (17).

GTFPdea,i = Min


1 − 1

m0

m0
∑

k=1

(
s_

k
xk,i

)
1 + 1

m1+m2

[ m1
∑

r=1

(
s_

r
yr,i

)
+

m2
∑

π=1

(
s+π
yπ,i

)]
 (16)

s.t.

xk,i = ∑
l

λl xk,l + s−k
yr,i = ∑

l
λlyr,l − s+r

yπ,i = ∑
l

λlyπ,l + s−π

λ ≥ 0, s−k ≥ 0, s+r ≥ 0, s−π ≥ 0

(17)

In Equation (16), GTFPdea,i is the industrial green TFP of the city i calculated by
DEA-SBM, and it is the decreasing function of s−k , s+r , and s−π . If the values of s−k , s+r ,
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and s−π are zeros, the value of GTFPdea,i is biggest, GTFPdea,i = 1. If the values of s−k , s+r ,
and s−π are respectively equal to xk,i, yr,i, and yπ,i, the value of GTFPdea,i will be lowest,
GTFPdea,i = 0. Thus, GTFPdea,i ∈ [0, 1]. Based on Equations (16) and (17), and utiliz-
ing MATLAB R2023a along with custom codes developed by the author, the industrial
green Total Factor Productivities (TFPs) of 280 Chinese cities from 2003 to 2019 have been
recalculated, as illustrated in Figure 6b.
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Figure 6. Comparison of industrial green TFPs calculated by different methods and their lognormal
distribution fitting. This figure is composed of four parts: (a) shows green TFPs calculated by the
STE-SRM; (b) displays green TFPs calculated by the DEA-SBM; (c) presents green TFPs calculated by
the Bayesian SFA; and (d) illustrates lognormal distribution fitting for three kinds of green TFPs. The
figure was created using MATLAB R2024a.

4.2. Revised Calculation of China’s Urban Industrial Green TFPs Using Bayesian SFA
4.2.1. Fundamental Logic of Bayesian SFA in Calculating Green TFPs

Bayesian SFA is a prominent method within the SFA family, representing an integration
of stochastic frontier analysis with Bayesian methods. In the assessment of green production
efficiency, Bayesian SFA primarily focuses on determining the posterior distribution of
unknown parameters in the stochastic frontier production function model. This is achieved
by leveraging their prior distributions, in conjunction with the total probability formula
and sample data. The green production efficiency is then calculated using these estimated
parameters. We define Y as the outputs and Zυ as the υth input, υ = 1, 2, · · · ,Υ, and set
y∗ = Ln(Y), z∗v = Ln(Zυ), and z∗ = {z∗v}; the stochastic frontier production function model
can be preset as the following Equation (18).

y∗ = g(z∗; γ) + ξ − ς (18)

In Equation (18), γ represents the exogenous parameters of the inputs and their
various combinations; ξ is a disturbance term that follows a normal distribution with a
zero mean and a specific variance, ξ ∼ N

(
0, σ2

ξ INT

)
; the indices i and t represent the

analyzed regions and periods, respectively, i = 1, 2, · · · , N, t = 1, 2, · · · , T; ς is the non-
efficiency term and subject to the semi-normal distribution, ς ∼ N+

(
0, σ2

ς INT

)
; ς and ξ

are independent from each other. In Bayesian SFA, the green TFPs are usually defined
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by GTFPs f a,it = exp(−ςit), and their values usually range between 0 and 1. In Equation
(18), g(z∗; γ) can vary depending on the different input factors involved. Drawing on the
analyses by Makiela (2014) and Makiela and Ouattara (2018) [36,37], the general formula
for g(z∗; γ) is established as Equation (19).

g(z∗; γ) =
Λ

∑
κ=0

tκγ0,κ +
Λ

∑
κ=0

{
Υ

∑
υ=1

(tκz∗υ)γυ1 +
Υ

∑
υ=1

[
tκ(z∗υ)

2
]
γυ2 +

Υ

∑
τ=1

Υ

∑
υ=1

(tκz∗τz∗υ)γυ3

}
(19)

In Equation (19), υ denotes the subscript for the inputs, with υ = 1, 2, · · · ,Υ; the sym-
bols υ1, υ2, and υ3 are the subscripts for the exogenous parameters, where
υ1 = υ + κC2

Υ + 2κΥ, υ2 = υ + κC2
Υ + (2κ + 1)Υ, and υ3 = ψ + κC2

Υ + (2κ + 2)Υ. Wherein,
κ indicates the exponential value of the period variable t, κ = 0, 1, · · · , Λ, and Λ can be 0, 1,
or 2; ψ represents the number of exogenous parameters associated with the new variables
created by the cross-multiplication of two inputs, ψ = 1, 2, · · · , C2

Υ; C2
Υ is the total number

of the new variables formed, C2
Υ = Υ!

(Υ−2)!2! .

We define g(z∗; γ) = z∗γ, and γ subjects to a normal distribution, γ ∼ N
(
b, C−1).

Also, we respectively define σ2
ξ and σ2

ς subject to the inverse gamma distribution as

σ2
ξ ∼ IG(ηn0, ηα0), σ2

ς ∼ IG
(

5, 10Ln2
(

GTFP0
s f a

))
, where η represents an empirical

constant, η = 0.5, and GTFP0
s f a is the prior mean of the green TFPs. Moreover, we define

fN( ·|△,□) as representing the probability density function of the normal distribution
with the mean of △ and the variance of □, and define fG( ·|△,□) as representing the
probability density function of the gamma distribution with the mean of △/□ and the
variance of (△/□)2; then, Equation (18) can be changed to its Bayesian form, as shown in
Equation (20).

fN

(
γ|b, C−1

)
· fG

(
σ−2

ξ

∣∣∣ηn0, ηα0

)
· fG

(
σ−2

ς

∣∣∣5, 10Ln2
(

GTFP0
s f a

))
·

T

∏
t=1

N

∏
i=1

fN

(
y∗it|z∗itγ − ςit, σ2

ξ

)
fG

(
ςit|0, σ2

ς

)
(20)

According to the Bayesian analysis, the conditional posterior distribution of the un-
known parameters of γ, σ2

ξ , σ2
ς , and ςit can be shown as Equations (21) to (24).

p
(

γ|y∗, z∗, ςit, σ−2
ξ , σ−2

ς

)
∝ f J

N

(
γ|C−1

∗

[
Cb + σ−2

ξ z∗′(y∗ + ςit)
]
, C−1

∗

)
(21)

p
(

σ−2
ξ

∣∣∣y∗, z∗, ςit, σ−2
ς , γ

)
∝ fG

(
σ−2

ξ

∣∣∣n0 + NT
2

,
a0 + ξ ′ξ

2

)
(22)

p
(

σ−2
ς

∣∣∣y∗, z∗, ςit, σ−2
ξ , γ

)
∝ fG

(
σ−2

ς

∣∣∣NT
2

+ 5,
1
2

T

∑
t=1

N

∑
i=1

ςit + 10Ln2
(

GTFP0
s f a

))
(23)

p
(

ςit|y∗, z∗, σ−2
ξ , σ−2

ς , γ
)

∝ f NT
N

(
ςit|

σς(z∗γ − y∗)
σ2

ς + σ2
ξ

,
σ2

ς σ2
ξ

σ2
ς + σ2

ξ

)
I
(

ςit ∈ RNT
+

)
(24)

In Equations (21) and (22), C−1
∗ =

(
C + σ−2

ξ z∗′z∗
)−1

, ξ = y∗ + ςit − z∗γ, I
(
ςit ∈ RNT

+

)
is an indicative function indicator that ς obeys the semi-normal distribution. Based on
Equations (20) to (24) and employing techniques such as Gibbs sampling and Metropolis-
Hastings sampling [38], the unknown parameters can be effectively estimated and inferred
through posterior analysis.

4.2.2. China’s Urban Industrial Green TFPs Re-calculated by the Bayesian SFA

The general term formula in Equation (19) is somewhat complex and may lead to
multicollinearity issues when modeling China’s urban industrial production process. There-
fore, in the recalibration of industrial green TFPs for China’s 280 cities from 2003 to 2019
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using Bayesian SFA, Equation (19) has been constrained to Equation (25) to mitigate
these challenges.

g′′
(

z∗
′′
; γ
)
= γ0,0 +

6

∑
υ=1

z∗
′′

υ γυ +
6

∑
υ=1

(
z∗

′′
υ

)2
γυ+6 +

6

∑
τ=1

6

∑
υ=1

(
z∗

′′
τ z∗

′′
υ

)
γψ+12 + γ0,1t +

6

∑
υ=1

(
tz∗

′′
υ

)
γυ+27 (25)

In Equation (25), six inputs are considered, z∗
′′
=
{

k∗, l∗, en∗, y∗ww, y∗so2
, y∗s&d

}
; these

inputs include three real inputs of capital, labor, and energy, and three undesired outputs.
Wherein, k∗ = Ln(K), l∗ = Ln(L), en∗ = Ln(En), y∗ww = −Ln(YWW), y∗so2

= −Ln
(
YSO2

)
,

y∗s&d = −Ln(YS&D), and the definitions of K, L, En, YWW , YSO2 , and YS&D are the same
as before. At this time, Υ = 6. Meanwhile, if Λ is preset to be 1, then κ = 0, 1, C2

Υ = 15,
and ψ = 1, 2, · · · , 15. It is important to note that the revised formula in Equation (20)
omits the interaction term between the period variable t and the quadratic forms of the
inputs. Additionally, it does not include terms representing the product of t and the
cross-multiplication of inputs paired together.

From Equation (25), five distinct degradation models can be derived, each based on
different underlying assumptions. There will be a basic Cobb–Douglas model (C-D) if
γυ+6 = 0, γψ+12 = 0, γ0,1 = 0, and γυ+27 = 0, a Cobb–Douglas model with the period
variable (CD-T) if γυ+6 = 0, γψ+12 = 0, and γυ+27 = 0, and a Cobb–Douglas model
with the parameters varied with the time (CD-Linear-T) if γυ+6 = 0 and γψ+12 = 0.
Meanwhile, there will be a basic transcendental logarithmic model (Trans-Log) if γ0,1 = 0
and γυ+27 = 0, and a Trans-Log model with the period variable (Trans-Log-T) if γυ+27 = 0.
Based on theoretical process similar to the equations from (20) to (24), these five degradation
models can be estimated, as shown in Table 4. It is worth noting that, in the Bayesian
sampling process, the prior mean of China’s urban industrial green TFPs is preset to be 0.75,
GTFP0

s f a = 0.75; n0 and α0 are both preset to be 10−6, n0 = α0 = 10−6; the total number of
samples taken is 50,000. The parameters are estimated and inferred based on the mean of
these parameters over the last 40,000 samples, after discarding the initial 10,000 samples.

Table 4. Bayesian estimators of different stochastic frontier production functions of China’s urban
industrial sectors.

C-D CD-T CD-Linear-T Trans-Log Trans-Log-T

Const. 0.6462
(57.82) ***

0.5184
(40.24) ***

−0.0383
(−16.75) ***

−0.1203
(−10.96) ***

−0.0997
(−9.29) ***

Ln(K) 0.3437
(26.83) ***

0.4055
(32.11) ***

0.0133
(5.48) ***

0.0408
(2.09) **

0.0221
(1.17)

Ln(L) 0.1136
(10.57) ***

0.0676
(6.34) ***

0.0014
(0.68)

0.0431
(3.15) ***

0.0139
(1.03)

Ln(En) −0.1846
(−19.07) ***

−0.2218
(−23.37) ***

−0.0076
(−4.08) ***

−0.0618
(−4.58) ***

−0.0606
(−4.66) ***

Ln(yww)
−0.0314

(−3.34) ***
0.0246

(2.62) ***
−0.0085

(−4.66) ***
−0.0058
(−0.44)

0.0147
(1.14)

Ln(ySO2 )
−0.0999

(−12.19) ***
−0.0824

(−10.43) ***
0.0076

(4.74) ***
0.0377

(3.35) ***
0.0220

(2.01) **

Ln(yS&D)
−0.4806

(−6.25) ***
−0.0417

(−18.23) ***
−0.1344

(−9.89) ***
−0.9893

(−9.28) ***
−0.8297

(−8.06) ***

[Ln(K)]2
−0.0457

(−3.62) ***
−0.0271

(−2.17) **

[Ln(L)]2
0.0776

(4.86) ***
0.0722

(4.64) ***

[Ln(En)]2
0.0145
(0.87)

0.0119
(0.72)

[Ln(yww)]
2 0.0202

(1.35)
0.0277

(1.92) **
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Table 4. Cont.

C-D CD-T CD-Linear-T Trans-Log Trans-Log-T

[Ln(ys2 )]
2 0.0435

(3.45) ***
0.0401

(3.27) ***

[Ln(ys&d)]
2 0.1826

(1.46)
0.2570

(2.10) **

Ln(K)× Ln(L) −0.0406
(−6.17) ***

−0.0277
(−4.26) ***

Ln(K)× Ln(En) −0.0215
(−1.62)

−0.0221
(−1.73) *

Ln(K)× Ln(yww)
−0.0479

(−4.18) ***
−0.0281

(−2.51) **

Ln(K)× Ln(ySO2 )
0.0421

(3.72) ***
0.0345

(3.11) ***

Ln(K)× Ln(yS&D)
0.0543
(0.59)

0.0723
(0.82)

Ln(L)× Ln(En) 0.0536
(6.78) ***

−0.0534
(−6.82) ***

Ln(L)× Ln(yww)
−0.0881

(−7.71) ***
−0.0843

(−7.51) ***

Ln(L)× Ln(ySO2 )
0.0116
(1.18)

0.0150
(1.57)

Ln(L)× Ln(yS&D)
0.6164

(5.78) ***
0.6585

(6.23) ***

Ln(En)× Ln(yww)
0.0300

(5.22) ***
0.0257

(4.61) ***

Ln(En)× Ln(ySO2 )
−0.0244

(−2.92) ***
−0.0190

(−2.32) ***

Ln(En)× Ln(yS&D)
−0.4508

(−5.54) ***
−0.5236

(−6.59) ***

Ln(yww)× Ln(ySO2 )
−0.0109

(−3.02) ***
−0.0059
(−1.67) *

Ln(yww)×
Ln(yS&D)

0.2608
(3.66) ***

0.1262
(1.81) *

Ln(ySO2 )×
Ln(yS&D)

−1.1460
(−2.73) ***

0.0396
(16.15) ***

T 0.3842
(5.33) ***

0.8187
(37.88) ***

−1.2758
(−3.09) ***

T × Ln(K) 0.3084
(12.09) ***

T × Ln(L) 0.0655
(3.41) ***

T × Ln(En) −0.1572
(−8.62) ***

T × Ln(yww)
0.0553

(3.02) ***

T × Ln(ySO2 )
−0.1244

(−8.58) ***

T × Ln(yS&D)
0.2432
(1.83) *

σ2
ς

0.3458
(12.94) ***

0.3176
(13.59) ***

0.2923
(13.94) ***

0.3070
(12.38) ***

0.2876
(12.29) ***

σξ
0.3562

(29.69) ***
0.3475

(32.51) ***
0.3307

(33.35) ***
0.3460

(29.81) ***
0.3387

(30.54) ***
MDD −1050.55 −975.72 −862.52 −1024.41 −967.64
SSE 322.88 311.53 280.00 310.59 300.14

Note: the above outputs were collected based on MATLAB R2023a. ( ) represents T-statistic, ***, ** and * mean
having passed the hypothesis test with a significance level of 1%, 5% and 10%. MDD indicates marginal data
density based on Harmonic Mean Estimator, while SSE indicates the sum of squared errors in the Batesian
SFA model.
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The estimation results presented in Table 4 reveal that several parameters for the
explanatory variables in the CD-Linear-T, Trans-Log, and Trans-Log-T models are not
statistically significant, suggesting that these models may not be optimal for China’s urban
industrial sectors. Additionally, in the CD-T model, the elasticity of wastewater to outputs
is positively correlated, which contradicts expected outcomes, thereby disqualifying CD-T
as the optimal model as well. Consequently, the Cobb–Douglas (C-D) model remains for
use in the Bayesian SFA to calculate the industrial green TFPs. In practice, the C-D model
is considered optimal because it exhibits statistically significant parameters and robust
statistical characteristics. From the estimated technical efficiency items of the C-D model in
Table 4, combined with the formula of GTFPs f a,it = exp(−ςit), China’s urban industrial
green TFPs can be re-calculated by the Bayesian SFA, as shown in Figure 6c.

4.2.3. Comparative Analysis of Three Methods and Accuracy Assessment of the STE-SRM

To evaluate the accuracy of the STE-SRM, this section compares the calculated results
obtained using the three different methods. As illustrated in Figure 6, the industrial green
TFPs for China’s 280 cities from 2003 to 2019 are depicted in subgraphs 6a, 6b, and 6c.
Additionally, lognormal distribution fitting of these results is shown in subgraph 6d. From
subgraph 6a, the range of urban industrial green TFPs calculated by the STE-SRM spans
from 0 to 40, whereas in subgraphs 6b and 6c, the TFPs calculated by the DEA-SBM and
Bayesian SFA range from 0 to 1. Subgraph 6d shows that the cumulative density functions of
all three types of industrial green TFPs follow power function trends, where the exponents
for the TFPs calculated by the DEA-SBM and Bayesian SFA exceed one, while the exponent
for the TFPs calculated by the STE-SRM is less than one. Moreover, the power function
curve for the results from Bayesian SFA is steeper than that from the DEA-SBM.

Additionally, the main statistical characteristics of the three types of industrial green
TFPs are detailed in Table 5. According to the table, the STE-SRM calculated values have
the highest mean, maximum, and standard deviation, with the median and minimum
values falling in between. Furthermore, the quartile deviation (the difference between the
75th and 25th quartiles) of the STE-SRM results is the largest, and its coefficient of variation
(mean divided by the standard deviation) is the smallest, indicating a wider range but
higher concentration of the TFPs calculated by the STE-SRM. Conversely, the Bayesian
SFA results show the largest coefficient of variation and the smallest quartile deviation,
suggesting a narrower range but greater dispersion. The DEA-SBM’s results fall between
these extremes in both coefficient of variation and quartile deviation.

Table 5. Key descriptive statistics of industrial green TFPs derived from various methods.

STE-SRM Bayesian SFA DEA-SBM

Mean 0.9872 0.6628 0.4640
Median 0.6260 0.6933 0.4308

Maximum 38.2525 0.9407 1.0000
Minimum 0.0663 0.1533 0.0021
Std. Dev. 1.4340 0.1404 0.2250

Coefficient of
Variation 0.6884 4.7208 2.0622

75th Quartile 1.0893 0.7698 0.5769
25th Quartile 0.3729 0.5768 0.3080

Quartile Deviation 0.7163 0.1931 0.2689
Note: the results were obtained based on MATLAB R2023a and EViews 11.0.

In summary, although the theoretical frameworks for calculating industrial green TFPs
using STE-SRM, DEA-SBM, and Bayesian SFA differ and lack direct comparability, the
comparative analysis of the results suggests that the STE-SRM is suitable for researchers
preferring a broader range with concentrated outcomes, while the Bayesian SFA is better
for those seeking a narrower range with more dispersed results.
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5. Advanced Analysis of China’s Urban Industrial Green TFPs Calculated by STE-SRM:
Examining Spatial Heterogeneity and Convergence
5.1. Spatial Heterogeneity Analyzed Using Dagum’s Gini Coefficient

Dagum’s Gini coefficient is a significant tool for analyzing spatial heterogeneity. Its
fundamental principle involves decomposing the total coefficient into three distinct parts: the
contribution from intra-group differences, the contribution from inter-group differences, and
the contribution from the intensity of trans-variation differences [39]. This section explores the
spatial heterogeneity of China’s urban industrial green TFPs using Dagum’s Gini coefficient,
as detailed in Equation (26). Here, GGTFP represents the total Dagum’s Gini coefficient, while
GGTFP,w, GGTFP,nb, and GGTFP,t denote the three decomposed components, respectively.

GGTFP =
k

∑
h=1

GhhPhSh︸ ︷︷ ︸
GGTFP,w

+
k

∑
h=1

∑
h′ ̸=h

Ghh′(PhSh′ + Ph′Sh)Dhh′︸ ︷︷ ︸
GGTFP,nb

+
k

∑
h=1

∑
h′ ̸=h

Ghh′(PhSh′ + Ph′Sh)(1 − Dhh′)︸ ︷︷ ︸
GGTFP,t

(26)

In Equation (26), Ghh and Ghh′ respectively indicate the intra-group Gini coefficient and

the inter-group Gini coefficient, Ghh =

nh
∑

i=1

nh
∑

l=1

∣∣∣ĜTFPhi− ˆGTFPhl

∣∣∣
2n2

hĜTFPh

, Ghh′ =

nh
∑

i=1

nh′
∑

r=1

∣∣∣ĜTFPhi− ̂GTFPh′r

∣∣∣
nhnh′

(
ĜTFPh+ĜTFPh′

) ; h

and h′ respectively represent the spatial groups, where in this paper, the spatial groups
are classified by eastern, central, western, and northeast China, and then h = 1, 2, 3, 4,
h′ = 1, 2, 3, 4; Ph indicates the ratios of the number of the cities belong to the spatial group h
to the total number of the cities, Ph = Nh/N; Sh and Sh′ respectively indicate the ratios of
the sum of the industrial green TFPs of the cities belonging to the spatial group h (or h′) to

the sum of the industrial green TFPs of all the cities, Sh = NhĜTFPh

NĜTFP
, Sh′ =

Nh′ ĜTFPh′

NĜTFP
; ĜTFPh,

ĜTFPh′ , and ĜTFP respectively represent the mean value of the industrial green TFPs of
the spatial group h, the spatial group h′, and all the cities; Nh and Nh′ indicate the number
of the cities belonging to the spatial group h and the spatial group h′, respectively; Dhh′

indicates the relative spatial influence between the spatial group h and the spatial group
h′, Dhh′ =

dhh′−phh′
dhh′+phh′

; dhh′ indicates the total spatial influences of the spatial group h and the
spatial group h′, as shown in Equation (27); phh′ is the first moment of the trans-variation,
as shown in Equation (28).

dhh′ =

∞∫
0

dFh

(
ĜTFPhi

) ĜTFPhi∫
0

(
ĜTFPhi − ĜTFPh′r

)
dFh′

(
ĜTFPh′r

)
(27)

phh′ =

∞∫
0

dFh′
(

ĜTFPhi

) ĜTFP∫
0

(
ĜTFPhi − ĜTFPh′r

)
dFh

(
ĜTFPh′r

)
(28)

Based on Equation (26) and categorizing the spatial groups by eastern, central, western,
and northeast regions of China, Dagum’s Gini coefficients have been calculated and are
presented in Figure 7. The division of cities includes 83 in eastern, 80 in central, 83 in
western, and 34 in northeast China.
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From Figure 7, the overall level of Dagum’s Gini coefficient for China’s urban industrial
green TFPs ranges from approximately 0.4 to 0.5, indicating significant spatial heterogeneity.
Among the four decomposed parts, the contribution from the intensity of trans-variation
differences is the highest. The development trend of intra-group differences is similar to
that of inter-group differences; however, the value of the intra-group differences is slightly
greater than that of the inter-group differences. Regarding the trend of the overall Dagum’s
Gini coefficient, the spatial heterogeneity of China’s urban industrial green TFPs increased
from 2003 to 2010, followed by a general trend of narrowing after 2011. The narrowing
trend decreased rapidly between 2011 and 2013, experienced some expansion from 2013 to
2016, and the expansion was subsequently controlled after 2017.

5.2. Analyzing Spatial Convergence through Sigma and Beta Convergence Methods
5.2.1. The Sigma Convergence and the Beta Convergence

To better understand the spatial attributes of China’s urban industrial green TFPs,
this section employs spatial sigma and beta convergence analyses to investigate spatial
convergence. In general, sigma convergence analysis assesses the coefficient of variation,
as illustrated in Equation (29). A sigma convergence trend is indicated when the coefficient
of variation for a specific economic indicator consistently decreases over time. In Equation
(29), Astg_GTFP indicates the sigma convergence of China’s urban industrial green TFPs,
Std(·) and Mean(·) indicate the standard deviation and the mean value, respectively, i is
the number of the cities, and t indicates the year, while Num_g indicates the number of the
cities in a special spatial group.

Astg_GTFPt,Num_g = Std
i∈Num_g

(GTFPi,t)/ Mean
i∈Num_g

(GTFPi,t) (29)

Beta convergence is typically assessed by examining the elasticity of a specific eco-
nomic indicator’s current value to its increment. The primary approach involves establish-
ing a regression model with the logarithm of the indicator’s increment as the dependent
variable and the logarithm of the current value of the indicator as the core explanatory
variable. A beta convergence trend is indicated if the estimated parameter of the core
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explanatory variable is significantly negative. It is important to note that convergence can
occur in two forms: absolute convergence and conditional convergence. Convergence is
conditional if other control variables are included in the regression model; otherwise, it is
absolute convergence. Moreover, if the regression model includes only the core explanatory
variable and its spatiotemporal spillover terms, it also indicates absolute convergence.

Given the challenges in obtaining data on China’s industrial development across
280 cities during 2003–2019, this paper establishes a regression model, as outlined in
Equations (30) and (31), to examine the spatial absolute convergence of China’s urban
industrial green TFPs.

Ln
(

GTFPi,t+1
GTFPi,t

)
= ω0

[
STW1 × Ln

(
GTFPi,t+1

GTFPi,t

)]
+ ω1Ln(GTFPi,t)

+ω2[STW1 × Ln(GTFPi,t)] + ϑ1 + ϑ2 + µ3
(30)

µ3 = ω3(STW1 × µ3) + ε4 (31)

In Equations (30) and (31), GTFP still indicates the industrial green TFPs in China’s
280 cities, t indicates the year, and t + 1 indicates the lag year of t. STW1 are the spa-
tiotemporal weight matrices constructed similarly to STW previously. However, for the
analyses in different spatial groups, STW1 should be constructed by the latitude and longi-
tude distances among the corresponding cities belonging to the spatial group, and their
temporal weight matrices are not determined by the disturbance terms in Equation (10)
but determined by the different estimated residuals in the univariate linear regression
models, taking Ln(GTFPi,t+1/GTFPi,t) as the explained variable and Ln(GTFPi,t) as the
explanatory variable. These univariate linear regression models also contain different
sample cities when different spatial groups are considered.

In Equations (30) and (31), ω0 and ω3 are spatial correlation coefficients; ω1 and ω2 are
exogenous parameters; ϑ1 and ϑ2 are parameters representing individual or period effects;
µ3 and ε4 are disturbance terms, ε4 ∼ I ID

(
0, σ2

4
)
, and the distribution of µ3 is decided

by Equation (31). According to the analytical paradigm of spatial econometrics, the beta
convergence trend cannot be determined by the estimated parameter of ω̂1. However, the
beta convergence trend should be judged as the following three steps. First, we determine
the data-generating process of the model of (30) and (31) and calculate the parameter

marginal effect matrix, S1(W) =
∂Ln(GTFPi,t+1/GTFPi,t)

∂Ln(GTFPi,t)
= Θ̂2

(
ISTW1 ω̂1 + STW1ω̂2

)
, wherein

ˆ indicates estimated values of corresponding parameters, Θ̂2 =
(

ISTW1 − ω̂0STW1
)−1, and

ISTW1 is an identity matrix with the same row and column as those of STW1. Second, we
calculate the total effects, the direct effects, and the indirect effects based on the matrix
of S1(W), wherein the total effects are defined as 1

NumSTW1
ι′STW1 S1(W)ιSTW1 , the direct

effects are defined as 1
NumSTW1

Trace[S1(W)], and the indirect effects are defined as the

remaining after subtracting the direct effects from the total effects. Moreover, Trace(·) is
the trace statistic, NumSTW1 is the dimensions of the spatiotemporal weight matrix, and
ιSTW1 indicates the vector with NumSTW1 rows and one column and its elements are always
ones. Subsequently, the spatial convergence can be judged by the total effects. It shows an
absolute beta convergence if the total effects are smaller than 0.

5.2.2. The Spatial Convergence Patterns of China’s Urban Industrial Green TFPs

According to Equation (29), sigma convergence is calculated for all 280 cities and
for cities belonging to different spatial groups, including eastern, central, western, and
northeast China, as depicted in Figure 8.
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Overall, for all 280 cities, the coefficient of variation of China’s urban industrial green
TFPs displayed dynamic adjustments before 2011, albeit showing an overall upward trend.
However, after 2011, this coefficient of variation continuously declined. Overall, from
2003 to 2019, the coefficient of variation of China’s urban industrial green TFPs saw a
slight decrease.

Looking at the sub-levels of different spatial groups, the coefficient of variation of
industrial green TFPs in cities in eastern China exhibited noticeable fluctuations, with a
slightly smaller coefficient of variation observed in 2019 compared to 2003. In contrast,
the coefficient of variation of industrial green TFPs in cities in central China developed
steadily and showed no significant changes during 2003–2019. Similarly, the coefficient of
variation of industrial green TFPs in cities in western China mirrored the overall trend for
all 280 cities, initially increasing before 2011 and then declining thereafter. The coefficient of
variation of industrial green TFPs in cities in northeast China also followed a similar trend
of initially increasing and then declining, albeit with the boundary year shifting to 2016.

Overall, based on the coefficients of variation, sigma convergence of China’s industrial
green TFPs in the northeastern and central regions is not particularly evident. However,
since 2011, sigma convergence of China’s industrial green TFPs has become apparent for
all cities and for cities in western China.

Based on Equations (30) and (31), we can analyze the overall absolute beta convergence
of China’s urban industrial green TFPs. As shown in Figure 9, the relationships of the variable’s
pairs are figured, including Ln(GTFPi,t+1/GTFPi,t) and Ln(GTFPi,t), Ln(GTFPi,t+1/GTFPi,t),
and both the spatial spillover terms of STW1 × Ln(GTFPi,t+1/GTFPi,t) and STW1 × Ln(GTFPi,t).
From Figure 9, there appear to be no discernible relationships between Ln(GTFPi,t+1/GTFPi,t)
and the three potential influencing factors. Consequently, this study proceeded with the trial
estimation of the model outlined in Equations (30) and (31) and their degradation models, as
detailed in Table 6. The results revealed abnormal estimated outcomes in models including
SAR, SEM, SDM, SDEM, and SAC, as their log-likelihood values were positive, rendering these
five models suboptimal. Additionally, the GNSM model could not be considered optimal due
to the lack of significance in some estimated parameters. Furthermore, although the goodness
of fit in the NSM and SXL models was relatively modest, the statistical characteristics of these
two models were comparatively better. Upon decomposing the total effects from the marginal
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effects matrix, including the beta astringency coefficient in both the NSM and SXL models,
it was observed that China’s urban industrial green TFPs exhibited a fundamental trend of
absolute convergence in the long run.

Mathematics 2024, 12, x FOR PEER REVIEW  29  of  34 
 

 

likelihood values were positive, rendering  these  five models suboptimal. Additionally, 

the GNSM model could not be considered optimal due to the lack of significance in some 

estimated parameters. Furthermore, although  the goodness of  fit  in  the NSM and SXL 

models was relatively modest, the statistical characteristics of these two models were com‐

paratively better. Upon decomposing the total effects from the marginal effects matrix, 

including the beta astringency coefficient in both the NSM and SXL models, it was ob‐

served that China’s urban industrial green TFPs exhibited a fundamental trend of absolute 

convergence in the long run. 

 

Figure 9. Relationships among variables in the beta astringency analysis. The figure was generated 

using MATLAB R2023a. 

Table 6. Estimated results of the beta astringency models and their decomposed marginal effects. 

  NSM  SXL  SAR  SEM  SDM  SDEM  SAC  GNSM 

Const. 
0.0473 

(10.94) *** 

0.0356 

(4.78) *** 

0.0032 

(0.76) 

0.0301 

(2.91) *** 

0.0127 

(1.74) * 

0.0122 

(0.85) 

0.0150 

(2.13) ** 

0.0077 

(0.56) 

 ,i tLn GTFP   −0.0539 

(−11.59) *** 

−0.0495 

(−9.57) *** 

−0.0505 

(−11.04) *** 

−0.0562 

(−11.14) *** 

−0.0545 

(−10.70) *** 

−0.0571 

(−10.01) *** 

−0.0544 

(−11.11) *** 

−0.0555 

(−10.95) *** 

 1 ,i tSTW Ln GTFP    
−0.0204   

(−1.93) * 
   

0.0188 

(1.81) * 

−0.0414   

(−2.07) ** 
 

−0.0146   

(−0.69) 

0      
0.4850   

(121.70) *** 
 

0.4990 

(123.63) *** 
 

0.3250   

(6.87) *** 

0.3000   

(1.25) 

5        
0.6180   

(12.10) *** 
 

0.6640   

(5.24) *** 

0.3510   

(6.84) *** 

0.5250   

(2.79) *** 
2R̂   0.0289  0.0295  0.0279  0.0619  0.0281  0.0642  0.0634  0.0657 
2   0.0646  0.0646  0.0627  0.0624  0.0626  0.0622  0.0623  0.0621 
 Log L   −220.52  −218.65  1384.1  1397.52  1385.64  1401.32  1397.56  −144.6 

Total ef‐

fects 
−0.0539  −0.0699  −0.0981  −0.0713  −0.0562  −0.0985  −0.0806  −0.1001 

Figure 9. Relationships among variables in the beta astringency analysis. The figure was generated
using MATLAB R2023a.

Table 6. Estimated results of the beta astringency models and their decomposed marginal effects.

NSM SXL SAR SEM SDM SDEM SAC GNSM

Const. 0.0473
(10.94) ***

0.0356
(4.78) ***

0.0032
(0.76)

0.0301
(2.91) ***

0.0127
(1.74) *

0.0122
(0.85)

0.0150
(2.13) **

0.0077
(0.56)

Ln(GTFPi,t)
−0.0539

(−11.59) ***
−0.0495

(−9.57) ***
−0.0505

(−11.04) ***
−0.0562

(−11.14) ***
−0.0545

(−10.70) ***
−0.0571

(−10.01) ***
−0.0544

(−11.11) ***
−0.0555

(−10.95) ***

STW1 × Ln(GTFPi,t)
−0.0204
(−1.93) *

0.0188
(1.81) *

−0.0414
(−2.07) **

−0.0146
(−0.69)

ω0
0.4850

(121.70) ***
0.4990

(123.63) ***
0.3250

(6.87) ***
0.3000
(1.25)

ω5
0.6180

(12.10) ***
0.6640

(5.24) ***
0.3510

(6.84) ***
0.5250

(2.79) ***
R̂2 0.0289 0.0295 0.0279 0.0619 0.0281 0.0642 0.0634 0.0657
σ2 0.0646 0.0646 0.0627 0.0624 0.0626 0.0622 0.0623 0.0621

Log(L) −220.52 −218.65 1384.1 1397.52 1385.64 1401.32 1397.56 −144.6

the Beta as-
tringency

coefficients

Total
effects −0.0539 −0.0699 −0.0981 −0.0713 −0.0562 −0.0985 −0.0806 −0.1001

Direct
effects −0.0539 −0.0495 −0.0507 −0.0546 −0.0562 −0.0571 −0.0545 −0.0556

Indirect
effects 0.0000 −0.0204 −0.0474 −0.0167 0.0000 −0.0414 −0.0261 −0.0445

Note: the above outputs were collected based on MATLAB R2023a. ( ) represents T-statistic, ***, **, and * mean
having passed the hypothesis test with a significance level of 1%, 5%, and 10%.

The sub-dimensional absolute beta convergence of China’s urban industrial green
TFPs, which belong to different spatial groups including eastern, central, western, and
northeast China, has also been analyzed. The estimated parameters and their statistical
characteristics of the corresponding models are listed in Table 7. Notably, in the process
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of total effects decomposition, the marginal effects matrices are determined solely by the
spatiotemporal weight matrices, the spatial correlation coefficient of ω̂0, and the exogenous
parameters of ω̂1 and ω̂2; thus, the estimated results of other variables are omitted in
Table 7.

In Table 7, although the total effects of the beta astringency coefficient are negative
for the cities in eastern China, there is still no conclusive evidence to prove the absolute
convergence trend of China’s urban industrial green TFPs in the eastern region. This is due
to two main reasons: first, the values of the log-likelihood of the eight potential models
are all positive; second, the goodness of fit of the eight potential models is relatively low.
Similar issues arise in the cities in central China, where there is also no evidence to confirm
the absolute convergence trend of urban industrial green TFPs. For the cities in western
China, the NSM is identified as the optimal model to assess absolute beta convergence
because all parameters in the NSM are significant. In the NSM model of cities in western
China, the value of log-likelihood is negative, and the total effects are −0.0349, indicating a
certain beta convergence trend in industrial green TFPs. However, the goodness of fit for
the NSM in western cities remains low, suggesting a weak beta convergence trend.

Regarding the cities in northeast China, both the NSM and the SXL can be employed to
assess the beta convergence trend. There is indeed a beta convergence trend for industrial
green TFPs in northeast cities, as indicated by the total effects of −0.0934 and −0.1644 for
the NSM and SXL models, respectively. Moreover, the statistical characteristics of both the
NSM and the SXL support the beta convergence trend. However, the beta convergence
trend in northeast cities is also weak, given the small adjusted goodness of fit in the NSM
and SXL models.
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Table 7. Estimated results of the beta astringency model in different spatial groups and their decomposed marginal effects.

NSM SXL SAR SEM SDM SDEM SAC GNSM

Cities in
Eastern China

Ln
(
GTFPi,t

) −0.0349
(−4.25) ***

−0.0314
(−3.61) ***

−0.0333
(−4.15) ***

−0.0403
(−4.69) ***

−0.0394
(−4.64) ***

−0.0397
(−4.51) ***

−0.0386
(−4.55) ***

−0.0405
(−4.68) ***

STW1 × Ln
(
GTFPi,t

) −0.0227
(−1.22)

0.0405
(2.24) **

0.0104
(0.38)

0.0378
(1.10)

ω0
0.5090

(73.48) ***
0.5709

(78.99) ***
0.3220

(3.80) ***
0.4759
(0.51)

R̂2 0.0127 0.0131 0.0135 0.0639 0.0015 0.0631 0.0648 0.0687
Log(L) 75.88 76.63 560.34 567.41 562.35 567.49 565.94 111.71

the Beta
astringency
coefficients

Total effects −0.0349 −0.0541 −0.0678 −0.0403 0.0026 −0.0293 −0.0569 −0.0052
Direct effects −0.0349 −0.0314 −0.0334 −0.0403 −0.0392 −0.0397 −0.0387 −0.0404

Indirect effects 0.0000 −0.0227 −0.0344 0.0000 0.0418 0.0104 −0.0183 0.0352

Cities in
Central China

Ln
(
GTFPi,t

) −0.0424
(−5.23) ***

−0.0462
(−4.92) ***

−0.0406
(−5.04) ***

−0.0455
(−5.21) ***

−0.0507
(−5.43) ***

−0.0487
(−5.31) ***

−0.0428
(−5.11) ***

−0.0510
(−5.44) ***

STW1 × Ln
(
GTFPi,t

) 0.0152
(0.80)

0.0423
(2.18) ** 0.0230 (1.07) 0.0461

(1.58)

ω0
0.2010 (62.52)

***
0.2500

(5.38) ***
0.1340

(50.94) ***
0.2691
(0.37)

R̂2 0.0202 0.0199 0.0188 0.0352 0.0196 0.0353 0.0350 0.0386
Log(L) 74.65 74.98 523.69 527.42 525.90 527.99 525.98 86.62

the Beta
astringency
coefficients

Total effects −0.0424 −0.0310 −0.0508 −0.0455 −0.0112 −0.0257 −0.0494 −0.0067
Direct effects −0.0424 −0.0462 −0.0406 −0.0455 −0.0506 −0.0487 −0.0428 −0.0509

Indirect effects 0.0000 0.0152 −0.0102 0.0000 0.0394 0.0230 −0.0066 0.0442

Cities in
Western China

Ln
(
GTFPi,t

) −0.0721
(−8.14) ***

−0.0701
(−7.22) ***

−0.0707
(−8.03) ***

−0.0748
(−7.95) ***

−0.0722
(−7.48) ***

−0.0740
(−7.74) ***

−0.0730
(−8.02) ***

−0.0729
(−7.24) ***

STW1 × Ln
(
GTFPi,t

) −0.0103
(−0.50)

0.0081
(0.39)

−0.0320
(−1.33)

−0.0117
(−0.14)

ω0
0.3270

(4.18) ***
0.3320 (4.13)

***
0.2220

(48.59) ***
0.2000
(0.20)

R̂2 0.0469 0.0464 0.0450 0.0603 0.0446 0.0614 0.0600 0.0605
Log(L) −233.83 −233.71 232.10 233.65 232.16 234.56 233.47 −225.28

the Beta
astringency
coefficients

Total effects −0.0721 −0.0804 −0.1051 −0.0748 −0.0960 −0.1060 −0.0938 −0.1058
Direct effects −0.0721 −0.0701 −0.0708 −0.0748 −0.0723 −0.0740 −0.0731 −0.0730

Indirect effects 0.0000 −0.0103 −0.0342 0.0000 −0.0237 −0.0320 −0.0208 −0.0328
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Table 7. Cont.

NSM SXL SAR SEM SDM SDEM SAC GNSM

Cities in
Northeast

China

Ln
(
GTFPi,t

) −0.0934
(−5.92) ***

−0.0803
(−4.88) ***

−0.0880
(−5.61) ***

−0.0850
(−5.06) ***

−0.0795
(−4.87) ***

−0.0860
(−5.24) ***

−0.0869
(−5.47) ***

−0.0842
(−4.72) ***

STW1 × Ln
(
GTFPi,t

) −0.0841
(−2.64) ***

−0.0624
(−1.94) *

−0.1295
(−3.12) ***

−0.1176
(−1.73) *

ω0
0.3290

(3.34) ***
0.2540

(2.95) ***
0.2869

(3.13) ***
0.0716
(0.17)

R̂2 0.0590 0.0693 0.0658 0.0704 0.0662 0.0878 0.0770 0.0871
Log(L) −60.74 −57.25 131.55 130.32 133.30 135.29 131.73 −53.19

the Beta
astringency
coefficients

Total effects −0.0934 −0.1644 −0.1311 −0.0850 −0.1902 −0.2155 −0.1219 −0.2174
Direct effects −0.0934 −0.0803 −0.0882 −0.0850 −0.0800 −0.0860 −0.0871 −0.0844

Indirect effects 0.0000 −0.0841 −0.0429 0.0000 −0.1102 −0.1295 −0.0348 −0.1330

Note: the above outputs were generated using MATLAB R2023a. () represents T-statistic, ***, **, and * mean having passed the hypothesis test with a significance level of 1%, 5%, and
10%.
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6. Conclusions and Comments

This paper introduces a novel spatiotemporal econometric approach called the Spa-
tiotemporal Econometric Solow Residual Method (STE-SRM), which incorporates unde-
sired outputs and spatial spillover terms to compute green Total Factor Productivities
(TFPs). It applies this method to calculate the industrial green TFPs of 280 cities in China
from 2003 to 2019. Additionally, it re-calculates China’s urban industrial green TFPs using
both the DEA-SBM and the Bayesian SFA and evaluates the accuracy of the STE-SRM by
comparing the results. Furthermore, the paper examines the spatial heterogeneity and
spatial convergence of China’s urban industrial green TFPs using Dagum’s Gini coefficient,
sigma astringency, and beta astringency analysis. The following conclusions are drawn:

(1) The STE-SRM enhances the traditional Solow residual method by integrating
undesired outputs and spatial spillover terms. During construction, the sum of desired and
undesired output shares is fixed at 1, and various spatial spillover terms are considered.
While the calculation of industrial green TFPs can still follow the traditional Solow residual
method under STE-SRM, determining input per capita shares and undesired outputs
requires estimation and selection of empirical production function models.

(2) Utilizing the STE-SRM, the paper identifies the spatial Durbin error model with
mixed effects as the optimal model for calculating China’s urban industrial green TFPs.
Results show that industrial green TFPs in cities like Huangshan, Fangchenggang, and
Sanya are relatively high, while those in Jincheng, Datong, and Taiyuan are comparatively
low. Various factors such as industrial output per capita, industrial inputs per capita
(including capital and energy), and ratios of undesired outputs (e.g., wastewater, sulfur
dioxide, and smoke emissions) to desired outputs contribute to these discrepancies.

(3) Comparative analysis reveals that China’s urban industrial green TFPs computed
by the STE-SRM exhibit a broader range of values and higher concentrations compared
to those from the Bayesian SFA and DEA-SBM. Thus, the STE-SRM is recommended for
researchers seeking wider range but concentrated industrial green TFPs, while the Bayesian
SFA is suitable for those preferring narrower range but dispersed results.

(4) Spatial heterogeneity remains significant in China’s urban industrial green TFPs
under the STE-SRM, with Dagum’s Gini coefficient ranging from 0.4 to 0.5. Despite
similarities between intra-group and inter-group differences, differences in intensity of
trans-variation contribute most to the coefficient. Since 2011, China’s urban industrial
green TFPs have shown a clear sigma convergence trend, particularly evident in western
cities. However, convergence trends in cities from the eastern, central, and northeastern
regions are less apparent. Additionally, a slight beta convergence trend is observed in
urban industrial green TFPs of western and northeastern cities, while such trends are less
evident in cities from eastern and central China.

In this study, we introduce innovative methods for computing industrial green TFPs
while maintaining the logic of the traditional Solow residual method. However, there are
limitations that warrant further investigation. Firstly, while the STE-SRM improves upon
traditional methods by incorporating spatial spillover terms and undesired outputs, future
research should explore local spatial econometric approaches like geographical weighted
regression (GWR) and geographical and temporal weighted regression (GTWR). Secondly,
due to data limitations and inconsistencies, conditional beta convergence properties and
the main factors affecting urban industrial green TFPs were not analyzed. These aspects
require ongoing attention in subsequent research endeavors. Furthermore, this article
delves into the comparison and interpretation of the precision of the STE-SRM, DEA-SBM,
and Bayesian SFA methods. It primarily relies on data from the industrial sectors of
280 cities in China spanning from 2003 to 2019. It is worth noting that any fluctuations in
the data could potentially impact the precision of these three methods, thus highlighting
a deficiency in the theoretical underpinning of method precision interpretation within
this article. Regrettably, the disparate theoretical foundations upon which these three
methods are built contribute to a lack of a cohesive theoretical framework for analyzing
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and comparing measurement precision. This deficiency underscores a notable limitation of
the article and serves as a pointer towards avenues for future research.
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