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Abstract: Waddington envisioned stem cell differentiation as a marble rolling down a hill, passing
through hierarchically branched valleys representing the cell’s temporal state. The terminal valleys at
the bottom of the hill indicate the possible committed cells of the multicellular organism. Although
originally proposed as a metaphor, Waddington’s hypothesis establishes the fundamental principles
for characterizing the differentiation process as a dynamic system: the generated equilibrium points
must exhibit hierarchical branching, robustness to perturbations (homeorhesis), and produce the
appropriate number of cells for each cell type. This article aims to capture these characteristics
using a mathematical model based on two fundamental hypotheses. First, it is assumed that the
gene regulatory network consists of hierarchically coupled subnetworks of genes (modules), each
modeled as a dynamical system exhibiting supercritical pitchfork or cusp bifurcation. Second, the
gene modules are spatiotemporally regulated by feedback mechanisms originating from epigenetic
factors. Analytical and numerical results show that the proposed model exhibits self-organized
multistability with hierarchical branching. Moreover, these branches of equilibrium points are
robust to perturbations, and the number of different cells produced can be determined by the
system parameters.

Keywords: cell differentiation; pitchfork bifurcations; cusp bifurcation; symmetry breaking;
self-organized multistability; normal forms; bifurcation theory

MSC: 92-10

1. Introduction

Early stages of embryonic development depend on the ability of pluripotent stem cells
to proliferate and differentiate into different types of specialized cells that are essential for
the formation of multicellular organisms. As shown in Figure 1a, pluripotent stem cells first
become multipotent progenitors, which then differentiate further into various cell types
within their specific lineages; while this process may appear complex and delicate at the
cellular level [1,2], it is remarkably robust when observed at the macroscopic level.

In an attempt to elucidate the fundamental aspects of stem cell differentiation,
Waddington introduced a visual analogy captured in the now-iconic sketch from their
1957 work [3] (see, Figure 1b). In this analogy, the pluripotent stem cell is represented
by a marble resting at the peak of a hill. The differentiation begins as the marble rolls
downhill, passing through various valleys, each corresponding to different cell states,
such as progenitors or subsequent progenitors. The terminal valleys at the base of the hill
represent specialized cells. Although this graph is just a metaphor for the actual process, it
elegantly depicts three essential aspects of stem cell differentiation [4,5]. First and foremost,
differentiation can be described as a hierarchically branched process. This means that at
each stage of differentiation, a cell must be capable of choosing among various potential
future states within its lineage. This decision-making (branching) process continues until
the final decision point, leading to the formation of specialized cells. Cell differentiation
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progresses forward in time, with rare exceptions where cells can return to a previous
branching point. The second crucial characteristic is homeorhesis, i.e., the ability of cells
to maintain their dynamics at each branch even in the presence of moderate noise. Third,
the overall differentiation process must exhibit robustness, consistently generating the
precise number of cells required for the development of the multicellular organism.

STEM CELL O

Progenitor BProgenitor A

Cell A2Cell A1 Cell B2Cell B1

(a)

(b)

A1 B1A2 B2

A B

O

Figure 1. (a) Schematic representation of the pluripotent stem cell (O) differentiation into multipo-
tent progenitors (A and B) and subsequently into terminally differentiated cells (A1, A2, B1, B2).
(b) Waddington’s epigenetic landscape (adapted from [3]).

It has been suggested that the branching points in Waddington’s epigenetic landscape
can be thought of as symmetry-breaking events [4,6–8]. According to this hypothesis,
stem cells are in a highly symmetric cell state because they can express multiple genes
that are specific to their progenitors, while progenitor cells are less symmetric because
they only express a subset of these genes that are specific to their lineage. Specialized
cells have the lowest possible symmetry because they can only express genes that are
related to their own functions. In this simplified picture, we can see two symmetry-
breaking events. First, the highly symmetric stem cells differentiate into less symmetric
progenitor cells, and second, the progenitor cells differentiate into specialized cells with the
lowest possible symmetry. Symmetry-breaking events can occur at either the cellular or
population level [6,9–15]. Researchers have explored both scenarios through theoretical
and experimental studies. It is likely that symmetry breaking may occur at both levels.

Mathematically, stem cell differentiation is often modeled by systems of differential
equations, where the variables represent gene expression levels [16,17]. The gene expression
is regulated by Hill’s functions, which capture the complex nature of the gene regulatory
network (GRN). The process of gene suppression is usually represented by simple, typically
linear, dissipative terms. With appropriate parameter adjustments, the system can be
driven through bifurcation points (pitchfork or saddle-node) that lead to the emergence of
new stable solutions. The connection of the bifurcation diagram with the differentiation
process is straightforward: (a) a single stable branch represents the stem cell state, (b) the
bifurcation point indicates the decision-making (symmetry-breaking) event, and (c) the
new stable solutions represent the gene expression levels of the differentiated cells. In cases
where the GRN includes a large number of genes, the bifurcation diagram becomes in-
creasingly difficult to comprehend and analyze. To overcome this limitation, several recent
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theoretical works make use of the normal forms of supercritical pitchfork and saddle-node
bifurcation [18–22]. Normal forms represent the simplest possible mathematical model,
with the fewest parameters that exhibit these bifurcations. The resulting state variables
of the normal forms are not straightforwardly connected to the gene expression levels.
Their relationship may be highly nonlinear and difficult to predict in general [21]. Despite
lacking detailed information on realistic biochemical networks, models based on normal
forms can still make experimentally testable, quantitative predictions about the produced
cells’ ratio [22].

The systems of differential equations based on detailed biochemical networks or nor-
mal forms face a couple of challenges. First, they do not generally describe a large number
of branching events (multistability), and second, the symmetry-breaking events do not self-
organize spontaneously as in stem cell differentiation. The latter was recently addressed in
one of our publications, where stem cells were modeled as a dynamical system exhibiting
supercritical or saddle-node bifurcation [8]. By introducing a feedback mechanism that
controls the transcriptional noise, we demonstrated that the cell can autonomously navi-
gate through various bifurcation points and spontaneously differentiate into a number of
stationary or dynamic attractors (limit cycles). Reference [8] also showed the possibility of
describing the first branching point at the top of Waddington’s epigenetic landscape.

The aim of this paper is to generalize [8] in order to model self-organized multistability
that captures the main characteristics of Waddington’s epigenetic landscape. This general-
ization is inspired by two important works [4,5]. First, the authors of [4] hypothesized that
a GRN consists of a collection of hierarchically coupled subnetworks of genes (modules).
Each module was described by a dynamical system that exhibits a tristability. One stable
node represents the undifferentiated state of the module, while the other two represent two
different possible functions. Initially, all modules are in the undifferentiated state. The pres-
ence of noise causes spontaneous symmetry breaking in the first module, leading it to
assume one of two possible functions. Then, this decision triggers the subsequent modules
to go through their own bifurcation point. This transition was controlled by modulating the
undecided module parameters through a piece-wise function with respect to the state of
the first module. In the end, all modules have gone through their own bifurcation point and
have assumed a specific stable state. All these states collectively determine the function of
the differentiated cell. Second, Matsushita and Kaneko also presented a dynamical system
that is capable of describing the basic features of Waddington’s epigenetic landscape [5].
In their work, each gene of the GRN was modeled by a differential equation that assumes
an “on” or “off” stable state. Furthermore, the authors assumed that each gene is regulated
by auxiliary variables, also described by differential equations, that represent epigenetic
modifications. Collectively, the system showed hierarchical branching, robustness, and a
unique cell ratio of differentiated cells. The advantage of this approach is that it provides a
more comprehensive understanding of how the GRN can self-regulate and achieve a stable
state in the presence of perturbations.

This work here presents an autonomous dynamical system that can describe the three fun-
damental aspects of the epigenetic landscape. The model is based on the concept of (a) GRN
modularity [4] and (b) parameter regulation due to epigenetic factors [5,8]. Specifically, this
work assumes that the GRN consists of a number of hierarchically interacting subnetworks
(modules). These modules are capable of determining their own function. For simplicity, we
assume that these functions are represented by the fixed points of a supercritical pitchfork
or casp bifurcations. These modules are then coupled together with feedback mechanisms
controlled by intrinsic and extrinsic factors (i.e., cell–cell interaction or epigenetic factors).
By introducing a spatiotemporal hierarchy, it is possible to construct trajectories that depict
the dynamics of the marble in the epigenetic landscape. Overall, the proposed model has the
potential to describe the three basic properties of Waddington’s landscape: hierarchical branch-
ing, homeorhesis, and conservation of the differentiated cells ratio. Moreover, by appropriately
tuning the parameters, the epigenetic landscape can include cellular states that are highly
improbable. This is interesting because it has been proposed that cancer cell states correspond
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to these unlikely states in the epigenetic landscape [23]. Finally, the work presented here can
serve as a model for direct or indirect reprogramming, also known as transdifferentiation and
dedifferentiation, respectively [6,24–26].

The paper’s organization is straightforward. The following section presents the mathe-
matical model. Specifically, Section 2.1 briefly discusses previous work [8], while Section 2.2
introduces its extension. Section 3 presents theoretical and numerical analysis of the pro-
posed model and discusses its capability of modeling certain aspects of Waddington’s
epigenetic landscape. Finally, Section 4 summarizes this paper.

2. Mathematical Model

This study employs the normal forms of supercritical pitchfork and cusp bifurcation to
simplify the complex behavior of GRNs. Although these models are not as detailed as tradi-
tional biochemical models [16], they are still capable of describing the phenomoemnology
of decision-making events depicted in the Waddington epigenetic landscape.

In this section, standard linear stability analysis is used to study the dynamic behav-
ior of the proposed dynamical system. Representative simulations also complement this
analysis to demonstrate spontaneous symmetry-breaking events and cell fate decisions.
Fluctuations due to finite-size effects and gene expression noise [1,2] were represented by
adding white noise terms to the stem-cell state Equation (see, for example, [8]). Mathemati-
cally, such terms are expressed as σdWt, where σ is the variance of white noise, and dWt
represents independent Wiener increments. The numerical solution of the dynamical sys-
tems was obtained using the standard Euler–Maruyama method, with an integration step of
dt = 10−3. In all simulations, the variance has been constant at σ = 0.2. The Waddington’s
epigenetic landscape was constructed using the concept of quasi-potential [27],

Φ(m, t) ∝ − log[P(m, t)], (1)

where P(m, t) is the probability of finding the system at state m at time t. The probability is
computed over 105 independent stochastic trajectories m(t). Note that this approach cannot
fully reconstruct the potential landscape due to the rare occurrence of some stable solutions.
These states will be referred to as silenced states within a fixed number of independent
simulations. In this work, they correspond to cells that rarely express specific genes, which
are termed gene silencing [28].

2.1. Spontaneous Symmetry Breaking Model

In our latest publication [8], we presented a model that describes the process of a
stem cell differentiating into two progenitor cells. This model is based on a standard
pitchfork bifurcation coupled with a feedback mechanism that regulates transcriptional
noise. The mathematical expression of this model is

dm
dt

= rm − m3 (2)

dr
dt

= G(M2 − m2). (3)

Let us first analyze Equation (2), which is the normal form of the supercritical pitchfork
bifurcation. Here, m represents the stem cell state. Specifically, m = 0 corresponds to
pluripotent stem cells, while m ̸= 0 describes differentiated cells. The parameter r controls
the bifurcation diagram. For r ≤ 0, the pluripotent stem cell state is the only stable solution.
For r > 0, the stem cell state becomes unstable, and two symmetric stable states m = ±√

r
emerge that represent the differentiated cells. Thus, we can only have a stem cell state
(m = 0) if r ≤ 0. In self-organized systems or processes, such as stem cell differentiation,
control parameters become dynamic variables that are regulated by external stimuli and
internal dissipation. One way to incorporate this mechanism into Equation (2) is to assume
that epigenetic factors increase the control parameter at a constant rate B, while internal
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mechanisms decrease it through a state-dependent dissipating term Gm2, where G is the
dissipation (relaxation) constant (see, for example, [29]). Thus, the differential equation
governing the dynamics of the control parameter could be expressed as ṙ = B − Gm2.
To simplify this equation, one can factor G and define M2 = B/G, resulting in Equation (3).
The choice of the quadratic term m2 instead of the linear m is to maintain the m → −m
invariance of the pitchfork bifurcation.

In [8], the variable r was defined as r = 1 − ξ, where ξ represented the level of tran-
scriptional noise. Here, r is generalized as any variable that regulates the spontaneous
decision-making events in stem cell differentiation. This new definition of r can be associ-
ated with parameters such as the transcriptional rate and critical concentration of proteins
that are used in more detailed dynamical systems of stem cell differentiation.

The dynamical system of Equations (2) and (3) exhibits two symmetric asymptotically
stable equilibrium states [8]

(m∗, r∗) = (±M, M2). (4)

For G > M2/2, G = M2/2, or G < M2/2, the equilibrium solutions are stable
spirals, degenerate nodes, or stable nodes, respectively. Thus, any initial stem cell state
(m ≈ 0 and r < 0) will eventually differentiate into either of the ±M cell types with
equal probability. This can be seen in Figure 2a, where several representative trajectories
of stem cell differentiation are demonstrated. All of these trajectories begin from the
stem cell state (m(0) = 0 and r(0) = −5) and eventually reach a critical point where a
spontaneous decision is made, leading to either the +M or −M cell state. This decision
is made randomly due to the presence of white noise in the system. Once the trajectory
has well passed the bifurcation point, it remains within the chosen branch of equilibrium
solutions. After passing the bifurcation point, none of the 105 simulated trajectories changed
branches. To demonstrate this result, several trajectories are embedded in the density plot
of the quasi-potential Φ(m, t). In Figure 2b, we can see the three-dimensional (3D) quasi-
potential, which is qualitatively consistent with the first differentiation in the Waddington
epigenetic landscape. However, it is too symmetric to be realistic (refer to Figure 1b). Here,
it is essential to note that the value of parameter G determines the speed of spontaneous
symmetry breaking. Higher G values result in faster differentiation. Hence, G−1 can be
considered the time it takes for differentiation to occur.

To create a more realistic epigenetic landscape, this study takes into account an exter-
nal field, µ, which also originates from epigenetic factors. This external field introduces an
asymmetry in the potential function of the system and promotes the differentiation of spe-
cific cell types. The method described below allows for the adjustment of the ratio between
two distinct cell types produced during symmetry breaking. This is considered one of the
three most important properties of cell differentiation. Specifically, Equations (2) and (3),
are modified as follows:

dm
dt

= rm − m3 − µ, (5)

dr
dt

= G(M2 − m2). (6)

The first equation represents the normal form of the cusp bifurcation [30]. It should be
noted that this model exhibits bistability accompanied by a hysteresis loop. The second
equation is the same standard feedback mechanism that was used in [8]. This modified
dynamical system has two equilibrium states

(m∗, r∗) = (±M, M2 ± µ

M
) = E±. (7)

Linear stability analysis trivially shows that E− is always stable, while E+ is stable
for µ < 2M3, center for µ = 2M3, and unstable for µ > 2M3. For µ > 2M3, all initial
conditions different from E+ will assymptotically approach E−. In this case, one can say
that the cell E− has been eliminated from the epigenetic landscape. This guarantees that
the system, starting from the pluripotent stem cell state (m(0) = 0 and r(0) < 0), will
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always differentiate to either +M or −M. In other words, the differentiation process is
guaranteed. Note that by tuning the value of µ, the potential energy of the supercritical
pitchfork bifurcation is titled. This process creates an imbalance in the system that favors
certain cell states. In particular, when µ > 0, there is a greater chance of producing the cell
−M, whereas if µ < 0, the stem cell is more likely to differentiate into the +M cell. This is
demonstrated in Figure 2c, where multiple cell state trajectories are presented for µ = 0.75.
The system always begins from m = 0 and r = −5 representing the pluripotent state. Since
µ > 0, differentiation into cell −M is more likely than cell +M. This is also apparent in
Figure 2d, which displays the 3D quasi-potential. The potential well associated with cell
−M is deeper than that of cell +M. In Figure 2e,f, µ is increased further to µ = 1.5, causing
the well located at +M to disappear. If µ < 0, cell state +M would have been promoted
instead. Thus, this model can create an imbalance in the epigenetic potential that favors
one cell over another, and in some cases, certain cell types can even be silenced within the
limited number of independent simulations.
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Figure 2. First row shows representative trajectories of a single module embedded on the density plot
of the quasi-potential function. The second row shows the 3D representation of the quasi-potential
versus m and time. In (a,b), µ = 0. In (c,d), µ = 0.75. In (e,f), µ = 1.5. In all subfigures, M = 2 and
G = 1. The quasi-potentials were constructed using Equation (1) with 105 independent trajectories.
Blue and yellow colors correspond to low and high values of the quasi-potential, respectively.

2.2. GRN Modularity

It is evident that many biological systems, including GRN, display modularity [31–35].
In simple terms, those systems consist of weakly interconnected modules that carry out
specific tasks or respond to particular stimuli. It has been suggested that modularity is
advantageous as it enables efficient information processing and allows for the integration
of diverse inputs and outputs to coordinate complex biological functions. In [4], the au-
thors suggested that GRN also exhibits a hierarchical modularity during differentiation.
The differentiation process begins when a sub-network of genes (module) first undergoes
symmetry breaking, causing the module to perform a specific function in the cell. This
function then triggers a symmetry breaking in the second module in the hierarchy, and so
on and so forth. Collectively, the behavior of all modules together determines the type of
the cell.

Mathematically, this idea was formulated by assuming that each module is represented
by a dynamical system exhibiting tristability. At the beginning of the differentiation process,
the first dynamical system in the hierarchy passes through the bifurcation point and
spontaneously selects a specific stable solution that represents a particular function. This
stable solution then triggers a spontaneous symmetry breaking in the subsequent dynamical
systems. The authors were able to show that this approach reproduces the hierarchical
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branching, and the produced branches of equilibrium points are stable to internal noise.
Although the control of the produced ratio of cells was discussed in the paper, it was not
extensively covered. The work presented here builds upon [4] and attempts to offer a more
systematic approach to constructing the Waddington epigenetic landscape.

More specifically, this section considers that the GRN consists of a number of weakly
coupled gene modules. A schematic representation of a cell with three of these modules
is shown in Figure 3a. Each module starts in a neutral state but eventually undergoes a
symmetry-breaking event that assigns a specific role or function for the cell. This symmetry-
breaking occurs in a hierarchical manner and can be mathematically described by the
models presented in Section 2.1. Assuming that the state of each module is denoted by
mi, where i = 1, 2, 3, at t = 0, all modules are in the undifferentiated state “0,0,0”, i.e., all
mi = 0 (Figure 3b). External factors trigger the first decision-making event, causing the first
module to assume the “+” state at time t1 (Figure 3c). The current cell state “+,0,0” may
represent a common progenitor cell. This state triggers the symmetry-breaking event in
the second module, and it takes on the “− ” state at time t2 (Figure 3d). The state “+,−,0”
may represent a more specific progenitor, such as a myoepithelial progenitor. Finally,
at time t3, the third decision-making event is triggered by the current state of the cell,
and the third module assumes the “+” state (Figure 3e). At this point, the entire cell
is characterized by a “+,−,+” state, which corresponds to a terminally differentiated cell.
As demonstrated below, even if we assume a weak coupling between gene modules, the cell
can undergo differentiation.

To mathematically formulate the schematic diagram shown in Figure 3, it is assumed
that the GRN consists of n hierarchically coupled gene modules. Each module is described
by a self-regulated dynamical system discussed in Section 2.1. Furthermore, we assume that
the modules are weakly coupled, and their spontaneous symmetry breaking is triggered
in a sequential manner. Let us denote the state of the cell as m = (m1, ..., mn)T and the
dynamic parameters as r = (r1, ..., rn)T . Then, the dynamical system describing the cell
differentiation is

dX
dt

= F(X; µ, G, M), (8)

where X = (m, r)T , µ = (µ1, ..., µn)T is the external vector field, G = (G1, ..., Gn)T represent
the relaxation parameters of each module, and M = (M1, ..., Mn)T . The vector field is
F = ( f1, ..., fn, g1, ...gn)T , where

fi(mi, ri; µi) = rimi − m3
i − µi (9)

gi(mi; Gi, Mi) = Gi(M2
i − m2

i ). (10)

To keep the analysis as simple as possible, this work considers a simple spatial hierar-
chical coupling through the parameters Mi according to the following equation

Mi =

{
M1 + ∑j d1jmj i = 1

∑j<i cijmj + ∑j dijmj i > 1
(11)

where M1 is a parameter decided by external factors. The coefficients cij determine the
hierarchical coupling and are non-zero only for j < i. This condition ensures that influence
will happen in a hierarchical manner, i.e., the first module affects the second module, then
the first and second modules affect the third module, and so on. The matrix dij weakly
couples different modules simultaneously. As we will see below, the external fields µi and
interaction strengths dij offer the necessary asymmetry that makes the system more realistic
and tunable.

To project the n−dimensional state space m into a single generic cell-state coordinate,
as in Waddington’s epigenetic landscape, one may choose different functions. Here, this
coordinate is defined as

M = m1 + ... + mn. (12)
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The model parameters can be set to arbitrary values as long as the system has stable so-
lutions. However, to achieve a hierarchical branching visually similar to Waddington’s land-
scape (see Figure 1b), specific parameter values have been selected in Sections 3.1 and 3.2.
If parameters are chosen randomly, a more complex, rugged potential landscape is pro-
duced. This case is discussed in Section 3.3.
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Figure 3. (a) Schematic representation of a GRN consisting of three gene modules. Subfigure (b) shows
the mathematical representation of each module as a dynamical system exhibiting pitchfork bifur-
cation. The single wells of all modules at time t = 0 indicate that none of them has gone through a
spontaneous symmetry-breaking event yet. Subfigures (c), (d), and (e) show the state of the modules
at times t1, t2, and time t3, respectively, such that 0 < t1 < t2 < t3. Clearly, the modules m1,
m2, and m3 experience a hierarchical symmetry breaking. Subfigure (e) illustrates the terminally
differentiated cell.

3. Results
3.1. Symmetric Hierarchical Branching
3.1.1. Case n = 2

Let us first consider a scenario where we have only two modules (n = 2). Let us
further assume that there is no external field or weak interaction, i.e., µi = 0 and dij = 0
for any i, j. Without loss of generality, we set M1 = 7 and assume that all cij values are zero,
except for c2,1 = 0.5. This choice of cij corresponds to a simple case where the first module
affects the second module but not vice versa. The choice of the parameters here facilitated
a visually easy to comprehend hierarchical branching.

The equilibrium points of the system (8) with Mi given in Equation (11) are discussed
in Section 2.1 (see Equation (4)):

(m∗
i , r∗i ) = (±Mi, M2

i ). (13)

As always, the system starts from the pluripotent stem cell state, i.e., all mi(0) = 0 and
all ri(0) assume negative values, for example, ri(0) = −5. Based on Equation (11), only
M1 = M1 is different than zero. Thus, the first module will first achieve the equilibrium
points m∗

1 = ±M1. Then, M2 = c2,1m∗
1 becomes nonzero, and the second module will reach

the equilibrium point m∗
2 = ±M2. Since it is assumed that the two-dimensional state space
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is projected onto a generic state coordinate M = m1 + m2, the system has the following
2n = 4 equilibrium cell states:

M∗ = (−M1 − M2,−M1 + M2,+M1 − M2,+M1 + M2). (14)

The equilibrium points for the dynamic variables are determined by using
Equation (13), i.e., r∗i = (m∗

i )
2. Note that (m∗

1 , r∗1) is asymptotically stable due to the
analysis presented in Section 2.1. This implies that due to the simplistic hierarchical cou-
pling used in this section, (m∗

2 , r∗2) also has the same stability. Thus, all equilibrium cell
states in Equation (14) are asymptotically stable. One can more formally prove this stability
by computing the 4 × 4 Jacobian of the dynamical system (8) at each equilibrium point and
showing that the real part of all of its eigenvalues is negative. The Supplementary Materials
includes simple codes that can be used to verify the stability of the dynamical system.

Figure 4a presents the trajectories of m1(t), m2(t), and the cell state coordinate
M(t) = m1(t) + m2(t). Note that the trajectory of m1(t) experiences a symmetry breaking
first (red line) to assume the state +M1 and m2(t) (blue line) follows at a later time to
assume the equilibrium state −M2. Overall, the cell (black line) entails having the state
M = +M1 − M2. In Figure 4b, we present several trajectories showing that there is no
bias in which one of the four cell states in Equation (14) will be picked at the end. These
trajectories are embedded in the density plot of the quasi-potential Φ(M, t). The 3D version
of Φ(M, t) is presented in Figure 4c. Once again, simulations revealed that the hierarchical
branching of equilibrium solutions is robust to random fluctuations. Although the perfect
symmetry of this potential is not realistic, it qualitatively captures Waddington’s epigenetic
landscape presented in Figure 1b.
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Figure 4. The first row shows an example of a cell consisting of two modules (n = 2). Specifically,
subfigure (a) shows the trajectories of m1 (red line) and m2 (blue line), along with the projected
generic coordinate M = m1 + m2 (black line). Subfigure (b) shows the density plot of the quasi-
potential, along with several representative trajectories. Subfigure (e) shows the 3D version of the
quasi-potential. The second row represents an example of a stem cell that consists of three modules
(n = 3). Subfigures (d), (e), and (f) are equivalent to subfigures (a), (b), and (c), respectively, for the
case of n = 2. The parameters for n = 2 are given in Section 3.1.1 and for n = 3 in Section 3.1.2.
In all cases, µ = 0 and d = 0. Blue and yellow colors correspond to low and high values of the
quasi-potential, respectively.
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3.1.2. Case n = 3

We can apply the previous analysis to any number of modules. To give a clear
comparison, let us consider another example with three modules (n = 3). All the parameters
and conditions remain the same as in the previous case, except that we set c3,2 = 0.571.
Consequently, only the first module affects the second module, and similarly, only the
second module affects the third one in a sequential manner. The stability analysis shows
that the system’s equilibrium points for mi are m∗

1 = ±M1, m∗
2 = ±M2, and m∗

3 = ±M3,
where M2 = c21m∗

1 and M3 = c32m∗
2 . Thus, the generic cell state coordinate M has 2n = 8

asymptotically stable equilibrium points:

M∗ ={−M1 − M2 − M3,−M1 − M2 + M3,−M1 + M2 − M3,−M1 + M2 + M3,

+ M1 − M2 − M3,+M1 − M2 + M3,+M1 + M2 − M3,+M1 + M2 + M3}. (15)

Similarly to the previous example, Figure 4d demonstrates the time evolution of the
three modules m1, m2, and m3, as well as the cell state coordinate M = m1 + m2 + m3.
As always, the system starts from the pluripotent stem cell state, i.e., mi(0) = 0 and
ri(0) = −5. Note that the trajectory of m1(t) experiences a symmetry breaking first (red
line) to assume the state +M1, then m2(t) (blue line) follows to assume the equilibrium
state +M2, while m3(t) experiences symmetry breaking at a later time to occupy state
−M3. At that point, the terminal cell state is (black line) +M1 + M2 − M3. In Figure 4e,
we present a number of different cell-state trajectories. Similar to the example with n = 2,
the equilibrium solutions are stable. The 3D quasi-potential, Φ(m, t), is presented in
Figure 4f. This graph shows how Waddington’s epigenetic landscape presented in Figure 1b
could be qualitatively extended to describe a third differentiation level. As in the previous
case, all states are equally probable.

3.2. Asymmetric Spatial Hierarchical Branching

The previous section helped us gain a better understanding of how Equation (8) can
describe hierarchical branching that is robust to random fluctuations. However, due to the
simplicity and symmetry of the hierarchical coupling, all different types of differentiated
cells are equally probable. Here, we will discuss how the proposed dynamical system
can model the differentiation process and produce the necessary number of differentiated
cells, which differs for each cell type. This can be achieved by considering non-zero
fields µ and inter-module interactions d. This section will only consider a cell with three
hierarchically coupled gene modules (n = 3). The remaining parameters are identical to
those in Section 3.1.2. For comparison reasons, the density plot of Figure 4e is copied in
Figure 5a.

We will first consider an example with

µ = (1,−1, 1)T , (16)

and set the interaction matrix d = 0. The equilibrium points for the three mi are also given
by Equation (7)

(m∗
i , r∗i ) = (±Mi, M2

i ∓
µi
Mi

). (17)

It can be shown, through a similar analysis as Section 3.1.2, that the equilibrium
states of the generic cell-state coordinate remain the same as those in Equation (15). How-
ever, the presence of the external field favors specific directions during the spontaneous
symmetry-breaking events. This leads to differentiation through pathways that promote
certain cell states. An example is shown in the density plot of the quasi-potential presented
in Figure 5b. In this plot, we can see that some equilibrium points (differentiated cells) are
more probable than others. Additionally, for extremely high values of µi, some states may
be occupied rarely or even disappear. The remarkably low probability can be attributed to
mutations, cancerous cell states, or silenced cell states.
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the undecide state mi = 0. According to 12, the first module will undergo a spontaneous 244
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differentiating after the second module is differentiated, and it will be differentiated to 249

either ±c12|c12M1|. Collectively The matrix dij provides a weak coupling between different 250
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2.2.2. Temporal hierarchy 252

A second way of modeling the hierarchical branching is to assume that each module 253

can differentiate independently at very different time scales. This can be achieved by 254

adjusting the parameters Gi accordingly. If, for instance, G1 � G2 � G3 � ..., then the first 255

module will undergo a symmetry breaking faster than the second and the second faster 256

than the third module. In this case, the parameters Mi can be modeled as 257

Mi = Mi + Â
j

dijmj (13)

Here, each module has its own parameter Mi that originates from external factors, while 258

the coefficient cij indicate the weak coupling between different modules. 259

3. Results 260

This section analyzes in detail only the case discussed in Sec. 2.2.1 and briefly illustrates 261
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Figure 5. Four different density plots of the quasi-potential are presented in this figure. Subfigure (a) is
the same as Figure 4e and has been included for comparison purposes. The parameters used in
subfigure (a) are the same as in 3.1.2. All parameters remain the same in the rest of the subfigures,
except for µ and d. Specifically, in (b), µ is given by Equation (16) and d = 0. In (c), µ = 0 and d is given
by Equation (18). Finally, in (d), µ and d are given by Equations (16) and (18), respectively. In these
plots, blue and yellow colors correspond to low and high values of the quasi-potential, respectively.

A different way to introduce an asymmetry in the system’s state space is to assume a
weak inter-module interaction, such as the following:

d =




0.107 0.313 −0.075
−0.009 0.056 0.135
−0.020 0.111 0.172


. (18)

To better understand the impact of this interaction, we will set µ = 0. The equilibrium
points m∗

i can be derived by solving the following system of linear equations:

m1 =± (M1 + ∑
j

d1jmj) (19)

mi>1 =± (∑
j<i

cijmj + ∑
j

dijmj). (20)

Then, the corresponding r∗i are

r∗i = (m∗
i )

2 +
µi
m∗

i
. (21)

The eight different equilibrium solutions of the generic coordinate M are given by
Equation (12). Figure 5c demonstrates the density plot of the quasi-potential, Φ(M, t). It is
clear that the interaction matrix d introduces an asymmetry in the state space, compared
to the unperturbed case presented in Figure 5a. This asymmetry causes certain states to
merge while others become more distant. It is important to note that the probability of
having each cell state remains equal.

To ensure that the system makes physical sense, all equilibrium points X∗ = (m∗, r∗)T

must be asymptotically stable. This can be verified by computing the Jacobian of F at
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each equilibrium point and showing that the real part of all of its eigenvalues is negative.
However, this is not always the case and depends strongly on the values of d. If the
values of the interaction matrix are small enough, then all equilibrium points are stable.
A forthcoming paper will discuss a rigorous condition on the stability of equilibrium
solutions with respect to d. All matrices d that have been used in this work provide only
stable equilibrium points. This means that the stem cell will inevitably differentiate and
assume one of the available cell states (equilibrium solutions). Supplementary Materials
provides simple codes to verify the stability of the dynamical systems.

After studying the effects of weak inter-module interaction and external force fields
separately, we can now focus on the case where both are present. The density plot of the
quasi-potential is shown in Figure 5d. It is evident that there is an asymmetry along the
M coordinate, and the number of produced cells also differs. This approach can help in
tuning the required number of produced cell types.

3.3. Random Hierarchical Branching

Given that we have no specific information about the system’s parameter values, it
would be more realistic to assume that these values are random variables. This section only
considers parameter values that are given by

Gi =2 + 0.1ui, (22)

µi =0.5ui, (23)

cij =1.5(1 + ui)δi,i−1, (24)

dij =0.05ui, (25)

where ui ∼ U[−1, 1] and U[−1, 1] is the uniform distribution in [−1, 1]. Here, δ represents
the Kronecker delta. This scenario corresponds to a sequential branching.

The example shown in Figure 6 corresponds to a cell consisting of six hierarchically
coupled and weakly interconnected gene modules under the influence of a random ex-
ternal field. Specifically, Figure 6a and 6b present the density and the 3D plot of the
quasi-potential Φ, respectively. All equilibrium points of this example are asymptotically
stable (see Code6.m in Supplementary Materials). There are several noteworthy observa-
tions here that demonstrate the potential of this model to capture characteristics of the
epigenetic landscape:

1. It is evident that there is highly complex branching of cell differentiation trajectories.
2. The produced cell states are highly stable (homeorhesis).
3. Some equilibrium states (cell states) are more probable than others.
4. Although the differentiation pathways are generally robust, it is possible for some

trajectories to transition to another branch of cell state if the amount of random white
noise is significantly increased. Even in this case, some transitions will be exceedingly
rare as they belong to different dimensions. To make this possible, a series of mi’s
would have to transition simultaneously.

5. An alternative way of achieving state transitions is by returning the trajectory to a pre-
vious decision-making point (bifurcation). This is possible if the dynamic parameters
ri are significantly perturbed, a scenario that has not been analyzed in this work.

6. Some cell states are very rarely visited, and some others have not been visited at all
during the limited number of simulation trajectories conducted in this work.

7. The above points are responsible for the rugged landscape of the generated quasi-potential.

Based on these observations, we can draw the following conclusions regarding the
model’s potential. First and foremost, points 1, 2, and 3 show that the model satisfies
the three important conditions of Waddington’s epigenetic landscape, i.e., (a) hierarchical
branching, (b) homoerhesis, and (c) a specific cell-type ratio. Second, points 4 and 5
can model cell reprogramming. Specifically, the direct transition from one stable branch
to another due to white noise (point 4) is related to direct reprogramming, also called
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transdifferentiation. This type of reprogramming involves converting one mature somatic
cell type into another mature somatic cell type without passing through a pluripotent
stage [25]. Point 5 is related to indirect reprogramming, which requires the mature cell
to revert back to a prior pluripotent or multipotent cell state before it can change its
differentiation pathway and assume a new terminal cell state. This type of programming
is also referred to as dedifferentiation. Point 6 demonstrates the ability of the model to
describe cell states with a low probability of occurrence. Cancer cells are believed to
correspond to this type of state within the epigenetic landscape, which preexists but is
rarely assumed.

final
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Figure 6. (a) Density plot and (b) 3D plot of the quasi-potential for n = 3 and for random parameters
determined by Equations (22)–(25). Blue and yellow correspond to low and high values of the
quasi-potential, respectively.

4. Conclusions

The purpose of the paper was to present a simple dynamical model that can capture
three key features of Waddington’s epigenetic landscape, namely hierarchical branching,
homeorhesis, and precision in the number of produced cell types. The model was based
on two hypotheses. The first hypothesis proposes that the GRN consists of gene modules
that are hierarchically coupled. Initially, all modules are in an undecided state regarding
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their function. Each module decides its function in a hierarchical manner, meaning that the
first module makes a decision based on an external signal, which triggers the decision in
the second module, and so on. Eventually, all modules perform a specific function, which
collectively determines the type of the committed cell. The second hypothesis suggests that
this process is regulated by external epigenetic factors.

Mathematically, each module was modeled as a dynamical system that exhibits a su-
percritical pitchfork or cusp bifurcation. For simplicity, this work implemented the normal
form of these bifurcations. Additionally, each module was guided to the bifurcation point
by regulating its parameters through a feedback mechanism originating from an external
field representing epigenetic factors. Overall, the proposed complex system can describe
self-organized hierarchical branching. Although the normal forms of one-dimensional
bifurcations do not accurately capture the complexity of a real regulatory network, this
work has demonstrated that such a simple dynamical system can phenomenologically
describe the essential features of Waddington’s epigenetic landscape.

In future studies, it would be interesting to apply this approach to more realistic
RBNs. Specifically, it would be worthwhile to investigate a scenario where each module is
modeled by a dynamical system exhibiting tristability [4]. In this case, as demonstrated
in [8], the system exhibits Hopf bifurcation, and the generated cell states will be dynamic
in nature. Furthermore, a more systematic study of the weakly coupled modules presented
here may uncover more interesting attractors that are also dynamic in nature [9].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math12091380/s1, Code S1: This code checks the stability of the
dynamical system used in Figures 5d and 6.
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