
Supplementary materials 

Supplementary material S1. Feasibility of independence test 

The algorithm makes the following assumptions: 

1. The data follow a multivariate Gaussian distribution. 

2. Each observed variable is associated with at most one hidden variable. 

3. Hidden variables are not influenced by other variables. 

 

In stage 1, we start from a fully connected network and use the Fisher Z-test as a conditional 

independence test. The Fisher Z-test is a correlation test, but we assume that the variables follow a 

multivariate Gaussian distribution, and a property of the multivariate Gaussian distribution is that if 

the partial correlation coefficient between the variables is 0, they are conditionally independent. 

Therefore, the Fisher Z-test can be used to perform the conditional independence test. The k-th order 

partial correlation coefficient of any two variables i, j is r�,�|�: 
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Eq. S1 provides partial correlation coefficients of arbitrary order, where p represents any subset 

within the set K and q is the complement of the subset p within K. 

After obtaining r�,�|�, we transform it into normal distribution by Fisher Z transformation: 
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We then define the null hypothesis and the alternative hypothesis: 

Null hypothesis H�: r�,�|� ≠ 0 

Alternative hypothesis H�: r�,�|� = 0 

Given a significance level α (0 < α < 1), a two-sided test can be performed using the following 

formula: 

|Z(i, j|k)| ≤ Φ��(1 −
�

�
)     (S3)  

where Φ represents the cumulative distribution function of the standard normal distribution, 

and Φ�� is its inverse. If the inequality in Eq. S3 holds, we reject the null hypothesis that variables 

i and j are significantly correlated given the other variables in K. Then the edge between variables i 

and j is deleted. 

 

Supplementary material S2. Feasibility of linear regression 

 

 

Supplementary Figure S1. Indirect causality and false causality caused by hidden variables. (a) 



Indirect causality. �� and �� are indirectly causality. (b) False causality. �� is not causally related 

to ��, but �� and �� are affected by the hidden variable H. 

 

Y� = f(Z) + e��      (S4) 

Z = g(X�) + e��      (S5) 

Y� = f(g(X�) + e�� ) + e��      (S6) 

 

X� = f(H) + e��      (S7) 

H = f ��(X�) + e��      (S8) 

Y� = g(H) + e��      (S9) 

Y� = g(f ��(X�) + e��  ) + e��      (S10)  

 

In Supplementary Figure S1, assume that both f and g are functions fitted by regression and 

f �� is the inverse function of f. When X� and Y� share an indirect causal relationship, Y� can be 

effectively modeled by X� as described by Eq. S6 (Supplementary Figure S1a), allowing X� to 

substitute for Z's influence. If X� is removed from the model while Z is present, the impact on 

predicting Y� is minimal because Y� can still be directly influenced by Z. Conversely, as depicted 

in Supplementary Figure S1b, if there's a hidden variable H influencing both X� and Y�, and X� 

and Y� are not directly causally related, Y� can be modeled by X� using Eq. S10 (Supplementary 

Figure S1b). However, if X�  is removed under this condition (Supplementary Figure S1b), the 

hidden nature of H means that no other variable can adequately account for H's influence on Y�. 

Therefore, removing X� significantly increases the loss in fitting Y� (Supplementary Figure S1b).  

 

Supplementary material S3. Feasibility of threshold selection 

The purpose of this section is to demonstrate that indirect causality can be distinguished from 

the other two types of causality (direct causality and pseudo-causality due to the effect of hidden 

variables) based on the change in ∆Loss  from the linear regression in Stage 2 (Figure S1). 

Furthermore, direct causality and pseudo-causality can be distinguished in Stage 3 using the causal 

intensity indicator (Figure S1). 

As shown in Supplementary Figure S2a, each point represents the non-zero elements of the 

A_M1 matrix, which was generated in Stage 1 and reflects the ∆Loss between two variables. The 

x-axis represents different datasets, while the y-axis measures the ∆Loss values. Circular points 

indicate an indirect causal relationship between two variables, whereas triangular points represent 

other types of relationships. Black horizontal lines in the figure represent the mean value of each 

type of points across different datasets. Notably, the DREAM4 dataset, having had all the edges of 

indirect causality removed in the first stage, is absent from Supplementary Figure S2a. The 

significantly lower ∆Loss values associated with indirect causal relationships, compared to other 

types, confirm the utility of ∆Loss in distinguishing between different types of causal connections. 

In stage 3, we calculate the causal intensity between neighboring nodes (Supplementary Figure 

S2b). The x-axis represents different datasets and the y-axis quantifies the causal intensity between 

each pair of neighboring nodes in the A_M2 matrix. Circular points indicate a true direct causal 

relationship between two variables, while triangular points indicate that both variables are 

influenced by a common hidden variable. In the DREAM4 dataset, a few edges are incorrectly 

retained from Stage 2 are denoted by square dots. Black horizontal lines in the figure represent the 



mean value of each type of points. The notably lower causal intensities among variables influenced 

by hidden variables underscore the effectiveness of the causal intensity indicator in distinguishing 

between direct causality and pseudo-causality due to hidden variable influence. 

 

Supplementary Figure S2. Increased losses in linear regression and causal intensity. (a) Increased 

losses in linear regression. The vertical axis represents the ∆Loss generated in Stage 2, and points of 

different colors represent different datasets. Circular dots represent the ∆Loss between two variables in 

indirect causation, while triangular dots represent the ∆Loss between two variables in direct causation 

or spurious causation caused by a hidden variable. (b) Causal intensity. The vertical axis represents the 

causal intensity generated in Stage 3. Circular dots represent the causal intensity between two variables 

with direct causation. Triangular points represent the causal intensity between two variables in spurious 

causation caused by a hidden variable. Square points reflect the causal intensity for edges incorrectly 

retained in Stage 3. 

 

Supplementary material S4. Implementation details of calculating causal intensity 

In this paper, we define causal intensity as: 

CI�X�, X�� =
I�X�, X��

H�X�, X��
=

H(X�) + H�X�� − H�X�, X��

H�X�, X��
     (S11) 

Where, I�X�, X��  represents the mutual information and H�X�, X��  represents the joint 

entropy. 

For Gaussian distributions, we calculate the entropy and joint entropy using the formula: 

H =
1

2
log(2πe)�|∑|       (S12) 

where, d is the dimension of the random variable, and ∑ is the covariance matrix, with |∑| 

representing the determinant of this matrix. The dimension d is 1 when computing H(X�) or H�X��, 

and d is 2 when computing H�X�, X��. 

We can interpret this formula from the definition of information entropy. Information entropy 

is a measure of the uncertainty of a random variable, the larger it is the greater the uncertainty of 

the random variable. For a Gaussian distribution, the magnitude of its entropy depends on the 

dimension of the random variable and the size of the covariance matrix. 

Specifically, we can express the probability density function of the multivariate Gaussian 



distribution as: 

P(x) =
1

(2π)�/�|∑|�/�
exp (−

1

2
(x − μ)�∑��(x − μ))        (S13) 

where μ is the mean vector and ∑�� is the inverse of the covariance matrix. We integrate 

this into the formula for information entropy: 

H = −∫ p(x)logP(x)dx        (S14) 

For Gaussian distributions, the integral can be simplified by the permutation method, which 

ultimately leads to Eq. S12, where log(2πe)� is a constant term that does not affect the 

uncertainty of the random variable, so it can be omitted. Thus, the entropy of the Gaussian 

distribution depends only on the size of the covariance matrix. 

 

 

Supplementary material S5. Specific results for each stage of RLCI for different 

datasets 

 

S5.1 Sim1 

 

Supplementary Figure S3. Steps in reconstructing the causal network of Sim1. (a) Ground truth. 

Node X� is hidden and treated as a hidden variable, while the remaining nodes are observed variables. 

(b)-(c) Stages 1-2. Black lines indicate predicted edges in each stage. (d) Stage3.1. The dashed line 

indicates the edge with lower causal intensity compared to other edges. (e) Stage3.2. Reconstruction of 

the variable H� based on causal intensity. (f) Stage 4. The final network reconstructed by RLCI. 

Black lines indicate correctly predicted edges, while red lines highlight the incorrectly predicted edges. 

 

In the first stage, we used independence test to derive the correlation network shown in 

Supplementary Figure S3b, which removes edges representing either small correlations or 

independence between variables from a fully connected network. 

Proceeding to the second stage, we established the pseudo-causal network (Supplementary 



Figure S3c). This network excludes all edges representing indirect causality, retaining only those 

representing direct causality and those caused by hidden variables. 

In the third stage, we calculate the causal intensity for each edge retained from the second stage. 

It was observed that the causal intensity between X� and X� was significantly smaller compared 

to the other edges (Supplementary Figure S3d). Based on this finding, it was inferred that the edge 

'X�-X�' is generated by a hidden variable. Consequently, we introduced a hidden variable, denoted 

as H�, connecting both X� and X� (Supplementary Figure S3e). 

Finally, in the fourth stage, the IGCI algorithm was utilized to identify the causal direction and 

reconstruct the complete causal network (Supplementary Figure S3f). The figure highlights 

correctly predicted edges in black and incorrectly predicted edges in red. 

 

S5.2 Sim6 

 

Supplementary Figure S4. Steps in reconstructing the causal network of Sim6. (a) Ground truth. 

Nodes X�  and X�  are hidden and treated as the hidden variables, while the remaining nodes are 

observed variables. (b)-(c) Stages 1-2. Black lines indicate predicted edges in each stage. (d) Stage 3.1. 

The dashed line represents the edge with lower causal intensity compared to other edges. (e) Stage 3.2. 

Reconstruction of the variables H� and H�. (f) Stage 4. The final network reconstructed by RLCI. 

Black lines represent correctly predicted edges, while red lines highlight incorrectly predicted edges.  

 

We begin by deriving the correlation network (Supplementary Figure S4b), which leads to the 

establishment of the basic skeleton of the pseudo-causal network (Supplementary Figure S4c). 

During the third stage, as illustrated in Supplementary Figure S4d-e, we identify that the edges 'X� −

X�' and 'X� − X��' are generated by hidden variables based on their causal intensities. In the fourth 

stage, we employ the IGCI method to identify the causal directions among the observed variables, 



and subsequently reconstruct the complete causal network (Supplementary Figure S4f). 

S5.3 DREAM4 

The results of the RLCI method for each stage of the DREAM4 dataset are shown in 

Supplementary Figure S5b-f. In Stage 2, we observed significant ∆Loss  values, indicating the 

absence of edges with indirect causality. The outputs from Stage 1 remain unchanged. Furthermore, 

the ' G� − G� ' edge is identified as a pseudo-causality edge (Supplementary Figure S5d). 

Consequently, it is inferred that a hidden variable simultaneously affects both G�  and G� 

(Supplementary Figure S5e). 

 
Supplementary Figure S5. Steps in reconstructing the causal network of DREAM4. (a) Ground 

truth. Node G� is the hidden variable, and the remaining nodes are observed variables. (b)-(c) Stages 

1-2. Black lines represent predicted edges in each stage. (d) Stage 3.1. The dashed line denotes the edge 

with low causal intensity. (e) Stage 3.2. Reconstruction of the variable H� . (f) Stage 4. The final 

network reconstructed by RLCI. Black lines represent correctly predicted edges, while red lines 

highlight incorrectly predicted edges. 

 

S5.4 BEELINE_VSC 



 
Supplementary Figure S6. Steps in reconstructing the causal network of BEELINE_VSC. (a) 

Ground truth. Gene Nkx22 is the hidden variable, and the remaining genes are observed variables. (b)-

(c) Stages 1-2. Black lines represent predicted edges in each stage. (d) Stage 3.1. The dashed line 

represents the edge with low causal intensity. (e) Stage 3.2. H� is the reconstructed variable. (f) Stage 

4. The final network reconstructed by RLCI. Black lines represent correctly predicted edges, while 

red lines highlight incorrectly predicted edges. 

 

Supplementary Figure S6 shows the results of our algorithm at each stage of the 

BEELINE_VSC dataset. In the third stage, the edges 'Pax6-Olig2', 'Pax6-Irx3', and 'Olig2-Irx3' are 

identified as pseudo-causality edges generated by the influence of hidden variables (Supplementary 

Figure S6d). Given our assumption that each observed variable is affected by no more than one 

hidden variable, we infer the existence of a hidden variable labeled H� , which simultaneously 

affects the three genes: Pax6, Olig2, and Irx3 (Supplementary Figure S6e).  

 

S5.5 Food chain 



 

Supplementary Figure S7. Steps in reconstructing the causal network of the food chain dataset. (a) 

Ground truth. (b) Stage 2. The black lines represent predicted edges. (c) Stage 3. A hidden variable is 

identified that affects rotifers, calanoids, and picophytoplankton simultaneously. (d) Stage 4. The final 

network reconstructed by RLCI. Cyclopoids are considered as potential influencing factors, serving 

as the hidden variable. The black lines represent correctly predicted edges and the red lines represent 

incorrectly predicted edges. The dotted line represents that the accuracy of the predicted outcome is 

undetermined. 

 

In the food chain dataset, which comprises only four species, accurately determining 

connections based on correlation alone is challenging. Therefore, the correlation network output 

from stage 1 is still a fully connected network. In stage 2, the pseudo-causal network is generated 

with the 'Rotifers-Calanoids' edge removed (Supplementary Figure S7b). In Stage 3, the causal 

intensity indicator suggests that rotifers, calanoids, and picophytoplankton are likely affected by a 

hidden variable (Supplementary Figure S7c). Ultimately, we hypothesize that cyclopoids could be 

this hidden variable and validate this hypothesis by verifying the predation relationships among 

cyclopoids, rotifers, calanoids, and picophytoplankton (Supplementary Figure S7).  

 

 

Supplementary material S6. Specific comparison results 

 



 
Supplementary Figure S8. Different types of edges generated by FCI, GFCI, and RFCI algorithms 

in reconstructing causal networks. (a) Four kinds of edges: (1) X causes Y. (2) X and Y are not causally 

related but there is a hidden variable that affects both of them. (3) Y is not an ancestor of X. (4) No set 

d-separates X and Y. (b) Another clear representation of Supplementary Figure S8a (4), where a hidden 

variable H affects both X and Y. 

 

It is important to note that the FCI, GFCI, and RFCI algorithms identify four distinct types of 

relationships between any two nodes X and Y: X directly causes Y, both X and Y are influenced by 

hidden variables, Y is not an ancestor of X, and the relationship between X and Y exists but the 

causal direction is undetermined (Supplementary Figure S8a). In evaluating these algorithms, we 

do not consider undirected edges, which are those whose causal direction cannot be determined. 

The case where X and Y are influenced by a shared hidden variable, suggesting that they are not 

causally related but are impacted by the same hidden factor, is depicted in Supplementary Figure 

S8b. 

 

Supplementary Table S1. Evaluation results on Sim1. 

Algorithm Precision Recall F1 score 

ours 0.8000 0.8000 0.8000 

PC 0.3333 0.2000 0.2500 

LiNGAM 0.6000 0.6000 0.6000 

DirectLiNGAM 0.6000 0.6000 0.6000 

FCI 0.5000 0.2000 0.2857 

GFCI 0.3333 0.2000 0.2500 

RFCI 0.3333 0.2000 0.2500 

RCD 0 0 0 

CAM-UV 0 0 0 

 

Supplementary Table S2. Evaluation results on Sim1 of 1000 samples. 

Algorithm Precision Recall F1 score 

ours 0.8000 0.8000 0.8000 

PC 0.3333 0.2000 0.2500 

LiNGAM 0.4000 0.4000 0.4000 

DirectLiNGAM 0.4000 0.4000 0.4000 

FCI 0.5000 0.2000 0.2857 

GFCI 0.5000 0.2000 0.2857 

RFCI 0.5000 0.2000 0.2857 

RCD 0 0 0 

CAM-UV 0.7500 0.6000 0.6667 



 

Supplementary Table S3. Evaluation results on Sim6. 

Algorithm Precision Recall F1 score 

ours 0.8182 0.8182 0.8182 

PC 0.2500 0.2727 0.2609 

LiNGAM 0.3684 0.6364 0.4667 

DirectLiNGAM 0.3684 0.6364 0.4667 

FCI 0.3846 0.4545 0.4167 

GFCI 0.4545 0.4545 0.4545 

RFCI 0.2143 0.2727 0.2400 

RCD 0 0 0 

CAM-UV 0 0 0 

 

Supplementary Table S4. Evaluation results on Sim6 of 1000 samples. 

Algorithm Precision Recall F1 score 

ours 0.7273 0.7273 0.7273 

PC 0 0 0 

LiNGAM 0.7778 0.6364 0.7000 

DirectLiNGAM 0.2500 0.3636 0.2963 

FCI 0.5000 0.2727 0.3529 

GFCI 0.8000 0.3636 0.5000 

RFCI 0.6667 0.5455 0.6000 

RCD 0 0 0 

CAM-UV 0.4000 0.3636 0.3810 

 

Supplementary Table S5. Evaluation results on DREAM4. 

Algorithm Precision Recall F1 score 

ours 0.5000 0.3333 0.4000 

PC 0.3333 0.1333 0.1905 

LiNGAM 0.1481 0.2667 0.1905 

DirectLiNGAM 0.1786 0.3333 0.2326 

FCI 0.4545 0.2000 0.3846 

GFCI 0 0 0 

RFCI 0.2500 0.0667 0.1053 

RCD 0.2000 0.0667 0.1000 

CAM-UV 0.2000 0.1333 0.1600 

 

Supplementary Table S6. Evaluation results on BEELINE_VSC. 

Algorithm Precision Recall F1 score 

ours 0.6667 0.2667 0.3810 

PC 0.3333 0.1333 0.1905 

LiNGAM 0.2222 0.2667 0.2424 

DirectLiNGAM 0.0667 0.0667 0.0667 



FCI 0.2000 0.0667 0.1000 

GFCI 0.3333 0.1333 0.1905 

RFCI 0.3333 0.1333 0.1905 

RCD 0 0 0 

CAM-UV 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


