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1. Introduction and Outline

For an indeterminate x and n ∈ N0, the Pochhammer symbol is defined by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for n ∈ N.

It can be expressed in terms of the Γ-function

(x)n =
Γ(x + n)

Γ(x)
with Γ(x) =

∫ ∞

0
τx−1e−τdτ for ℜ(x) > 0.

For the sake of brevity, the Γ-function quotient will be abbreviated to

Γ
[

α, β, · · · , γ
A, B, · · · , C

]
=

Γ(α)Γ(β) · · · Γ(γ)
Γ(A)Γ(B) · · · Γ(C)

.

Denote the Euler constant by γ = lim
n→∞

(
Hn − ln n

)
. Then, the logarithmic differentia-

tion of the Γ-function results in the digamma function (cf. Rainville [1], §9)

ψ(z) =
d
dz

ln Γ(z) =
Γ′(z)
Γ(z)

= −γ +
∞

∑
n=0

z − 1
(n + 1)(n + z)

.

Let [xm]φ(x) stand for the coefficient of xm in the formal power series φ(x). For a real
number λ ̸∈ Z\N, we can extract the coefficients

[x]
Γ(λ − x)

Γ(λ)
= −ψ(λ) and [x2]

Γ(λ − x)
Γ(λ)

=
ψ2(λ) + ψ′(λ)

2

from the exponential expression

Γ(λ − x)
Γ(λ)

= exp
{
− xψ(λ) +

∞

∑
k=2

xk

k
ζk(λ)

}
, (1)
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where the Riemann and Hurwitz zeta functions are defined, respectively, by

ζ(m) =
∞

∑
n=1

1
nm and ζm(z) =

(−1)m

(m − 1)!
Dm−1

z ψ(z) =
∞

∑
n=0

1
(n + z)m .

For λ ∈ R and n ∈ N0, define the parametric harmonic numbers by

H⟨m⟩
n (λ) :=

n−1

∑
k=0

1
(λ + k)m and H̄⟨m⟩

n (λ) :=
n−1

∑
k=0

(−1)k

(λ + k)m .

When λ = 1 and λ = 1
2 , they reduce to the usual harmonic numbers

H⟨m⟩
n := H⟨m⟩

n (1), O⟨m⟩
n := 2−mH⟨m⟩

n ( 1
2 );

H̄⟨m⟩
n := H̄⟨m⟩

n (1), Ō⟨m⟩
n := 2−mH̄⟨m⟩

n ( 1
2 ).

In case m = 1, it will be suppressed from these notations. We record also the following
simple, but useful, relations:

H⟨m⟩
2n = O⟨m⟩

n + 2−mH⟨m⟩
n , H⟨m⟩

n ( 1
2 ) = 2mO⟨m⟩

n ;

H̄⟨m⟩
2n = O⟨m⟩

n − 2−mH⟨m⟩
n , H̄⟨m⟩

n ( 1
2 ) = 2mŌ⟨m⟩

n .

The parametric harmonic number of the first order can be obtained by extracting the
coefficient from the factorial quotient

Hn(λ) = [x]
(λ + x)n

(λ)n
= [x]

(λ)n

(λ − x)n
.

By means of the generating function method, it can be shown without difficulty that in
general, there hold the following formulae:

[xm]
(λ − x)n

(λ)n
= Ωm

{
− H⟨k⟩

n (λ)
}

and [xm]
(λ)n

(λ − x)n
= Ωm

{
H⟨k⟩

n (λ)
}

. (2)

Here, the Bell polynomials (cf. [2], §3.3) are expressed by the multiple sum

Ωm

{
± H⟨k⟩

n (λ)
}
= ∑

σ(m)

m

∏
k=1

{
± H⟨k⟩

n (λ)
}ik

ik! kik
, (3)

and σ(m) is the set of m-partitions represented by m-tuples (i1, i2, · · · , im) ∈ Nm
0 subject to

the condition
m
∑

k=1
kik = m. We sketch proofs of (2) for integrity. According to power series

expansion of the logarithm function

ln
(

1 − x
λ + i

)
= −

∞

∑
k=1

xk

k(λ + i)k ,

we can manipulate the two factorial quotients

(λ − x)n

(λ)n
=

n−1

∏
i=0

{
1 − x

λ + i

}

= exp
{ n−1

∑
i=0

ln
(

1 − x
λ + i

)}
= exp

{
−

∞

∑
k=1

xk

k
H⟨k⟩

n (λ)

}
,

(λ)n

(λ − x)n
=

n−1

∏
i=0

{
1 − x

λ + i

}−1

= exp
{
−

n−1

∑
i=0

ln
(

1 − x
λ + i

)}
= exp

{ ∞

∑
k=1

xk

k
H⟨k⟩

n (λ)

}
.
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Then the formulae in (2) follow by extracting the coefficient of xm across the above two equa-
tions.

There exist numerous infinite series representations for π and related mathematical
constants in the literature (cf. [3–11]). Some of them can be shown by means of the hyper-
geometric series approach. Even though many summation formulae (cf. [12–14]) have been
found for the hypergeometric series, these with a half argument are quite rare. The two
fundamental ones are due to Gauss (called Gauss’ second summation theorem) and Bailey
(cf. [12], §2.4):

2F1

[
a, b

1+a+b
2

∣∣∣1
2

]
=

∞

∑
n=0

(a)n(b)n

n!( 1+a+b
2 )n

(1
2

)n
= Γ

[
1
2 , 1+a+b

2
1+a

2 , 1+b
2

]
, (4)

2F1

[
a, 1 − a

c

∣∣∣1
2

]
=

∞

∑
n=0

(a)n(1 − a)n

n! (c)n

(1
2

)n
= Γ

[
c
2 , 1+c

2
c+a

2 , 1+c−a
2

]
. (5)

Following a recent work of the second author [15], we shall investigate infinite series
involving harmonic numbers, by examining primarily Gauss’ Formula (4) and secondarily
Bailey’s Formula (5). Several remarkable identities will be established, including eight
conjectured ones made experimentally by Sun [16,17]. This will be fulfilled by utilizing
the “coefficient extraction method” (cf. [5,18,19]). Considering that for a harmonic series of
convergence rate “1/2”, there are only a few existing formulae scattered in the literature
up to now, so the relatively full coverage presented in this paper may serve as a reference
source for readers.

In the next section, 17 infinite series with central binomial coefficients in numerators
will be evaluated in closed form by exploring four cases of Gauss’ second summation
Formula (4). Then, a further 23 infinite series identities with central binomial coefficients in
denominators will be derived, in Section 3, by examining two cases of (4) and one case of
Bailey’s Formula (5).

In order to ensure the accuracy of our computations, numerical tests for all the equa-
tions have been made by appropriately devised Mathematica commands.

2. Series with Binomial/Multinomial Coefficients in Numerators

By examining Gauss’ second summation formula (4), we shall evaluate, in closed form,
several infinite series involving harmonic numbers, and binomial/multinomial coefficients
in numerators, including five conjectured series made recently by Sun [17].

2.1. a → 1
2
+ 2ax & b → 1

2
+ 2bx

The corresponding series becomes

Γ

[
1
2 , 1 + ax + bx
3
4 + ax, 3

4 + bx

]
=

∞

∑
n=0

(1
2

)n ( 1
2 + 2ax)n(

1
2 + 2bx)n

n! (1 + ax + bx)n
.

Both members of the above equation are analytic function of x in the neighborhood of
x = 0 and can be expanded into power series in x. Denoting by Am(a, b) the coefficient of
xm across the equation, we derive the following infinite series identities.

First, letting x = 0, the resulting coefficient A0(a, b) evaluates an easier series:

√
π

Γ2( 3
4 )

=
∞

∑
n=0

(
2n
n

)2( 1
32

)n
.

The next coefficient A1(a, b) gives rise to the identities below.



Mathematics 2024, 12, 1381 4 of 12

Theorem 1.

(a)
√

π(π − 4 ln 2)
2Γ2( 3

4 )
=

∞

∑
n=1

(
2n
n

)2 Hn

32n ,

(b)
√

π ln 2
4Γ2( 3

4 )
=

∞

∑
n=1

(
2n
n

)2 On

32n .

Proof. The first identity (a) can be found in [15] (§3.1), By comparing the coefficient A1(a, b),
we deduce the identity

√
π(π − 6 ln 2)

2Γ2( 3
4 )

=
∞

∑
n=1

(
2n
n

)2 Hn − 4On

32n .

Then, by putting the above equality in conjunction with (a), we confirm the second identity
(b), which is equivalent to the following one:

Γ2( 1
4 ) ln 2

8
√

π3
=

∞

∑
n=1

(
2n
n

)2 On

32n

conjectured recently by Sun [17] (Equation (2.18)).

By examining the two coefficients A2(1,−1) and A2(1,
√
−1), we can evaluate the

following two series on quadratic harmonic numbers, where the first one was conjectured
by Sun [17] (Equation (2.19)).

Theorem 2.

(a)
√

π(π2 − 8G)

16Γ2( 3
4 )

=
∞

∑
n=1

(
2n
n

)2 O⟨2⟩
n

32n ,

(b)
√

π(5π2 − 36π ln 2 + 108 ln2 2)
12Γ2( 3

4 )
=

∞

∑
n=1

(
2n
n

)2 H⟨2⟩
n + (Hn − 4On)2

32n .

In general, the series corresponding to coefficients of higher powers of x become more
complicated. For instance, from A3(1,−1) and A3(1,

√
−1), we have two further formulae.

Proposition 1.

(a)
√

π

32Γ2( 3
4 )

{
56ζ(3) + 48G ln 2 − π3 − 6π2 ln 2 − 8πG

}
=

∞

∑
n=1

(
2n
n

)2 O⟨2⟩
n (Hn − 4On) + 4O⟨3⟩

n
32n ,

(b)
√

π

8Γ2( 3
4 )

{
240ζ(3)− 5π3 − 30π2 ln 2 + 108π ln2 2 − 216 ln3 2

}
=

∞

∑
n=1

(
2n
n

)2 (Hn − 4On)3 + 3O⟨2⟩
n (Hn − 4On) + 2H⟨3⟩

n + 64O⟨3⟩
n

32n .

2.2. a → 1
3
+ 2ax & b → 2

3
+ 2bx

The corresponding series becomes

Γ

[
1
2 , 1 + ax + bx
2
3 + ax, 5

6 + bx

]
=

∞

∑
n=0

(1
2

)n ( 1
3 + 2ax)n(

2
3 + 2bx)n

n! (1 + ax + bx)n
.
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Both members of the above equation are analytic function of x in the neighborhood of
x = 0 and can be expanded into power series in x. Denoting by Bm(a, b) the coefficient of
xm across the equation, we derive the following infinite series identities.

The initial coefficient B0(a, b) yields the following formula:
√

π

Γ( 2
3 )Γ(

5
6 )

=
∞

∑
n=0

(
3n

n, n, n

)( 1
54

)n
.

Theorem 3.

(a)
√

π(2π
√

3 − 9 ln 3)
6Γ( 2

3 )Γ(
5
6 )

=
∞

∑
n=1

(
3n

n, n, n

)
Hn

54n ,

(b)
√

π(2π
√

3 + 6 ln 2 − 9 ln 3)
18Γ( 2

3 )Γ(
5
6 )

=
∞

∑
n=1

(
3n

n, n, n

)
H3n

54n .

Proof. The identity (a) can be found in [15] (§4.1). By considering the coefficient B1(1, 1),
we have the next formula

√
π(2π

√
3 − 6 ln 2 − 9 ln 3)

6Γ( 2
3 )Γ(

5
6 )

=
∞

∑
n=1

(
3n

n, n, n

)
2Hn − 3H3n

54n .

Then, combining this one with (a) leads us to identity (b). The two formulae in this
theorem can be considered as refinements of the following conjectured identity made by
Sun [17] (Equation (2.20)):

3 ln 2Γ3( 1
3 )

4π2 3
√

2
=

∞

∑
n=1

(
3n

n, n, n

)
3H3n − Hn

54n .

Two further series can be evaluated by examining the coefficients B2(1, 1) and B3(1, 1)
as in the following proposition.

Proposition 2.

(a)
√

π

12Γ( 2
3 )Γ(

5
6 )

{
6π2 + 3 ln2(108)− 4π

√
3 ln(108)− 3ζ2(

2
3 )− 3ζ2(

5
6 )
}

=
∞

∑
n=1

(
3n

n, n, n

)
(2Hn − 3H3n)

2 + (2H⟨2⟩
n − 9H⟨2⟩

3n)

54n ,

(b)
√

π

48Γ( 2
3 )Γ(

5
6 )

{
40π3

√
3 − 36π2 ln(108) + 12π

√
3 ln2(108)− 6 ln3(108)

−1152ζ(3)− 3[4π
√

3 − 3 ln(11664)][ζ2(
2
3 ) + ζ2(

5
6 )]

}

=
∞

∑
n=1

1
54n

(
3n

n, n, n

){
(2Hn − 3H3n)

3 + 2(2H⟨3⟩
n − 27H⟨3⟩

3n)

+3(2Hn − 3H3n)(2H⟨2⟩
n − 9H⟨2⟩

3n)

}
.

2.3. a → 1
4
+ 2ax & b → 3

4
+ 2bx

The corresponding series becomes

Γ

[
1
2 , 1 + ax + bx
5
8 + ax, 7

8 + bx

]
=

∞

∑
n=0

(1
2

)n ( 1
4 + 2ax)n(

3
4 + 2bx)n

n! (1 + ax + bx)n
.
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Both members of the above equation are analytic functions of x in the neighborhood of
x = 0 and can be expanded into power series in x. Denoting by Cm(a, b) the coefficient of
xm across the equation, we derive the following infinite series identities.

The initial coefficient C0(a, b) results in the following identity:
√

π

Γ( 5
8 )Γ(

7
8 )

=
∞

∑
n=0

(
4n

n, n, 2n

)( 1
128

)n
.

Then, we have three independent series related to C1(a, b).

Theorem 4.

(a)

√
π
(
π
√

2 − 6 ln 2
)

2Γ( 5
8 )Γ(

7
8 )

=
∞

∑
n=1

(
4n

n, n, 2n

)
Hn

128n ,

(b)
ln 2

√
π

4Γ( 5
8 )Γ(

7
8 )

=
∞

∑
n=1

(
4n

n, n, 2n

)
O2n

128n ,

(c)

√
π
{

π −
√

2 ln(3 + 2
√

2)
}

8Γ( 5
8 )Γ(

7
8 )

=
∞

∑
n=1

(
4n

n, n, 2n

)
Ō2n

128n .

Proof. For the first series (a), refer to Chu [15] (§4.1). By examining the coefficient C1(1, 1),
we obtain the next formula

√
π
(
π
√

2 − 8 ln 2
)

2Γ( 5
8 )Γ(

7
8 )

=
∞

∑
n=1

(
4n

n, n, 2n

)
Hn − 4O2n

128n .

By combining this with (a), we derive (b), which was conjectured by Sun [17] (Equation (2.22)).
Finally the identity (c) corresponds to the coefficient C1(1,−1).

Analogously, two further identities can be shown by considering C2(1, 1) and C2(1,−1).

Proposition 3.

(a)
√

π

12Γ( 5
8 )Γ(

7
8 )

{
8π2 + 192 ln2 2 − 48π

√
2 ln 2 − 3ζ2(

5
8 )− 3ζ2(

7
8 )
}

=
∞

∑
n=1

(
4n

n, n, 2n

)( 1
128

)n
{

H⟨2⟩
n − 16O⟨2⟩

2n + 16O2
2n

+Hn(Hn − 8O2n)

}
,

(b)
√

π

64Γ( 5
8 )Γ(

7
8 )

{
π2 + 2 ln2(3 + 2

√
2)− 2π

√
2 ln(3 + 2

√
2)− ζ2(

5
8 )− ζ2(

7
8 )
}

=
∞

∑
n=1

(
4n

n, n, 2n

)
Ō2

2n − O⟨2⟩
2n

128n .

2.4. a → 1
6
+ 2ax & b → 5

6
+ 2bx

The corresponding series becomes

Γ

[
1
2 , 1 + ax + bx

7
12 + ax, 11

12 + bx

]
=

∞

∑
n=0

(1
2

)n ( 1
6 + 2ax)n(

5
6 + 2bx)n

n! (1 + ax + bx)n
.

Both members of the above equation are analytic function of x in the neighborhood of
x = 0 and can be expanded into power series in x. Denoting by Dm(a, b) the coefficient of
xm across the equation, we derive the following infinite series identities.
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The initial coefficient D0(a, b) gives rise to the formula below.
√

π

Γ( 7
12 )Γ(

11
12 )

=
∞

∑
n=0

(
6n

n, 2n, 3n

)( 1
864

)n
.

Then, we have two independent series evaluations.

Theorem 5.

(a)

√
π
{

2π − ln(432)
}

2Γ( 7
12 )Γ(

11
12 )

=
∞

∑
n=1

(
6n

n, 2n, 3n

)
Hn

864n ,

(b)
√

π ln 2
2Γ( 7

12 )Γ(
11
12 )

=
∞

∑
n=1

(
6n

n, 2n, 3n

)
3O3n − On

864n .

Proof. The first series (a) is due to the second author [15] (§4.1). According to the coefficient
D1(1, 1), we can derive another formula

√
π
{

2π − ln(1728)
}

2Γ( 7
12 )Γ(

11
12 )

=
∞

∑
n=1

(
6n

n, 2n, 3n

)
Hn + 2On − 6O3n

864n .

Then by combining (a) with the above identity, we find the identity (b), which was conjec-
tured by Sun [17] (Equation (2.27)).

3. Series with Central Binomial Coefficients in Denominators

By employing Gauss’ second theorem (4) and then Bailey’s theroem (5), we shall
establish several summation formulae concerning harmonic numbers, and central binomial
coefficients in denominators. Three of them were previously conjectured (without proofs)
by Sun [16] (2014).

3.1. a → 2ax & b → 2bx

The corresponding series in (4) becomes

Γ

[
1
2 , 1

2 + ax + bx
1
2 + ax, 1

2 + bx

]
=

∞

∑
n=0

(1
2

)n (2ax)n(2bx)n

n! ( 1
2 + ax + bx)n

.

Both members of the above equation are analytic function of x in the neighborhood of
x = 0 and can be expanded into power series in x. Denoting by Um(a, b) the coefficient of
xm across the equation, we derive the following infinite series identities.

The summation formula corresponding to the coefficient U2(a, b) reads as

π2

8
=

∞

∑
n=1

2n

n2

(
2n
n

)−1
.

By examining the coefficients U3(a, b) and U4(1,−1), we derive the next two identities,
where the former one was conjectured by Sun [16] (Equation (1.14)).

Theorem 6.

(a)
7
8

ζ(3) =
∞

∑
n=1

2n

n3

(
2n
n

)−1{
1 − nHn + nOn

}
,

(b)
π4

384
=

∞

∑
n=1

2n

n4

(
2n
n

)−1{
n2H⟨2⟩

n − 1
}

.

We have also two further summation formulae of infinite series.
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Proposition 4.

(a)
3π4

128
=

∞

∑
n=1

2n

n4

(
2n
n

)−1{
1 + n2O⟨2⟩

n + n(Hn − On)(nHn − nOn − 2)
}

,

(b)
62ζ(5)− 7π2ζ(3)

64
=

∞

∑
n=1

2n

n5

(
2n
n

)−1
{

2 − nHn + nOn − n2H⟨2⟩
n

−n3(H⟨3⟩
n − HnH⟨2⟩

n + H⟨2⟩
n On)

}
.

Proof. The first identity (a) follows directly by extracting coefficient U4(1,
√
−1). Instead,

the identity (b) is confirmed by evaluating the limit of U5(a,b)
a+b as a → 1 and b → −1.

3.2. a → 1 + 2ax & b → 1 + 2bx

The corresponding series in (4) becomes

Γ
[ 1

2 , 3
2 + ax + bx

1 + ax, 1 + bx

]
=

∞

∑
n=0

(1
2

)n (1 + 2ax)n(1 + 2bx)n

n! ( 3
2 + ax + bx)n

.

Letting Vm(a, b) be the coefficient of xm across the equation, we can derive the follow-
ing infinite series identities. The initial one related to V0(a, b) is given by

π

2
=

∞

∑
n=0

2n

(2n + 1)(2n
n )

.

Next, by considering V1(1, 1), V2(1,−1) and V4(1,−1), we can derive the following
three elegant summation formulae, where (b) can be found in Sun [20].

Theorem 7.

(a)
π ln 2

2
=

∞

∑
n=0

2n(On+1 − Hn)

(2n + 1)(2n
n )

,

(b)
π3

48
=

∞

∑
n=1

2n H⟨2⟩
n

(2n + 1)(2n
n )

,

(c)
π5

1920
=

∞

∑
n=1

2n{(H⟨2⟩
n )2 − H⟨4⟩

n
}

(2n + 1)(2n
n )

.

Two further identities are recorded in the next proposition, that are deduced by the
limiting case a → 1, b → −1 of V3(a,b)

a+b , and the coefficient V6(1,−1), respectively.

Proposition 5.

(a)
3πζ(3) + π3 ln 2

48
=

∞

∑
n=1

2n{H⟨2⟩
n (On+1 − Hn) + H⟨3⟩

n
}

(2n + 1)(2n
n )

,

(b)
π7

107,520
=

∞

∑
n=1

2n{(H⟨2⟩
n )3 − 3H⟨2⟩

n H⟨4⟩
n + 2H⟨6⟩

n
}

(2n + 1)(2n
n )

.

3.3. Bailey’s 2F1(
1
2 )-Series

Under the replacements a → 2ax and c → 1
2 + 2bx, we can reformulate Bailey’s

formula (5) as

Γ

[
1
4 + bx, 3

4 + bx
1
4 + ax + bx, 3

4 − ax + bx

]
=

∞

∑
n=0

(1
2

)n (2ax)n(1 − 2ax)n

n! ( 1
2 + 2bx)n

.
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Both members of the above equation are analytic function of x in the neighborhood of
x = 0 and can be expanded into power series in x. Denoting by Wm(a, b) the coefficient of
xm across the equation, we derive the following infinite series identities, which may serve
as complementary results to those obtained recently by the second author [15]. Since there
are more summation formulae in this subsection, we exhibit them in groups according to
the similarity of their summands.

First, by considering the coefficients [a2]W1(a, b) and [ab]W1(a, b), we immediately
obtain two identities, where G is the Catalan constant as usual.

Theorem 8.

(a)
π2

8
=

∞

∑
n=1

2n

n2

(
2n
n

)−1
,

(b) 2G =
∞

∑
n=1

2n

n

(
2n
n

)−1
On.

Then we have closed formulae below for three independent series.

Theorem 9.

(a)
7
2

ζ(3)− πG =
∞

∑
n=1

2n

n2

(
2n
n

)−1
On,

(b) πG +
π2

8
ln 2 − 35

16
ζ(3) =

∞

∑
n=1

2n

n3

(
2n
n

)−1
,

(c)
7
16

ζ(3)− 2πG =
∞

∑
n=1

2n

n2

(
2n
n

)−1
Hn.

We remark that this theorem refines the following two identities conjectured by
Sun [16] (Equations (1.15) and (1.16)):

∞

∑
n=1

2n

n3

(
2n
n

)−1{
4 − 4nHn + 3nOn

}
= πG,

∞

∑
n=1

2n

n3

(
2n
n

)−1{
3nHn − nOn − 1

}
=

π2

4
ln 2.

Proof. The first identity (a) is easiest, which follows simply by extracting the coefficient
[a2b]W2(a, b). Instead, the second identity (b) is not deducible by hypergeometric series
approach. We offer the following integration proof.

Recalling the power series expansion

2 arcsin2 y =
∞

∑
n=1

(2y)2n

n2(2n
n )

,

we can manipulate the integrals

∞

∑
n=1

2n

n3

(
2n
n

)−1
= 4

∫ 1√
2

0

arcsin2 y
y

dy y → sin x

= 4
∫ π

4

0
x2 cot xdx = −π2

8
ln 2 − 8

∫ π
4

0
x ln(sin x)dx.
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By making use of the Fourier series expansion

ln(sin x) = − ln 2 −
∞

∑
k=1

cos(2kx)
k

, where 0 < x < π,

we can evaluate the integral

∫ π
4

0
x ln(sin x)dx = −π2

32
ln 2 −

∞

∑
k=1

{
x sin(2kx)

2k2 +
cos(2kx)

4k3

}∣∣∣∣ π
4

0

=
35ζ(3)

128
− π2 ln 2

32
− πG

8
.

By making substitution and simplifications, we find the identity (b).
Finally, the identity (c) follows from a linear combination of (a), (b) as well as that

displayed in Theorem 6 (a).

Now, we give three pairs of similar summation formulae. The first pair of series are
evaluated in closed form by extracting the coefficient [ab2]W2(a, b) and [a2b2]W3(a, b).

Theorem 10.

(a)
π3

8
=

∞

∑
n=1

2n

n

(
2n
n

)−1{
O⟨2⟩

n + O2
n

}
,

(b)
π4 − 64G2

16
=

∞

∑
n=1

2n

n2

(
2n
n

)−1{
O⟨2⟩

n + O2
n

}
.

The following two similar series are evaluated in closed form by extracting the coeffi-
cients [a3]W2(a, b) and [a4]W3(a, b).

Theorem 11.

(a)
π3

48
=

∞

∑
n=1

2n

n3

(
2n
n

)−1{
n2H⟨2⟩

n − 1
}

,

(b)
π4

384
=

∞

∑
n=1

2n

n4

(
2n
n

)−1{
n2H⟨2⟩

n − 1
}

.

By examining the coefficients [a5]W4(a, b) and [a6]W5(a, b), we establish two identities
as in the next theorem.

Theorem 12.

(a)
π5

1920
=

∞

∑
n=1

2n

n5

(
2n
n

)−1{
2 − 2n2H⟨2⟩

n + n4(H⟨2⟩
n )2 − n4H⟨4⟩

n

}
,

(b)
π6

23,040
=

∞

∑
n=1

2n

n6

(
2n
n

)−1{
2 − 2n2H⟨2⟩

n + n4(H⟨2⟩
n )2 − n4H⟨4⟩

n

}
.

Finally we record three seemingly unrelated series, which correspond to the coeffi-
cients [ab3]W3(a, b), [a3b]W3(a, b) and [a3b2]W4(a, b), respectively.
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Proposition 6.

(a)
3ζ4(

1
4 )− 3ζ4(

3
4 )

64
=

∞

∑
n=1

2n

n

(
2n
n

)−1{
O3

n + 2O⟨3⟩
n + 3OnO⟨2⟩

n

}
,

(b)
ζ4(

1
4 )− ζ4(

3
4 )− 8π2G − 56πζ(3)

32
=

∞

∑
n=1

2n

n3

(
2n
n

)−1{
On(1 − n2H⟨2⟩

n )
}

,

(c)
5π5 + 384πG2 − 2688Gζ(3)

192
=

∞

∑
n=1

2n

n3

(
2n
n

)−1{
(1 − n2H⟨2⟩

n )(O⟨2⟩
n + O2

n)
}

.

4. Concluding Comments

In this paper, we have presented forty closed-form evaluations for harmonic series
with binomial and/or multinomial coefficients, which shows that the “coefficient extraction
method” is indeed powerful. Compared with the existing literature on related research topics,
this gives a comprehensive and systematic treatment of the harmonic series with convergence
rate “1/2”. Except for a few known formulae explicitly specified, most of the displayed
identities are new, including eight remarkable ones conjectured by sun [16,17]. The authors
believe that these series may find potential applications in mathematics (particularly, number
theory [21] and combinatorial analysis [22,23]), physics (standing waves in strings [24]), and
computer sciences (analysis of algorithms [25]).
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