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Abstract: Biomedical sensing technology is developing at a tremendous pace and is expected to be-
come an effective clinical tool for the diagnosis and monitoring of human health. The development of
sensing devices has successfully transformed the specific sensor prototype designed in the laboratory
into a commercially feasible clinical disease detection device. Recently, sensing devices have been
accelerated and extended to various fields beyond disease detection, including the measurement of
gastrointestinal physiological parameters such as pH, VOC detection, small-molecule gas sensing,
and noninvasive screening of oral and lung diseases such as oral cancer, gastric cancer, and other
major diseases. In this review, the applications of sensors and electronic nose devices in the diagnosis
and monitoring of oral, pulmonary, and gastrointestinal diseases are reviewed, as well as the design
and application of sensor materials in disease markers and in situ detection. This article also intro-
duces the practical application of sensing devices in human disease detection, critically analyzes their
detection mechanisms and clinical utility, and discusses their future development in medicine. We
believe that this review will help readers, especially practitioners in the medical field, provide ideas
for the development of sensing devices.

Keywords: sensing technology; electronic nose; disease detection; oral; pulmonary; gastrointestinal

1. Introduction

Sensing technology has gained increasing attention in the biomedical field, especially
in the early detection of specific diseases, noninvasive screening, post-treatment evalua-
tion, and so on [1–4]. With the development of micro/nano fabrication technology, more
chemical and biological sensor materials have been developed and used in clinical dis-
ease detection [5–8]. The miniaturization and refinement of sensor devices have attracted
the attention of the healthcare industry. With the increase in clinical demand, the sensor
detection of disease markers combined with pattern recognition algorithms and analysis
software can enable the screening of some human diseases [9,10]. For example, the sudden
appearance of an oral odor may be related to periodontal disease [11]. The presence of
characteristic biomarkers in saliva may indicate the occurrence of oral cancer [12]. The
detection of volatile organic compounds (VOCs) in human exhaled breath can be used to
screen for gastric and intestinal diseases [13,14].

To date, medical biochemical detection and image detection equipment has been
continuously upgraded, and the diversification and precision of analysis can easily lead
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to high costs. In addition to the robustness and adaptability of the equipment, the most
common disease monitoring methods also need repeated screening steps. In order to
achieve miniaturization and convenient and rapid disease detection and screening, the
design of chemical and biological sensor technologies, as well as the development of
material compositions, remains a significant challenge. Hence, there is a demand for further
development of low-cost, simple-principle sensor designs to fulfill the requirements of high
precision, ultra-trace sensitivity, rapid response, and high specificity analysis needed for
large-scale clinical screening. Extensive, direct, and rapid detection of biological molecules
such as proteins, miRNAs, antibodies, enzymes, volatile organic compounds, volatile
sulfides, and small molecular gas markers is essential for the early detection of diseases.
The research and development of new nanomaterials can also promote the transformation
of surface acoustic wave (SAW) sensors, electrochemical sensors, biochemical sensors, and
small electronic nose instruments in clinical applications [15–20].

A series of sensors and sensing devices have been developed over the past decade
for non-invasive detection and diagnosis of oral, gastric, and intestinal-related diseases
in humans, such as halitosis, periodontitis, gastritis, gastric cancer, and inflammatory
bowel disease.

This review article aims to explore existing sensors and devices for non-invasive
screening and diagnosis of oral diseases, lung diseases, and gastrointestinal diseases,
evaluate their prospects in new disease diagnostic applications, and elucidate their potential
in different diseases. The development process, technical characteristics, and advantages of
sensors and devices corresponding to the field. Emphasis is placed on: (1) the analysis of
disease symptoms and their detection principles and markers; (2) the provision of sensor
devices and sensors related to disease diagnosis; (3) the comparison of the advantages and
disadvantages of existing detection methods; and (4) the summary of the challenges in
clinical application and the improvement in processing of current sensory devices.

2. Biochemical and Chemical Gas Sensors for the Detection of Oral Disease
2.1. Introduction to Oral Cancer

Oral cancer (OC) is one of the most common malignant tumors globally, with a high
incidence in many countries and regions. Smoking, alcohol consumption, betel nut chew-
ing [21], and viral infections [22] are the main contributing factors to oral cancer. Squamous
cell carcinoma is the most common type of oral cancer. However, early oral lesions and
carcinogenesis often present with mild symptoms, making detection challenging. Conse-
quently, patients may receive delayed treatment, and conventional medical methods may
struggle to diagnose, leading to disease progression and mortality [23].

Currently, oral cancer diagnosis primarily relies on various methods: clinical examina-
tions [24] including direct examination and palpation of the oral cavity to detect suspicious
lesions and ulcers; imaging examinations [25,26] such as X-rays, CT scans, and MRI to de-
termine tumor size, location, invasion depth, and metastasis; histological examinations [27]
involving biopsy to obtain lesion tissues for pathological examination, determining lesion
nature, type, and malignancy degree; immunohistochemistry, molecular biology examina-
tions, liquid biopsy [28], etc., are gradually becoming important diagnostic tools.

However, traditional diagnostic methods often involve invasive procedures such as
blood sampling or tissue biopsy, combined with imaging modalities to confirm diagnosis.
These processes are not only cumbersome but also prone to sample contamination, leading
to inaccurate diagnoses. Therefore, the development of non-invasive detection methods
and highly sensitive sensors has become a hot topic in early oral cancer detection. The
oral cavity, as a vital medium for exchanging substances with the external environment,
contains various biomarkers in saliva, including ions, proteins, enzymes, bacteria, etc. [29],
which provide information on oral and internal organ diseases. Furthermore, the metabolic
activity during oral lesions and carcinogenesis leads to the production of specific gas
biomarkers, making oral breath analysis a promising diagnostic method. Corresponding
saliva and breath biochemical sensors have been vigorously developed, offering more
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non-invasive, simple, and efficient detection results. Common oral cancer biomarkers
include proteins, miRNAs, VOCs, volatile sulfur compounds (VSCs), etc.

In summary, early diagnosis of oral cancer is crucial. Through the development of
advanced non-invasive detection methods and biochemical sensors, we hope to improve
the early diagnosis rate of oral cancer, thereby providing patients with more timely and
effective treatment, reducing patient suffering, and reducing societal costs.

2.2. Development of Biochemical Sensors for Oral Cancer Markers

Currently, relying solely on pathological examinations for cancer diagnosis has limita-
tions in fully detecting early tumor progression and molecular transformation. To address
this clinical need, Weigum et al. [30] developed a cell-based sensor to detect oral cancer
biomarkers, such as the epidermal growth factor receptor (EGFR), which is closely associ-
ated with the occurrence and invasive cancer phenotype of early oral tumors. The sensor
can capture and enrich cells with an embedded track-etched membrane (a micro-sieve) from
complex biological fluids or biopsy suspensions. The cell types were then determined by
immunofluorescence. These research findings support the cell sensor system as a suitable
platform for rapid detection of oral cancer biomarkers and the characterization of EGFR
overexpression in malignant oral tumors. Drawing from the aforementioned research,
researchers also proposed a nanobiosensor chip (NBC) technology [31] for analyzing oral
cancer biomarkers in exfoliated cytology specimens. This technology can monitor biochem-
ical and morphological changes associated with early oral tumor occurrence, providing
new possibilities for the early diagnosis of oral cancer.

Malhotra et al. [32] reported an ultra-sensitive electrochemical microarray technology
that, after optimization, can measure a four-protein panel of biomarkers in serum and
verify whether this protein panel can accurately diagnose oral cancer. The sensor consists
of eight microfluidic devices loaded with different antibodies in the channels and uses
400,000 HRP paramagnetic beads to capture proteins in saliva. The bead washing and
magnetic separation are used during the off-line capture to lower nonspecific binding, and
the actual sample never comes into contact with the measuring sensor array. Their study
of serum samples from 78 oral cancer patients and 49 control subjects demonstrated a
clinical sensitivity of 89% and a specificity of 98% for oral cancer detection, indicating high
diagnostic utility.

Furthermore, Shaikh et al. [33] reported the design and development of a novel pen-
shaped handheld device equipped with a miniature tactile sensor at the front end and
an integrated portable backend readout module for oral tissue palpation. By obtaining
quantitative information about the elasticity and abnormalities of oral lesions, this device
can eliminate the need for manual palpation by clinical practitioners. Due to its user-
friendliness in general clinical settings, the device holds promise for early detection and
improved prognosis of oral cancer.

The carriers of the above-mentioned sensor detection are cells or blood; hence, patients’
blood samples are required. The detection methods based on cells and blood have high
accuracy and a strong correlation with diseases, but they are invasive and require in vitro
culture. Samples are easily contaminated. The palpation method can easily cause the
patient to be uncooperative. Therefore, the development of corresponding sensors tends to
be non-invasive saliva sensors and exhaled breath sensors.

For different biomarkers, researchers have developed various sensors for the detection
and early screening of oral cancer. Test samples include oral cells, blood, saliva, and exhaled
breath. As shown in Figure 1, a recently developed biosensor for the detection of oral
cancer is described.
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pen-like tactile sensor for oral palpation [33]. 
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research on biochemical sensors for salivary biomarkers has significantly increased, as 

Figure 1. Biosensor for oral cancer detection. (a) The main steps of a nano-bio-chip sensor to
detect oral cells include cell capture, immunolabeling, and staining [31]. (b) Schematic diagram of
microfluidic immunoarray sensor detection, which can capture specific protein antibodies in serum
samples and perform ultrasensitive current detection [32]. (c) Structure and sensing mechanism of a
pen-like tactile sensor for oral palpation [33].

Saliva is easy to obtain and contains rich biological information about diseases; thus,
research on biochemical sensors for salivary biomarkers has significantly increased, as
shown in Figure 2. Tan et al. [34] studied an optical protein sensor for detecting cancer
biomarkers in saliva. The proposed ultra-sensitive optical protein sensor does not require
enzyme amplification and can detect IL-8 protein at a concentration of 4 fM in buffer
solution. Subsequently, saliva samples were collected to validate the sensor’s performance,
and the measurement results of 40 saliva samples were compared, half from oral cancer
patients and half from the control group. The sensor detection results highly matched those
of ELISA. Pitikultham et al. [35] proposed a novel self-assembly method based on rolling
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circle amplification (RCA) and graphene oxide (GO) for ultra-sensitive detection of miRNA
oral cancer biomarkers—miRNA21 and miRNA16—in saliva. The detection limits were
3.85 fM and 8.81 fM, respectively. The sensor could distinguish one and three mismatched
nucleotides in target miRNA, demonstrating high selectivity. Siciliano et al. [36] developed
a molecularly imprinted polymer (MIP)-based electrochemical sensor for TGF-β1 detection
and its application in liquid biopsy. Using TGF-β1 as the template molecule, a biomimetic
surface was synthesized via the polymerization of aniline monomers on a platinum elec-
trode, followed by detection using differential pulse voltammetry. The sensor could be used
for target molecule detection in spiked saliva samples, exhibiting high recovery rates and
potential for large-scale rapid screening for oral cancer diagnosis. Hu et al. [37] developed
a novel electrochemical biosensor based on Cu2+-doped AuNPs@ZIF-8 composite nano-
materials for label-free detection of ORAOV1 in saliva. The sensor demonstrated a wide
linear range of 0.1–104 pM and a low detection limit of 63 fM. Kumar et al. [38] developed
a ZrO2-RGO-based biosensing platform for non-invasive detection of oral cancer biomark-
ers. They uniformly decorated nanostructured zirconia on reduced graphene oxide and
coated electrodes using electrophoretic deposition. The material-modified electrochemical
electrodes exhibited excellent heterogeneous electron transfer properties, and the sensing
results were validated using the ELISA method. The sensor could sensitively detect the oral
cancer biomarker CYFRA-21-1 in saliva for a non-invasive early diagnosis of oral cancer.
Wang et al. [39] proposed a quantum dot nanofluorescent sensor based on microfluidics for
on-site visualization and detection of Cd2+ biochemical markers in saliva. Based on this,
they developed an AuNPs@HRP@FeMOF immunoscaffold with multiple functions, such
as antibody carrier, catalytic activity, and signal amplification, for detecting the oral cancer
biomarker Cyfra21-1. It could achieve highly sensitive detection of biomarkers without
requiring saliva samples, thereby distinguishing oral cancer patients. For salivary miRNA
biomarkers, Wang et al. designed a simple droplet microfluidic fluorescence sensor based
on the CRISPR-Cas13a system. The sensor achieves highly sensitive digital quantifica-
tion of individual untagged miRNA molecules without reverse transcription or sequence
amplification. Designing different Cas13 for different miRNA molecules holds promise
for combined miRNA detection to enhance its screening capabilities for oral cancer and
other diseases.
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Figure 2. Biochemical sensor for detecting oral cancer markers in saliva. (a) The fabrication process
and sensing mechanism of a DNA-modified graphene oxide sensor; samples are collected and
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amplified through the RCA reaction [35]. (b) The nanocomposite of AuNPs@ZIF-8/Cu-based con-
struction process of a label-free electrochemical sensor and DNA strand displacement reaction for
ORAOV 1 detection [37]. (c) Fabrication of TGF-β1 MIP on primary platinum microelectrodes
patterned on glass substrate receptors and detection of TGF-β1 in saliva samples through the fab-
ricated MIP electrochemical sensor [36]. (d) Schematic diagram of Cyfra21-1 detection based on
AuNPs@HRP@FeMOF immunoscaffold and FASA [40].

Research on detecting oral cancer through exhaled biomarkers has begun to develop
in recent years, but the corresponding achievements are relatively few compared to salivary
biomarkers. Korde et al. [41] found that nitric oxide (NO) plays a significant role in
various stages from the initiation to the progression of oral cancer, serving as a validating
biomarker to estimate the cancer risk in precancerous patients and smokers. Kwon et al. [42]
compared the exhaled breath of oral squamous cell carcinoma (OSCC) patients and healthy
controls using a gas chromatography system and found that the concentrations of hydrogen
sulfide (H2S) and methyl mercaptan (CH3SH) in the exhaled breath of the OSCC group
were significantly higher than those in the healthy group. Meanwhile, the total sulfur
concentration in the exhaled breath samples of the OSCC group was also higher, but there
was no significant difference in the ratio of CH3SH to H2S between the two groups. The
researchers constructed a new variable with an area under the curve (AUC) of 0.740, a
sensitivity of 68.0%, and a specificity of 72.0%, proving the feasibility of detecting VSCs in
exhaled breath as a non-invasive method for oral cancer diagnosis. Bouza et al. [43] collected
breath samples from 26 OSCC patients and 26 healthy controls and analyzed the samples
using solid-phase microextraction and gas chromatography-mass spectrometry. Multiple
VOCs were identified as breath markers for OSCC, and the linear discriminant analysis
(LDA) results showed clear clustering. Xie et al. [44] demonstrated accurate diagnosis
of oral cancer using surface-enhanced Raman scattering (SERS) of exhaled breath with
plasmonic metal-organic framework (MOF) nanoparticles based on artificial intelligence
(AI). These plasmonic MOF nanoparticles could capture the oral cancer biomarker methyl
mercaptan in exhaled breath, generating distinct SERS spectra. Finally, the spectra were
trained and classified using an artificial neural network (ANN) model with an accuracy
of 99%.

2.3. Halitosis and Periodontal Diseases

Halitosis is a disease in which the mouth emits an unpleasant odor [45] and is
relatively common. Liu et al. [46] surveyed 2000 people in China between the ages of
15 and 64 years old and found that the prevalence of halitosis was 27.5%. Yu et al. [47]
surveyed 372 young people in Dunedin, New Zealand, between the ages of 18 and 30 years
old and found that 31.2% of them had halitosis, which was characterized by the presence
of VSCs. Teshome et al. [48] recruited 661 subjects in northwestern Ethiopia and found the
prevalence of halitosis to be 44.2% upon diagnosis. Although there are some differences in
the prevalence of halitosis in these findings, they all indicate that halitosis is a relatively
common phenomenon. Halitosis can affect people’s normal social lives and even have a
serious psychological impact on the patient. Halitosis can be categorized into the following
three types: true halitosis, pseudo-halitosis, and halitophobia [49]. True halitosis refers
to a noticeable oral odor that adversely affects a person’s life and may require medical
treatment; pseudo-halitosis refers to the patient’s belief that he or she has halitosis but no
one else can smell it; and halitophobia is a condition in which the patient insists that he or
she suffers from halitosis, even after treatment for either true or pseudo-halitosis and after
the patient is clinically certified as not having halitosis [49].

True halitosis can be categorized into orogenic halitosis (caused by oral diseases) and
non-oral halitosis (caused by extra-oral diseases), and some studies have confirmed that
80–90% of the causes of true halitosis originate from oral diseases [50]. This article focuses
on orogenic halitosis. Researchers have long been interested in the question of whether
there is a relationship between periodontal disease and halitosis, and more studies have
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been conducted to show a strong relationship between orogenic halitosis and periodontal
disease [51]. In 2023, Lee et al. [52] investigated the incidence of halitosis in 104 participants
(33 healthy controls, 43 patients with gingivitis, and 28 patients with periodontitis) using gas
chromatography (GC) to detect representative VSCs in exhaled breath, namely hydrogen
sulfide (H2S) and methyl mercaptan (CH3SH). The prevalence of halitosis was found to be
significantly higher in patients with periodontal disease than in healthy controls (p = 0.005),
whereas 53.1% of participants with halitosis had gingivitis, 37.5% had periodontitis, and
90.6% had periodontal disease. The relationship between halitosis and periodontal disease
is mainly established through a number of microorganisms that can produce VSCs, and
the moist environment and temperature of about 37 ◦C in the oral cavity are very suitable
for bacterial reproduction as well as efficient metabolism of sulfur-containing amino acids
(e.g., cysteine, methionine, etc.), which leads to the production of VSCs [53]. The main
components of oral odor in patients with halitosis are VSCs, of which H2S, CH3SH, and a
relatively small amount of dimethyl sulfide account for 90% of the VSCs in halitosis [11].
H2S and CH3SH contribute to the penetration of lipopolysaccharides into the epithelium of
the gingiva, which can lead to inflammation [54]. Therefore, VSCs (mainly H2S and CH3SH)
can be used as biomarkers for the early diagnosis of bad breath and periodontal disease.

2.4. Chemical Gas Sensors for the Early Diagnosis of Orogenic Halitosis and Periodontal Diseases

Continuous monitoring of VSCs in human breath is important for oral disease pre-
vention as well as the early diagnosis of related oral diseases. However, fabricating gas
sensors with high selectivity and sensitivity remains a challenge. Based on the literature
research, it has been found that in recent years, the main focus on detecting VSCs in human
exhaled gas has been on H2S and CH3SH, especially H2S. In Table 1, we list the chemical
gas sensors that have been used to detect H2S or CH3SH in recent years.

In 2021, Shin et al. [55] proposed a chemoresistive-based H2S sensor, which offers
the possibility of direct, reliable, and rapid detection of H2S in real human exhaled gases.
Shin et al. modulated the gas-sensing properties of WO3 nanofibers (NFs) by adding
sodium chloride and platinum nanoparticles (Pt NPs) during the electrostatic spinning
process (Figure 3A) to improve their sensitivity and selectivity for the detection of H2S.
The improved gas-sensing performance is attributed to the electronic sensitization effect of
the Na2W4O13 phase and the chemical sensitization effect (spillover effect) of the Pt NPs.
They tested 80 patients using a homemade gas sensing system, compared the results with
actual H2S concentrations measured by an OralChroma gas chromatography system, and
found an accuracy of 86.3%, demonstrating that the sensitized material has the potential for
real-time human respiratory monitoring for the prevention and early diagnosis of halitosis
and oral diseases.
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Table 1. Sensors for detecting oral diseases.

Type Principle Disease Target Sensing Materials Working
Temperature (◦C)

Response (Rair/Rgas or
Rgas/Rair) Sensitivity LOD Ref.

gas sensor

Chemoresistive halitosis H2S Na2Pt-WO3 NFs 350 780.8 (1 ppm) / / [55]
Chemoresistive halitosis H2S SnO2/rGO/PANI RT 23.9 (0.2 ppm) / 50 ppb [56]
Chemoresistive halitosis H2S MoSe2 200 18.57 (50 ppb) 5.57%/ppm 6.73 ppb [57]
Chemoresistive halitosis H2S Pt-SnO2 250 10.8 (1 ppm) / / [58]
Chemoresistive halitosis H2S WS2 200 2.3 (1 ppm) 0.043/ppm 20 ppb [59]

Chemoresistive halitosis H2S,CH3SH CuO/CuFe2O4
200 (H2S);

400 (CH3CH4)
800 (5 ppm H2S);

32 (5 ppm CH3SH) / / [60]

Chemoresistive halitosis CH3SH Au NPs/ZnO 250 4.99 (50 ppb) / / [61]
Chemoresistive halitosis H2S Au-doped SnO2 nanofibers 370 121.05 (100 ppm) / 550 ppb [62]
Chemoresistive halitosis H2S Lead(II) acetate [Pb(Ac)2] RT / / 400 ppb [63]
Chemoresistive halitosis H2S alkaline bismuth hydroxide Bi(OH)3 or its derivatives RT / / 30 ppb [64]
Electrochemical halitosis H2S a nanostructured Nafion RT / 0.65 nA/ppb 75 ppb [65]

Liquid sensor

Electrochemical oral cancer cyfra21-1 CysA-GA/AuE RT / / 2.5 ng/mL [66]
Electrochemical oral cancer cyfra21-1 BSA/anti-CYFRA-21-1/APTES/ZrO2–RGO/ITO RT / 0.756 µA mL/ng 2 ng/mL [38]
Electrochemical oral cancer IL-8 IL8/anti-IL8/AuNPs-rGO/ITO RT / / 72.73 pg/mL [67]
Electrochemical oral cancer CIP2A 3D high-aspect-ratio vertically aligned carbon nanotube arrays RT / / 0.24 pg/mL [68]

SPR periodontitis MMP-9 anti-MMP-9 onto the CMD chip surface RT / / 8 pg/mL [69]
SERS oral cancer DNA Nt.BstNBI/AgNCs/HAuE RT / / 3.1 fM [70]
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In 2022, in order to perform early diagnosis of periodontitis, Bae et al. [61] designed an
Au NPs-ZnO hybrid gas sensor capable of selectively and accurately differentiating ppb-
level CH3SH in VSCs, and the limit of detection is 50 ppb (Figure 3B). ZnO has excellent
gas-sensing properties and has great potential for application in the field of chemically
resistive gas sensors, and the gas-sensing performance can be further improved by the
surface design of the synergistic hybridization with Au NPs, which can simultaneously
improve the selectivity of CH3SH and the gas response of ppb-level VSC gases. Bae
et al. experimentally demonstrated that this sensor can reliably detect (due to its high
selectivity and reproducibility) low concentrations of CH3SH and can be used for exhaled
gas monitoring in periodontal patients.

Research on electronic noses for breath-based halitosis detection and disease screening
has gained high popularity internationally. H2S and CH3SH are highly reactive and have
extremely low concentrations in human exhaled gases. Zhang et al. [71] collected breath
samples using a chemically stable Tedlar sampling bag and analyzed VSCs in exhaled gas
qualitatively and quantitatively based on gaschromatography-mass spectrometry (GC-MS)
technology using single-ion detection scanning mode and an external standard method.
They established a standardized methodology and procedure for breath sample collection
as well as the detection of VSCs in the oral cavity by GC-MS, as shown in Figure 4A.
Based on the results of GC-MS measurements, electrochemical sensors with the required
range, sensitivity, resolution, and specificity were selected as the core detection elements
of the e-nose, and the gas chamber and gas circuit structure of the sensor array were
designed on this basis to develop an e-nose system for the detection of halitosis markers
and disease screening based on the exhaled gas (Figure 4B). The basic performance of
the e-nose was tested, and the results showed that the e-nose had excellent repeatability
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and linearity and good detection limits of 39 ppb and 48 ppb for hydrogen sulfide and
methyl mercaptan, respectively. A one-dimensional convolutional neural network-based
quantitative algorithm model for VSCs was also constructed, and the results showed that
this e-nose discriminated between patients with orofacial diseases and healthy individuals
with a sensitivity of 87.5%, a specificity of 72.7%, and an overall accuracy of 81.5%.
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3. Surface Acoustic Wave Sensor (SAW) for Detecting Lung Diseases
3.1. Introduction to Lung Diseases

Lung diseases refer to various conditions affecting the structure and function of the
lungs [72]. These diseases can include lung infections [73] (such as pneumonia and tuber-
culosis), chronic obstructive pulmonary disease [74] (COPD), asthma [75], lung tumors [76]
(such as lung cancer), pulmonary hypertension [77], pulmonary embolism [78], and others.
Lung diseases may result in symptoms such as difficulty breathing, coughing, phlegm
production, chest pain, and fatigue, among others, and may significantly impact the quality
of life for affected individuals [79]. Early diagnosis and treatment are crucial in manag-
ing the progression of lung diseases [80]. Early screening for lung diseases can help in
detecting conditions at their nascent stages when they are more amenable to treatment [81].
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Screening methods may include imaging tests like chest X-rays or CT scans, pulmonary
function tests, and other diagnostic procedures [82]. Additionally, research has shown that
biomarker detection in biological samples such as blood, exhaled breath, condensate, or
saliva can provide valuable insights into lung disease pathology and aid in early detec-
tion [83]. These biomarkers can include specific proteins, genetic markers, or metabolic
byproducts associated with various lung conditions [84].

3.2. Surface Acoustic Wave Sensor

The surface acoustic wave (SAW) sensor is a new type of microacoustic sensor de-
veloped in recent years and has been widely used in the field of biosensing, especially
for early screening of lung diseases. The SAW sensor is based on the principle of the
piezoelectric effect and is sensitive to surface mass deposits, which affect the propagation
of the acoustic wave. The measured information can be quickly converted into electrical
signal output by changes in the frequency, phase, or amplitude of the surface acoustic wave
(Figure 5A) [85]. Therefore, the SAW sensor has the characteristics of real-time information
detection. Besides, the SAW sensor can concentrate the signal on the surface of the substrate
and operate at high frequencies. It has strong compatibility with integrated circuits and has
the advantages of miniaturization, integration, passive, low cost, low power consumption,
and direct frequency signal output.

SAW sensors can operate on either Rayleigh or shear-level (SH) waves, and different
types of surface acoustic waves have different characteristics. The Rayleigh wave is one
of the most widely used surface acoustic waves and is often used for gas detection. The
earliest surface acoustic wave sensors used to identify VOCs in the exhaled gas of lung
cancer patients were polymer-coated SAW sensors with a frequency change response,
used in conjunction with data processing for ANN algorithms [86]. Since the SAW sensor
itself is not selective for VOCs in exhaled gas, gas chromatography separation technology
was introduced to separate VOCs with different boiling points and polarities. Gases with
different physical and chemical properties can quickly condense on the surface of the SAW
sensor in sequence, causing the sensor’s resonant frequency to shift. Such a system can
differentiate between hundreds of different gases.

SAW sensors, utilized for the detection of diseases, typically operate in conjunction
with other components rather than being employed as standalone devices. As shown in
Figure 5B, Chen et al. further proposed using the imaging recognition method to identify
11 VOCs in the exhales gas of lung cancer patients based on a kind of virtual array of SAW
gas sensors [87]. Similarly, Wang and colleagues described a Rayleigh wave-type SAW
gas sensor with a gas chromatography interface to detect lung cancer-specific respiratory
VOCs [88–90]. In 2011, Wang et al. described an uncoated surface acoustic wave resonator
(SAWR) sensor, which has higher sensitivity and stability, lower noise, a longer service life,
and shows great potential for breath diagnosis [91]. On the basis of the previous results,
Wang’s team proposed to combine MOS sensors and SAW sensors (Figure 5C) to build
a hybrid lung cancer diagnosis electronic nose (HENS). The MOS gas sensor is used to
detect low-molecular-weight VOCs, and the SAW sensor is used to detect higher-molecular-
weight VOCs. Compared with a single sensor, such a combination can detect more VOCs
on the one hand and, on the other hand, has higher sensitivity, which is more conducive
to improving the accuracy of the later algorithm model. They tested the breath samples
of 42 healthy people and 47 lung cancer patients and obtained a lung cancer screening
sensitivity of 93.62% and a specificity of 83.37% [92]. In 2016, a novel detecting device based
on an oxidized graphene SAW gas sensor was presented to detect a lung cancer-related
biomarker, decane, in parts per million (ppm) concentrations [93]. In the aadvancement
of high-sensitivity SAW sensors, the selection of vapor-sensitive materials is a critical and
meticulously considered aspect. A considerable amount of research has been carried out
to investigate sensitive materials in SAW sensors for the detection of VOCs, which are
concurrently regarded as potential biomarkers.
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3.3. Detection of Lung Disease Markers

Horizontal shear wave-type SAW sensors are often used when detecting liquid sam-
ples because Rayleigh waves are easily dissipated in the liquid on the sensing surface.
Among them, the Love Wave sensor further improves the sensitivity of detecting disease
markers in liquid samples by adding a waveguide layer above the interdigital electrodes to
gather sound wave energy (Figure 6A). In addition, the interdigital electrodes can be iso-
lated from the liquid sample through the waveguide layer, making them less susceptible to
corrosion [94]. Zhang et al. developed the Love-SAW immunosensor (Figure 6B) to detect car-
cinoembryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma
antigen (SCC) in exhaled breath condensate (EBC) collected from 17 patients with lung
cancer and 13 healthy volunteers [95]. As shown in Figure 6C, the conventional sandwich
immunoassay is employed, and the quality signal is double amplified by modifying AuNPs
on the detecting antibody (Ab2) and adding gold staining solution. The sensitivity of the
Love-SAW sensor to detect CEA, SCC, and NSE was 0.4798◦/(ng/mL), 0.3941◦/(ng/mL),
and 1.1876◦/(ng/mL), and the detection limits were 0.967 ng/mL, 1.598 ng/mL, and
0.663 ng/mL, respectively [96]. Later, similar studies achieved a minimum LOD of as
low as 37 pg/mL for CEA detection [97]. In 2017, Li et al. modified the antibodies di-
rectly on the silicon oxide waveguide layer rather than through the gold layer (Figure 6D),
reducing the influence of the mass deposition of the gold layer and thus achieving the
lowest detection limit of CEA at present [98]. In 2020, Zou et al. tried to use aptamers to
detect the carcinoembryonic antibody CEA in the exhaled gas condensate of lung cancer
patients using a similar approach to the previous system, but obtained the limit of detec-
tion of CEA at about 1 ng/mL [99]. As shown in Figure 6E, Jandas et al. developed a
SAW-based biosensor for the real-time label-free detection of CEA using a novel prepa-
ration method of anti-CEA SAM bioreceptor, obtaining the limit of detection of CEA at
0.31 ng/mL [100]. In addition, they used AuNPs-MoS2-rGO nanocluster-doped polyimide
nanocomposite, which further lowered the limit of detection of CEA to 0.084 ng/mL [101],
but still higher than the detection limit of the sensor without the gold layer. In 2022, Zhang
et al. engineered a novel apparatus utilizing a Love Wave biosensor, with the investigation
noting that this instrument facilitates multi-channel expedited detection of a spectrum of
biomarkers associated with bacterial pneumonias through the analysis of human exhaled
breath condensate (EBCs). The sensor integrated within the apparatus demonstrates a
commendable sensitivity towards C-reactive protein (CRP) [102].
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Figure 6. (A) Love Wave sensor chip [95]. (B) Pictures of the instrumental platform for integration of
the Love Wave immunosensor [95]. (C) Schematic diagram of the immunoassay process using gold
staining solution to amplify the signal [95]. (D) The Love Wave chip without the top gold layer and
processing steps of surface modification [98]. (E) Love-mode SAW biosensor for CEA detection using
a self−assembled monolayer bioreceptor and AuNPs−MoS2−rGO [100,101].

4. Sensors and an Electronic Nose for Detecting Gastrointestinal Diseases
4.1. Gastrointestinal Diseases

Gastrointestinal (GI) diseases have a high prevalence in China. The main manifes-
tations of gastrointestinal diseases are abdominal distension, diarrhea, abdominal pain,
gastrointestinal bleeding, malabsorption, and weight loss. Nowadays, the incidence of
gastrointestinal diseases is getting higher and higher with the change of lifestyle and the
acceleration of the pace of life, and gastrointestinal diseases often recur. Existing methods
of diagnosing many gastrointestinal diseases rely primarily on invasive, expensive, and
time-consuming techniques such as colonoscopy and endoscopy [103].
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4.2. Gastric Disease Sensing and Detection

Gastric cancer is the fifth most commonly diagnosed cancer in the world, and it is
more common in men than in women. Unclear clinical symptoms and a lack of clear risk
factors often delay disease diagnosis, leading to poor prognosis and high recurrence rates.
Xu et al. [104] have utilized 14 nanomaterial sensor arrays to detect 130 cases of gastric
disease. The sensors include a gold nanoparticle layer with 11 different organic ligands
and a single-walled carbon nanotube layer covered with 4 different organic covering layers,
combined with a statistical pattern recognition algorithm. Patient (37 GC, 32 ulcers, and
61 less severe conditions) breath samples were characterized, and three DFA models were
developed, achieving excellent discrimination between subpopulations. Amal et al. [105]
collected 968 respiratory samples from 484 patients using GCMS, cross-reaction nanoarrays,
and pattern recognition methods for two different analyses. Each sensor was composed of
gold nanoparticles (GNPs) and single-walled carbon nanotubes (SWCNTs), with different
organic thin films (ligands) covering the surface (Figure 7). In different comparisons,
eight significant volatile organic compounds (p < 0.017) were detected in exhaled gas.
Nanoarray analysis can distinguish GC patients from the control group with 73% sensitivity,
98% specificity, and 92% accuracy. Sharifi et al. [106] developed an electronic nose device
containing eight fluorescent metal nanoclusters (NCs) sensing elements fixed on a paper
substrate to detect VOCs released by the human body. After entering the headspace of
the tissue, the emitted VOC reacts with the NC, causing the fluorescence intensity of the
NC to change. The sensor array was able to differentiate between fresh lung cancer tissue
and normal tissue in less than 4 h with 95% accuracy. Suter et al. [107] designed a sensor
component tailored for the detection of gastric fluid, incorporating a hydrogel matrix
interspersed with carbonate salts to elicit a distinct and uncomplicated leak detection
response. Additionally, the sensor has been integrated into a bilayer patch configuration,
thereby optimizing its suitability for in situ diagnostic applications.
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4.3. Detection of Intestinal Diseases

The prevalence of intestinal disorders has persistently remained elevated and is a
subject of considerable focus among medical practitioners. Within the realm of diagnostic
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and therapeutic approaches to intestinal diseases, the importance of early intervention
cannot be overstated [108]. Gas chromatography equipment is often used for clinical, non-
invasive screening of intestinal diseases. The development of electronic nose equipment for
human exhaled gas detection and sensors for gas detection are increasingly used in the early
screening of intestinal diseases. Shepherd et al. [109] used headspace gas chromatography
and a single metal oxide sensor coupled with artificial neural network software for stool
analysis. They detected a total of 182 patient stool samples for VOCs, analyzed them
with an artificial neural network, and successfully distinguished irritable bowel syndrome
(IBS) patients from those with inflammatory bowel disease (IBD). For the patient sample,
the sensitivity and specificity were 76% and 88%, respectively, and the overall average
prediction accuracy was 76%. Chan et al. [110] conducted a systematic review of the use
of fecal headspace analysis to assess gastrointestinal diseases, including celiac disease,
nonalcoholic fatty liver disease, necrotizing enterocolitis, and pelvic radiation toxicity.
Krishnamoorthy et al. [111] reviewed existing literature on the impact of mechanical
bowel preparation on the production and measurement of volatile organic compounds.
Two studies of 134 patients found no difference in the respiratory VOC spectrum measured
after intestinal preparation. Another study found that after intestinal preparation in
61 patients, the level of respiratory acetone increased, but other compounds were not
affected. Another study showed changes in the urine VOC spectrum, indicating limited
data on the impact of intestinal preparation on VOC generation in the body. Dalis et al. [112]
believed that dysbiosis or adverse changes in the composition of the organism appear
before the clinical symptoms of various gastrointestinal diseases appear. Research into
the diagnosis of gastrointestinal disease has led to a shift toward non-invasive methods
for gastrointestinal screening, including chemical detection tests that measure changes in
VOCs. Volatile organic compounds are by-products of bacterial metabolism that contribute
to the distinctive odor of stool. VOCs assessment can be used as an early screening tool for
discovering gastrointestinal diseases.

Sensor materials can help accurately diagnose the stage and status of lesions through
accurate localization of intestinal lesions and sensitive analysis of disease marker levels,
thereby avoiding delays in treatment. Westenbrink et al. [113] developed a new electronic
nose instrument for measuring gaseous/volatile components of urine headspace based on
an array of 13 commercially available electrochemical and optical sensors. A set of 92 urine
samples from colorectal cancer (CRC), IBS patients, and controls were arranged in an exper-
imental setup and run through a machine. Features were extracted from the response data
and used in LDA plots, including the full three disease classifications, as well as features
focused on distinguishing CRC from IBS, showing 78% sensitivity and 79% specificity
for CRC. Yen et al. [114] proposed a new method and device for detecting hemoglobin
in a simulated gastrointestinal environment using a GaAs-based sensor, which is termed
a molecular-controlled semiconductor resistor (MOCSER). A surface protective layer of
polymeric thiosilanes was deposited on top of the device to obtain a chemically passivating
coating that prevents surface etching and achieves biocompatibility (Figure 8). Selective
device functionalization was achieved by the subsequent adsorption of Hb antibodies on
top of the protective layer. In vitro tests show that the sensor can identify fast-state simu-
lated intestinal fluid when the Hb concentration is greater than 10 µg/mL. Furthermore,
the sensor was able to detect Hb in pig intestinal fluid with the same sensitivity.

Peters et al. [115] developed an electronic nose device. In their investigation, the
researchers performed analyses on a cohort of 402 patient samples, yielding a diagnostic
sensitivity of 91% and a specificity of 74%. These results are adequate for differentiating pa-
tients with Barrett’s esophagus (BO). Moreover, the existence of proton pump inhibitors, hi-
atal hernia, and gastroesophageal reflux did not alter the differentiation efficacy, signifying
that the sensor possesses considerable specificity and sensitivity. Tiele et al. [116] employed
a self-constructed electronic nose in synergy with a commercial gas chromatography-ion
mobility spectrometer (GC-IMS) to analyze and effectively identify VOCs in exhaled breath
and biomarkers in feces, including fecal calprotectin (FCP). Additionally, this combined
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analytical approach was successfully applied to the detection of IBD, Crohn’s disease (CD),
and ulcerative colitis (UC). Brinza et al. [117] proposed a novel dual-function sensor capable
of detecting both hydrogen and ammonia gases. The sensor incorporates gas-sensitive
materials at the nanoscale, which have been treated with annealing and initiated chemical
vapor deposition (iCVD) techniques. This enables the sensor to respond to ammonia at
room temperature, while at elevated detection temperatures, it exhibits a selective response
to hydrogen gas (as depicted in Figure 9). This unique property of the sensor suggests
its potential utility in the detection of gases within the human gastrointestinal system for
future applications. Neetha et al. [118] prepared a CuO-Chi nanocomposite material and
investigated its sensitivity to hydrogen gas by adjusting the proportional composition of the
constituent materials. Utilizing a co-precipitation-probe separation technique, six distinct
compositions were synthesized. It was observed that a 1:1 ratio of CuO to Chi enabled the
detection of hydrogen gas at a concentration of 10 ppm at room temperature, with a detec-
tion limit as low as 0.07 ppm. These findings suggest that the material could be applied
to the detection of gases associated with gastrointestinal diseases. Vasquez et al. [119] de-
signed a chemical gas sensor based on carbon nanotubes (CNTs) coated with a thin film of
polydimethylsiloxane (PDMS), which is capable of continuous gas monitoring. The sensor
was demonstrated to operate continuously for 16 h under anaerobic, high-humidity, and
acidic conditions, making this design suitable for continuous monitoring in the complex
environment of the intestine.
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4.4. Ingestible Sensors

Ingestible sensing capsules are quickly becoming a key technology. Such ingestible
devices are non-invasive and, therefore, very attractive to consumers. Ingestible sensors
provide the opportunity to collect images and monitor luminal fluid and each segment of
the intestinal tract. The ability of the contents, including electrolytes, enzymes, metabolites,
hormones, and microbial communities, to gain information about an individual’s function
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and health through key intestinal biomarkers [120]. Smart capsules successfully trans-
formed endoscopic capsules from laboratory prototypes into commercially viable clinical
devices, and recently, this field has accelerated and expanded into various areas beyond
imaging, including measurement of intestinal physiological parameters such as tempera-
ture, pH value, and pressure and gas sensing, as well as sampling devices developed to
better understand gut health [121].

Kalantar-Zadeh et al. [122] reported human trials of a digestible electronic capsule
that can sense oxygen, hydrogen, and carbon dioxide. The capsules use a combination
of thermally conductive and semiconductor sensors, and their selectivity and sensitivity
to different gases are controlled by adjusting the sensor’s heating element (Figure 10A).
By changing the intake of dietary fiber to regulate the fermentation activity of intestinal
microorganisms, the gas distribution of the subjects was obtained. It was found that
changes in fiber intake were related to different small-intestinal and colon transit times and
intestinal fermentation. Cheng et al. [123] reported a wireless ingestible capsule system
for monitoring gastrointestinal pH levels (Figure 10B). They electroplated iridium oxide
onto screen-printed electrodes (SPEs) and designed the capsule’s detection circuit using
rigid-flex printed circuit board (RFPCB) technology. The capsule is sensitive to H+, exhibits
good biocompatibility, and is suitable for in vivo monitoring. The entire capsule system,
with dimensions of approximately 14.5 mm in diameter and 26 mm in height, conforms to
the size requirements for in vivo gastrointestinal detection and can be used for real-time
monitoring of the intestinal pH environment. Huang et al. [124] developed a pH-responsive
ratiometric sensor. During the detection process, they utilized this sensor as a contrast
agent, with PAI as an integrated technology, successfully measuring functional parameters
of the gastrointestinal tract in tests. The sensor demonstrated high sensitivity, repeatability,
and specificity, with a rapid response time to pH changes of up to 0.6 s, and it could
operate continuously for 24 h. Using this sensor, they successfully observed significant
disorders in motility and decreases in pH in patients with gastric and duodenal ulcers.
De la Paz et al. [125] reported an ingestible sensing system for monitoring metabolites in
the small intestine (Figure 10C). The sensing system is self-powered, integrating a glucose
biofuel cell and biosensors into the circuitry. By utilizing a power-to-frequency conversion
scheme with magnetic human-body communication, the system enables real-time in vivo
power distribution from internal fuel sources and wireless detection of physiological
characteristics within the gastrointestinal tract.
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5. Conclusions and Outlook

In conclusion, through research on saliva and breath biomarkers, the early diagnosis
technology for oral cancer is continuously improving and expanding. In the future, further
research into oral cancer biomarkers and the development of more precise and reliable
diagnostic technologies will provide solid support for the early screening and treatment of
oral cancer. And with the development of these novel biosensors and detection technologies,
it can offer more convenient and accurate methods for early screening and diagnosis of
oral cancer, promising to play a significant role in clinical practice by providing oral cancer
patients with earlier treatment and intervention opportunities, thereby improving treatment
success rates and patient survival rates. Early diagnosis of halitosis and periodontal disease
through the detection of exhaled gases is non-invasive, safe, convenient, and fast, and is
ideal for assisting physicians in diagnosis or for patient self-examination. However, most
of the chemical gas sensors used for early detection are limited to laboratory testing and
have not been formally applied in clinical practice. The composition of human exhaled
gas is very complex, with many interfering factors, which makes it difficult to apply the
sensor to actual clinical samples, and the accuracy, stability, and sensitivity of the sensor
still need to be improved. In future research, the lower detection limit of the sensor can be
further reduced, and the sensitivity can be improved by improving the sensitive material
and signal amplification to meet the needs of practical applications.

Surface acoustic wave sensors provide a fast, reliable, and highly sensitive detection
method for the detection of lung disease markers. However, in order to achieve commer-
cialization and rapid and accurate detection of clinical samples, it is necessary to further
combine the rapidly developing MEMS manufacturing technology, nanomaterials, microflu-
idic chips, and electronic information technology to improve the detection performance of
surface acoustic wave sensors while optimizing and standardizing the sensor preparation
process and marker detection procedures. There is still huge room for development in
some respects, such as surface modification, miniaturization and arraying of sensing units,
portable systems with automated sample injection, flexible and wearable devices, etc.

Due to the length and particularity of the gastrointestinal tract, different types of
diseases in different parts of the body often have different clinical detection methods.
However, most detection methods are invasive. Patients are more willing to accept non-
invasive screening. Currently, gastrointestinal disease screening, breath testing, and early
screening are increasingly common. For stomach diseases, there is currently no perfect
screening tool for gastric cancer and related precancerous lesions that can be widely used in
different regions with different gastric cancer incidence rates around the world. Performing
a Helicobacter pylori breath test can achieve early prevention. Currently, the main methods
for detecting intestinal diseases include endoscopy, breath testing, stool examination,
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blood testing, etc. Breath testing is the most convenient. However, due to the complex
composition of human exhaled gas and the large variability in samples, the correlation
between diseases is not high yet. The most representative one is the detection of small
intestinal bacterial overgrowth. Breath testing is currently widely used, but there is a lack of
decisive markers and concentration correlations, and there is no unified international gold
standard. As a non-invasive alternative to endoscopes, electronic capsules can achieve non-
invasive in situ detection. However, the retention of the capsule is currently uncontrollable,
and the detection range cannot be fully covered. There are also problems, such as battery life,
and the clinical use coverage is not yet very optimistic. In the future, the miniaturization
and precision of sensing devices, the development of specific and sensitive materials,
and the emergence of high-precision integrated electronic noses will promote the further
development of non-invasive and rapid screening of gastrointestinal diseases.

In the past decade, flexible sensing devices and wearable sensing devices have received
increasing attention for disease detection. Many of these head wearable sensor devices are
used to detect neurological/mental health-related diseases and are also used as flexible
wearable sensor devices for ocular disease detection. In future research, flexible wearable
devices will also be widely used in the detection of oral, lung, and gastrointestinal diseases.
Miniaturized and integrated wearable sensing devices will help detect various human body
data in real time, opening up new research directions for early screening and prevention of
diseases, continuous home testing, and bedside testing.
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