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Abstract: This study focuses on addressing the challenges associated with doxorubicin (DOX), an
anthracycline chemotherapeutic widely used in cancer treatment. Despite its efficacy, DOX is linked
to severe side effects that limit its clinical applications. Novel pharmaceutical formulations aim
to mitigate these issues, providing better safety profiles. The development of these formulations
requires analytical methods that can accurately and quickly quantify DOX. A cost-effective and
portable electrochemical sensor for DOX detection was developed utilizing in-house printed carbon
electrodes decorated with gold nanoparticles. DOX was detected using differential pulse voltam-
metry. The sensor demonstrated an accurate quantification of DOX from novel pharmaceutical
formulations and serum, presenting a dynamic range of 1 to 500 µg/mL and a low detection limit
of 0.3 µg/mL. The method, successfully applied to characterize DOX-loaded nanosomes, offers a
valuable alternative in the early stages of formulation development, reducing costs and saving time,
while maintaining accuracy.

Keywords: doxorubicin; nanosomes; in-house produced electrodes; gold nanoparticles; electrochemical
detection

1. Introduction

Doxorubicin (DOX) is an anthracycline chemotherapeutic, used alone or in combina-
tion, in the treatment of cancers of the breast, bladder, ovary and bone, as well as in the
treatment of different forms of leukemia and lymphomas [1,2]. Despite its high efficacy,
DOX is associated with numerous side effects that are typical of chemotherapy, such as
nausea, vomiting, hair loss and decreased immunity. Additionally, it presents a distinctive
adverse effect—cardiotoxicity—which can greatly limit its use in the clinical setting. DOX
is associated with both acute and chronic cardiotoxicity, with acute toxicity manifesting in
the first days after treatment initiation in approximately 11% of patients [3]. Despite being
less frequent, chronic cardiotoxicity is irreversible and can be associated with progression
to cardiomyopathy or heart failure [3,4].

Because DOX is indispensable in certain chemotherapy regimens, efforts are being
made to reduce or postpone the onset of side effects by developing novel DOX pharma-
ceutical formulations, such as liposomes [5–10]. Two types of liposomal formulations have
already been approved and are available on the market—non-PEGylated (Myocet®) or PE-
Gylated (Doxil®, Lipodox®, Caelyx®) liposomes containing DOX [11]. These formulations
provide better safety profiles compared to non-liposomal DOX, allowing for extended treat-
ment durations. However, currently available liposomal formulations exhibit no increase
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in efficacy compared to DOX alone [11,12], demonstrating the need for ongoing research in
the development of novel pharmaceutical formulations such as niosomes [13,14], polymeric
nanoparticles [15–19] or gels [20], dendrimers [21–23] and magnetic nanocarriers [24–27].
A simple ScienceDirect search using the terms “doxorubicin” and “formulation” is an
eloquent example of the increasing interest in this field in the last 10 years (Figure 1).
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In pharmaceutical formulation development, rigorous testing is essential to ensure,
among other things, the proper loading and release of drugs from carriers. This is espe-
cially important in the optimization stage, where many different parameters are tested and
changed to ensure the development of the optimal formulation. In this step, numerous tests
need to be carried out to determine the amount of loaded/released substance. In the case
of DOX formulations, the most commonly applied quantification methods are spectropho-
tometric methods [17,18,20,21,25–27] or spectrofluorimetry [19]. Other techniques, such as
chromatographic methods [28–33], have also been developed for the quantification of DOX.
These methods, while highly accurate, require large volumes of samples, which might
not always be available in the early stages of pharmaceutical formulation development.
Moreover, they are costly and can require specialized personnel.

Electrochemical methods have emerged as accurate, rapid and portable alternatives to
the conventional methods used in drug analysis. The functionalization of electrode surfaces
with nanomaterials such as metallic nanoparticles [34,35], carbon nanomaterials [36] or
carbide [37] can increase the sensitivity of electrochemical methods for the detection of
the target analyte. Direct electrochemical methods relying on platforms modified with
carbon-based nanomaterials or metallic nanoparticles have been reported for the detection
of DOX from pharmaceutical formulations and biological samples. For example, platinum
electrodes were functionalized with multi-walled carbon nanotubes and were used for
DOX detection in plasma samples [36]. Silver nanoparticles [35] or silver/gold bimetallic
nanoparticles [38] were used to enhance the redox signal of DOX on glassy carbon elec-
trodes, facilitating its detection from plasma, cell lysate [35] and urine [38], respectively.
Differential pulse cathodic stripping voltammetry and differential pulse voltammetry were
comparatively applied for the detection of DOX on silver solid amalgam electrodes and
on a polarized liquid/liquid interface, respectively [39]. Despite the multiple publications
on this subject, there is still a considerable need for rapid, accurate, cost-effective and
single-use sensors for DOX detection.
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In this work, a novel sensor, based on in-house printed electrodes decorated with AuNPs,
was proposed for the detection of DOX from pharmaceutical formulations and serum. The
electrochemical behavior of DOX on the newly developed electrode surface was extensively
analyzed and its detection was performed via differential pulse voltammetry (DPV).

A second objective of this work was the development of DOX-containing nanosomes
as proof-of-concept formulations, as well as the application of the developed sensor for
the quantification of the DOX loaded and released from the nanosomes. This method
was successfully applied for the characterization of these steps, the results obtained being
closely correlated to those obtained using UV–Vis spectrophotometry.

The newly developed method offers a cost-effective and portable alternative, without
compromising accuracy. While not intended to replace the methods currently used in
the pharmaceutical industry, it can be a valuable tool in the initial stages of formulation
development, helping to reduce costs and save time when numerous tests are required.

2. Materials and Methods
2.1. Materials
2.1.1. Chemicals and Reagents

For the electrode fabrication process, carbon conductive ink, Electrodag 423 SS©, was
purchased from Henkel (Duseseldorf, Germany) and Ag ink, Electrodag PF-410, was pur-
chased from Acheson (Newark, DE, USA). Doxorubicin hydrochloride (purity ≥ 95%) was
purchased from Tokyo Chemical Industry Company, Tokyo, Japan. Lipo-N pronanosomes
functionalized with surface amino groups were purchased from NanoVex Biotechnologies,
Asturias, Spain. All other chemicals used were purchased from Sigma-Aldrich (St. Louis,
MO, USA), Fluka Chemie GmbH (Buchs, Switzerland) and Merck (Rahway, NJ, USA).
Chemicals and solvents were used as received, without further purification. All solutions
were prepared in ultrapure water (18 MΩ cm−1), which was prepared using a Millipore
Simplicity device, Sigma Aldrich, USA.

2.1.2. Instruments

All electrochemical tests were performed using an Autolab MAC80100 multichan-
nel potentiostat/galvanostat (Metrohm, Utrecht, The Netherlands), operated with Nova
1.10.4 software.

The results obtained using the electrochemical method were confirmed using UV–Vis
spectrophotometry. Spectrophotometric tests were carried out using a SPECORD 250PLUS
spectrophotometer (Analytik Jena, Jena, Germany), operated with the WinAspect PLUS
software version 4.2.0.0.

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX)
results were obtained using a Hitachi SU8230 instrument at 30 kV, 10 mA and 8 and
15 mm working distances, operated with Aztec software version 5.1 (Oxford Analytics,
Oxford, UK).

Atomic force microscopy (AFM) images were obtained using a Cypher S (Asylum
Research-Oxford Instruments, Santa Barbara, CA, USA) microscope. AFM measurements
were performed in AC mode (tapping mode), with AC160TS-R3 silicon cantilevers (Olym-
pus, Tokyo, Japan), with a spring constant of ~26 N/m (8.42–57 N/m) and a resonance
frequency of ~300 ± 100 kHz. Several areas of the samples were analyzed at different
scan sizes (20, 10, 5 and 2 µm), with 256 pixels/line and with a scan rate of 1 Hz. Data
acquisition and image analysis was performed using the integrated AR16 software verison
16 (Asylum Research) written in the Igor Pro software package (Igor Pro 6, WaveMetrics,
Inc., Lake Oswego, OR, USA). An HI208 pH-meter (Hanna Instruments, Chiba, Japan) was
used to measure the pH of the prepared solutions.
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2.2. Methods
2.2.1. Electrochemical Cell Printing

The electrochemical cells were printed using a previously described process [34,40],
with slight modifications. A stainless steel stencil with apertures in the size and shape of
the contacts and the electrodes was used for printing the cells on a plastic substrate. A
rubber squeegee was used to distribute the conductive inks uniformly in the apertures. The
same procedure was employed for printing all the electrochemical cell components, but
different inks were used. The contacts and reference electrode were printed first using a Ag
ink, followed by the working and counter electrodes, which were printed using a carbon
conductive ink. Between each printing step, the electrochemical cells were dried for 15 min
at 60 ◦C to allow for solvent evaporation and the thermal polymerization of the monomer
in the ink composition. The last step consisted in the application of an insulating layer to
prevent shortcuts, followed by drying overnight at 50 ◦C to ensure complete drying. Silver
wires were attached to the end of the contacts to enable the connection of the electrodes to
the potentiostat.

After printing, the electrodes were pretreated in a 1 M Na2CO3 solution, using am-
perometry at a constant potential of +1.2 V for 600 s. This process ensured an increased
sensitivity and the stabilization of the electrode signal before AuNP deposition [34].

2.2.2. Gold Nanoparticle Deposition

AuNPs deposition was optimized by testing different electrochemical protocols and
information from previously published papers [34]. Both cyclic voltammetry (CV) and
amperometry were used for AuNP deposition. In the case of CV, AuNP deposition was per-
formed from solutions of different concentrations of HAuCl4 (2.5, 5 and 10 mM) prepared
in 0.5 M H2SO4, for varying numbers of cycles (20, 25 and 50). In the case of amperometry,
two protocols were tested, as follows: 500 s at −0.5 V and −0.1 V (following a protocol
described in the literature [41]), respectively, from a 5 mM solution of HAuCl4 prepared in
0.5 M H2SO4. The optimized deposition protocol was as follows: CV from a 5 mM HAuCl4
solution prepared in 0.5 M H2SO4, for 25 cycles, between −0.2 and +1.4 V, with a scan rate
of 100 mV/s.

2.2.3. SEM, AFM and EDX Analysis

Before SEM and EDX testing, the electrodes were fixed on a carbon tape and were
sprayed with a thin carbon layer. Images were captured at different magnitudes from three
various points of the electrode surface. For EDX analysis, three different regions were
screened from 15 mm working distance; atomic weight percent reports were generated.

AFM images were obtained using AC mode (tapping mode) in air, under normal
temperature and pressure conditions, using AC160TS-R3 (Olympus) silicon cantilevers.
These have an aluminum-covered reflective surface with a nominal tip radius of 7 nm, a
nominal constant of 26 N/m and a resonance frequency of ~300 kHz. Multiple randomly
selected surfaces were analyzed, with a resolution of 512 × 512 pixels and a scan rate
between 0.5 and 1 Hz.

2.2.4. Electrochemical Characterization and Doxorubicin Detection

The electrochemical characterization of the electrode surface was performed after
printing and after AuNP deposition, using electrochemical impedance spectroscopy (EIS)
and CV in a 10 mM [Fe(CN)6]3−/4− solution prepared in 0.1 M KCl. The EIS parameters
were as follows: 61 frequencies from 0.1 to 100,000 Hz; amplitude 0.01 Hz at open circuit
potential (OCP). The CV parameters were as follows: scanning between −0.4 and +1 V for
2 cycles, at a scan rate of 100 mV/s.

For all DOX electrochemical experiments, DOX solution was purged with nitrogen,
10 min before testing.

The influence of the supporting electrolyte was tested using a 500 µg/mL DOX solution
prepared in 0.1 M H2SO4, 0.1 M HCl, 0.1 M PBS pH 7.4 and 0.2 M carbonate buffer



Chemosensors 2024, 12, 69 5 of 19

pH 10, using the following DPV parameters: scan between −1.2 and −0.4 V, potential step
5 mV, amplitude 0.2 V, interval time 0.1 s, modulation time 0.05 s and scan rate 50 mV/s.
The influence of the pH on the electrochemical detection of DOX was tested via CV on
100 µg/mL DOX solutions prepared in Britton–Robinson buffer (BRB) with pH values
between 2 and 12. The CV parameters were as follows: potential range between −1 and 0 V,
at a scan rate of 100 mV/s.

The influence of the scan rate on the electrochemical detection of DOX was evaluated
by varying the scan rate between 5 and 500 mV/s and scanning the potential between
−0.8 and 0 V for 1 cycle. The tests were performed on 500 µg/mL DOX solutions prepared
in 0.1 M phosphate-buffered saline (PBS) at pH 7.4.

The influence of the DOX concentration on the analytical signal was tested via DPV
using DOX solutions of different concentrations prepared in 0.1 M PBS, pH 7.4. DPV
parameters were as follows: scan between –1.2 and −0.4 V, potential step 5 mV, amplitude
0.2 V, interval time 0.1 s, modulation time 0.05 s and scan rate 50 mV/s. A calibration
curve was constructed in the domain 1–500 µg/mL and the limit of detection (LOD) was
calculated based on the S/N = 3. All electrochemical tests were performed in triplicate at
25 ◦C, if not stated otherwise.

Intraday stability was evaluated by performing five consecutive DPV analyses in a
100 µg/mL DOX solution on the same electrode, with abundant washing and electrochemi-
cal cleaning in 0.5 M H2SO4 between each test. The CV parameters for the electrochemical
cleaning were as follows: potential scan between −0.9 and 1.2 V for 5 cycles, with a scan
rate of 100 mV/s. Interday stability was evaluated by testing a 100 µg/mL DOX solution
on five different electrodes. Stability for up to 30 days was tested weekly, using different
sensors that were all printed, pretreated and functionalized with AuNPs on the same day,
as well as a 100 µg/mL DOX solution.

2.2.5. Selectivity and Real Sample Analysis

The selectivity of the method was tested in the presence of common interferents that
could be found in pharmaceutical formulations, such as glucose, oxalic acid, citric acid and
starch (see concentrations of each interferent in Section 3.6) that were added to a 100 µg/mL
DOX solution prepared in 0.1 M PBS, pH 7.4.

Commercial human serum (Sigma-Aldrich, USA) was diluted 1:50 with 0.1 M PBS, pH 7.4
and was spiked with three different concentrations of DOX—5, 25 and 100 µg/mL—after which
the optimized DPV procedure was applied. All tests were performed in triplicate and the
recoveries of the analytical signal of DOX were calculated.

2.2.6. Spectrophotometric Analysis

The UV–VIS spectra of DOX solutions prepared in different buffers were traced
between 250 and 650 nm to identify the λmax of DOX. Measurements at λmax were recorded
for solutions of different concentrations of DOX to obtain calibration curves, which were
used to quantify the amount of DOX released from the nanosomes in different buffers. The
results obtained were compared to those obtained using the DPV method.

2.2.7. DOX Loading into Nanosomes

A 2 mg/mL DOX solution was prepared in acetate buffer, pH 3 and 2 mL of the
solution were put in contact with 0.1 g nanosomes for 24 h, under continuous shaking on a
HulaMixer (Invitrogen, Waltham, MA, USA) under the following conditions: orbital shak-
ing 3 r/min (60 s), reciprocal shaking 10 (10 s) and vibration movement 10 (5 s). After 24 h,
the samples were centrifuged for 10 min at 12,000 r/min to separate the loaded nanosomes
from the DOX-containing supernatant. In total, 250 µL of the supernatant were diluted to
2 mL, with the appropriate volume of acetate buffer, and DPV and spectrophotometric tests
were performed to determine the quantity of DOX from the supernatant and to calculate
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the quantity of loaded DOX. The encapsulation efficiency (EE) and loading capacity (LC)
were calculated based on the following equations [42]:

EE(%) =
V × Ci − V × Cf

V × Cf
× 100 (1)

LC(%) =
V × Ci − V × Cf

mms
× 100 (2)

where V—total volume of the release media (2 mL); Ci—initial DOX concentration in the
supernatant (2 mg/mL); Cf—final DOX concentration in the supernatant (after loading);
mms—mass of nanosomes used for the loading process.

2.2.8. DOX Release

Approximately 0.1 g of loaded nanosomes was accurately weighed and placed in
Eppendorf tubes, in contact with 2 mL of different release buffers, as follows: 0.1 M PBS,
pH 5, 6 and 7.4. The samples were placed on a HulaMixer under the following conditions:
orbital shaking 3 r/min (60 s), reciprocal shaking 10 (10 s) and vibration movement 10

(5 s) for 72 h. The samples were centrifuged for 2 min at 12,000 r/min to separate the
loaded nanosomes from the DOX-containing supernatant. A total of 250 µL of release
media were sampled at precise time-points at 15 min intervals in the first hour, 1 h intervals
for the following 6 h and 24 h intervals for 72 h. After each sampling, the taken volume
was replaced with 250 µL of fresh media of the appropriate pH, to maintain a constant
release buffer volume of 2 mL. The samples were diluted with the appropriate buffers and
DPV and UV–Vis tests were performed to determine the quantity of DOX. The cumulative
release of DOX was calculated using the following equations [42]:

mn = (Cn × V) + Vs(C1 + C2 + C3 + · · ·+ Cn−1) (3)

Crn(%) =
mn

mload
× 100 (4)

where mn—DOX mass at a given time (n); Cn—DOX concentration in the release buffer at
a given time; V—total volume of the release media; Vs—volume of release media sampled
at each tested time (250 µL); C1, C2, C3. . . Cn—concentrations of DOX in the release media
at previous testing times; mload—amount of DOX loaded in the nanosomes.

3. Results and Discussions
3.1. Gold Nanoparticle Deposition

AuNPs were deposited on the electrode surface using different protocols (see
Section 2.2.2) and the following parameters were optimized: (1) the deposition method,
(2) the HAuCl4 concentration and (3) the number of cycles, in the case of CV. To choose the
optimal parameters, the electrodes were tested after AuNP deposition in the presence of a
10 mM [Fe(CN)6]3−/4− solution prepared in KCl 0.1. The results are presented in Table 1,
with the parameters chosen as optimal written in bold. Iox represents the intensity of the
oxidation current and Eox represents the oxidation potential of DOX.

After AuNP deposition via CV from a 5 mM HAuCl4 solution, a significant increase
in current intensity was noticed, compared to the deposition performed from a 2.5 mM
solution. However, when the concentration was doubled again, to 10 mM, no significant
differences were noticed, so 5 mM was chosen as the optimal concentration. Increasing
the number of cycles from 20 to 25 led to an almost two-fold increase in current intensity;
however, no proportional increase was noticed when the number of cycles was 50, so
25 cycles were chosen for the deposition protocol. No significant differences were observed
in the CV performed in [Fe(CN)6]3−/4− between the amperometric and voltammetric
deposition protocols, so the CV protocol was chosen as the optimal method.
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Table 1. Optimization of the AuNP deposition procedure.

Optimized Parameter Iox (µA) RSD (%) Eox (V)

Deposition method
AMP at −0.1 V (5 mM HAuCl4) 525 8.5 0.195
AMP at −0.5 V (5 mM HAuCl4) 513 1.7 0.203

CV (5 mM HAuCl4) 541 2.8 0.220

HAuCl4 concentration
2.5 mM (CV, 25 cycles) 392 3.2 0.222
5 mM (CV, 25 cycles) 541 2.8 0.193

10 mM (CV, 25 cycles) 563 1.9 0.189

Number of cycles
20 (5 mM HAuCl4) 456 4.3 0.210
25 (5 mM HAuCl4) 541 2.8 0.193
50 (5 mM HAuCl4) 584 3.7 0.188

AMP—amperometry; Iox—intensity of the oxidation current; Eox—oxidation potential for DOX.

3.2. Electrochemical Characterization of the Platform

The electrochemical behavior of the electrode surface was characterized via CV and
EIS, in a 10 mM [Fe(CN)6]3−/4− solution prepared in 0.1 M KCl, at open-circuit potential
after electrode printing, 1 M Na2CO3 pretreatment and AuNP deposition (Figure 2).
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and AuNP deposition (orange) (B); zoomed−in Nyquist spectra for the high−frequency area (C).

As can be seen in Figure 2A, after printing, the electrodes exhibited the highest peak-to-
peak separation (∆E = 0.7 V) and a low peak intensity. After the 1 M Na2CO3 pretreatment,
an increase in the peak intensity can be noticed, as well as a reduction in the peak-to-
peak separation (∆E = 0.2 V). The AuNP deposition led to the maximum peak intensity
and an additional reduction in the peak-to-peak separation (∆E = 0.15 V), indicating the
electrocatalytic effect of the AuNPs.

The data obtained from CV analysis were confirmed using EIS (Figure 2B,C). The
Nyquist plots obtained for the printed electrode show an Rct value of 5.54 kΩ, as well as
the absence of diffusion, indicating a very slow electron transfer at the electrode surface.
After pretreatment and AuNP deposition, a significant decrease in the Rct to 91 and 26 Ω,
respectively, can be observed. A well-defined diffusion part of the Nyquist spectra was also
noticed, indicating a faster electron transfer.

Based on the analyses performed at various scan rates with [Fe(CN)6]3−/4− as redox
probe, the electroactive area of the pretreated, in-house printed electrodes before and after
AuNP modification was calculated using the Randles–Sevcik equation (Equation (5)) and
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was estimated at S = 0.308 cm2 for the pretreated, unmodified electrode and S = 0.401 cm2

for the AuNP modified electrode [43].

Ip =
(

2.69·105
)
·n·

√
α·nα·C·

√
D·

√
v·S (5)

Ip—current intensity; n—number of exchanged electrons; α—transfer coefficient;
C—[Fe(CN)6]3−/4− concentration (mol/cm3); D—coefficient of diffusion (cm2/s); v—scan
rate (V/s); S—electroactive area of the working electrode (cm2).

By using the Nova 1.10.4 software, the EIS data were modeled using fitting and
simulation options. These features facilitated the selection of equivalent circuits to articulate
the mathematical framework for the individual curves. The resulting model data are
detailed in Table S1.

For the unmodified electrode, the suggested equivalent circuit comprised [RS(Q[RctW])
(R1C1)]. Here, the components encompassed the solution resistance (Rs), inclusive of
equipment and electrical circuit element resistances; charge-transfer resistance (Rct); a
constant phase element (CPE) substituting the double-layer capacitance (CDL); Warburg
impedance (W) and a series of R and C in parallel ((R1C1)). The choice of CPE over C was
driven by deviations in real-world EIS representations, wherein distortions like depressed
semicircles were more accurately characterized using CPE than C. The literature also
attested to the efficacy of a circuit combining parallel CPE with a series of Rct and W for
porous film characterization on electrode surfaces [44]. The incorporation of the (R1C1)
series might be attributed to the ink film’s high porosity and non-uniformity post printing
and drying, along with potential adsorption/desorption phenomena within the pores.

Following the electrochemical pretreatment of the electrode surface, the (R1C1) series
in the equivalent circuit became unnecessary, possibly due to reduced surface porosity
resulting from interaction with the activation solution. The Rct value decreased from
5.54 kΩ for the bare electrode to 91 Ω post-activation.

Upon electrochemical deposition of AuNPs on the electrode, the equivalent circuit
used for modeling EIS data remained unchanged from the pretreatment step. This suggests
that the transfer mechanism to the electrode surface remained unaltered following func-
tionalization with highly conductive metal nanoparticles. The Rct value decreased from
91 Ω post-activation to 26 Ω after AuNP functionalization. The relatively small χ2 values
(Table S1) indicated a favorable fit between experimental data and the proposed circuit
and model.

3.3. Morfostructural Characterization of the Platform

The platform was characterized using SEM, EDX and AFM. The data obtained after
SEM scanning indicated the presence of a rugged surface (Figure 3A), marked by carbon
agglomerations (Figure 3B) on the bare electrode. The surface pretreatment with 1 M
Na2CO3 did not lead to significant changes in the structure of the platform. After AuNP
deposition, a thin and uniform AuNP film can be observed on the surface of the electrode.
The AuNPs were spherical, with a size ranging between 80 and 100 nm (Figure 3C,D),
appearing as particles with a whiter shade than the background. SEM data indicated the
successful functionalization of the carbon electrode with AuNPs.

EDX analysis was performed on the samples analyzed using SEM, indicating a relative
gold composition of 15.8 ± 0.3% after AuNP deposition (Figure 4A). The data obtained
were compared to those obtained for the bare electrode (Figure 4B). Other elements detected
were components of the electrode or dried material from the buffers.

AFM results confirmed the data obtained using SEM, indicating a rough surface for
the bare electrode (Figure 5A,B). After AuNP deposition, it was noticed that the gold had a
tendency to form a uniform layer of nanoparticles on the electrode surface (Figure 5C,D).
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and after AuNP deposition (C,D). Scan size—5 µm.

3.4. Electrochemical Behavior of DOX

The influence of the supporting media, pH and scan rate on the electrochemical
behavior of DOX were investigated using CV and DPV.

3.4.1. Influence of the Supporting Electrolyte

DOX solutions were prepared in different supporting media, as follows: 0.1 M
phosphate-buffered saline (PBS), pH 7.4; 0.2 M carbonate buffer, pH 10; 0.1 M HCl; 0.1 M
H2SO4. The best results were obtained in 0.1 M H2SO4, where two oxidation peaks were
observed for DOX, one at a potential of about 0 V, similar to data previously reported in
the literature [45] (Table S2). Despite this, for the optimized detection method, PBS was
used as supporting media, due to its similarity to the physiological environment and the
envisaged application of the sensor, since DOX release experiments need to be performed
in conditions that mimic physiological/tumor media conditions.

3.4.2. Influence of the pH

To study the influence of the pH on the detection of DOX, DOX solutions were prepared
in BRB with pH values between 2 and 12. The results are presented in Figure 6. The figure
presents the well-defined oxidation and reduction peaks of DOX (Figures 6A and S1). These
peaks appear due to the oxidation of the hydroquinone fragment to the corresponding
quinone, followed by its reduction back to the hydroquinone form. This mechanism
involves the transfer of two electrons and two protons, as previously reported in the
literature [46] and described in the mechanism proposed in Figure 6B. It can be seen in
Figure 6C that the intensity of the oxidation and reduction currents increases from pH 2 to
pH 7, followed by a decrease in the alkaline pH domain, confirming the involvement of
protons in the oxidation mechanism [46,47]. A cathodic shift of the oxidation/reduction
peaks can also be noticed with the increase in pH (Figure 6D). This can be explained either
by the involvement of protons in the electrochemical transformation mechanism or by
the lower stability and solubility of DOX at higher pH values [48]. The variation of the
oxidation and reduction potential with the pH were represented graphically and were
linear on the pH domain 2–9 (Table 2).
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The arrow indicates the starting potential in the voltammograms; (A); mechanism proposed for the
oxidation of DOX (B); variation of the oxidation (blue) and reduction (green) peaks with the pH (C)
and variation of the oxidation (blue) and reduction (green) potentials with the pH (D).

Table 2. The variation of the DOX oxidation and reduction potentials with the pH.

Eox = f(pH) Oxidation EOx = −0.051 pH − 0.347 R2 = 0.994
Ered = f(pH) Reduction ERed = −0.050 pH − 0.402 R2 = 0.996

3.4.3. Influence of the Scan Rate

The influence of the scan rate was tested on 500 µg/mL DOX solutions prepared in
0.1 M PBS, pH 7.4, using scan rates between 5 and 500 mV/s. The results are presented
in Figure 7. It can be noticed that the increase in scan rate leads to an anodic shift of
the oxidation potentials and a cathodic shift of the reduction potentials (Figure 7A). This
variation suggests that the electrochemical process is controlled by adsorption, which is
further confirmed by the variation of the current intensity with the scan rate (Figure 7C),
which presents a better linear correlation compared to the variation of the current intensity
with the square root of the scan rate (Figure 7D). The data in Figure 7C,D were obtained
using scan rates between 5 and 400 mV/s. In Figure 7D, two different linearity regions
can be observed, while, for the variation of I with the scan rate, the correlation coefficients
indicate linearity on the whole domain. This confirms the observations in Figure 7A.
Moreover, the logI vs. logv representation (Figure 7B) presents a good linearity, a correlation
coefficient of R2 = 0.994 and a slope of 0.9, which is close to the theoretical value of 1
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that is specific for adsorption-controlled processes, further proving that the process is
adsorption-controlled [47,49].
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Figure 7. Cyclic voltammograms obtained for 500 µg/mL DOX solutions prepared in 0.1 M PBS,
pH 7.4, at different scan rates (A); variation of the logarithm of the oxidation current with the
logarithm of the scan rate (B); variation of the current peak with the scan rate (C) and square root of
the scan rate (D).

The equations, together with the R2 values for each variation, are represented in
Table 3. The scan rate that was chosen for further experiments was 50 mV/s.

Table 3. Parameters and equations that characterize the variation of the current intensity with the
scan rate, the current intensity with the square root of the scan rate and the logarithm of the current
intensity with the logarithm of the scan rate.

I = f(v)
Oxidation IOx = 0.39 v + 6.87 R2 = 0.996
Reduction IRed = −0.33 v − 7.15 R2 = 0.998

I = f(v1/2)
Oxidation IOx = 8.46 v1/2 − 26.61 R2 = 0.973
Reduction IRed = −7.11 v1/2 + 20.50 R2 = 0.954

logIox = f(logv) Oxidation logIOx = 0.90 logv − 0.10 R2 = 0.994

3.5. Electrochemical Detection of DOX

A DPV method was used for the detection of DOX from solutions prepared in 0.1 M PBS,
pH 7.4 (Figure 8A). Increasing concentrations of DOX were used to obtain the dependence
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between the concentration and the analytical signal; the data were represented to construct the
calibration curve (Figure 8B,C). The correlation between the two parameters was logarithmic,
characterized using the equation: Iox (µA) = 26.45 log (DOX concentration/µg mL−1) − 19.13;
R2 = 0.976. A dynamic range between 1 and 500 µg/mL was obtained and an LOD of
0.3 µg/mL was estimated. The LOD was calculated based on the standard deviation of ten
blank measurements, multiplied by three and divided by the slope of the calibration curve.
The estimated RSD for the whole tested domain was 4.26%. The LOQ was equal to the low-
est concentration in the dynamic range, 1 µg/mL, and the sensitivity was 7.82 µA mL µg−1.
The obtained parameters were compared to previously published data (Table 4).
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Figure 8. Differential pulse voltammograms obtained for increasing concentrations of DOX, as
follows: 1; 5; 10; 25; 50; 75; 100; 200; 300; 400; 500 µg/mL, prepared in 0.1 M PBS, pH 7.4. DPV
parameters—scan between −1.2 and −0.4 V, potential step 5 mV, amplitude 0.2 V, interval time 0.1 s,
modulation time 0.05 s and scan rate 50 mV/s. Blank test (0.1 M PBS, pH 7.4) represented with black
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Table 4. Comparison of the developed method with data presented in the literature.

Electrode Used Detection
Method

Linear Range
(µM) LOD (nM) Matrix Ref.

GCE/AgNP/Chi SWV 0.103–8.6 103 (LOQ) Human plasma
Cell lysate [35]

PtE/MWCNT CV 0.09–7.33 3.6 Human plasma [36]
GCE/Au@AuPt/3D

ZnO-GO DPV 0.65–369.45 13 Urine [38]

p-AgSAE
PLLI

DPCSV
DPV

0.6–10
1–40

440
840

Tap water, urine
Buffers [39]

GCE/N-CNOs DPV 0.0002–10 0.06 Serum [45]
GCE/GQDs DPV 0.018–3.600 16 Human plasma [46]

CPE/SDS CV
DPV

10–80
2–24

1120
390 Buffer [47]

SPE AMP 0.91–119 180 Pharmaceutical formulations [48]
GCE/CD-GN DPV 0.01–0.2 0.1 Buffer [49]

GCE/AB CV 0.01–2.5 µM 3.006 nM Spiked human serum [50]
CPE/GO/MOF DPV 0.01–100 5 Injectable solution [51]

PGE LSV 10–60 9900 Serum [52]

SPE/AuNP DPV 1.83–915 µM 550 Pharmaceutical formulations
Spiked serum This work

PtE—platinum electrode; MWCNT—multi-walled carbon nanotubes; GCE—glassy carbon electrode;
AB—acetylene black; GQDs—graphene quantum dots; CPE—carbon paste electrode; GO—graphene oxide;
MOF—metal organic framework; AgNP—silver nanoparticles; Chi—chitosan; PGE—pencil graphite electrode;
SPE—screen-printed electrode; AuNP—gold nanoparticles; CV—cyclic voltammetry; DPV—differential pulse
voltammetry; SWV—square wave voltammetry; LSV—linear scan voltammetry; p-AgSAE—polished silver
amalgam electrode; DPCSV—differential pulse cathodic stripping voltammetry; PLLI—polarized liquid–liquid
interface; N-CNOs—nitrogen-doped carbon nanoonions; SDS—sodium dodecyl sulfate; AMP—amperometry;
CD-GN—cyclodextrin–graphene hybrid nanosheets.
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Despite the higher LOD of the developed method, the present work aims primarily to
detect DOX in pharmaceutical formulations, thereby providing a sufficiently low LOD for
its intended purpose. Complex electrode functionalization [45] can substantially decrease
the LOD; however, the method becomes more cumbersome, while not providing additional
benefits for DOX detection from pharmaceutical formulations. Moreover, the present
method has a wide linear range and was successfully applied on spiked biological fluids.
Direct detection of DOX represents a quick and facile method compared to other strategies,
such as detection using the interaction of DNA with DOX, which, although sensitive, can
pose stability concerns [36]. Additionally, the detection can be performed quickly and in a
cost-efficient manner, with an estimated cost of EUR 1/fabricated electrode. The in-house
printed electrodes are designed for single-use applications, thus avoiding the possibility
of surface fouling from one test to another, as well as avoiding the surface cleaning and
polishing required in the case of platinum and glassy-carbon electrodes. Moreover, screen-
printed electrodes present the advantage of miniaturization, opening new perspectives for
the detection of DOX using portable potentiostats.

3.6. Stability, Selectivity and Real Sample Analysis

Intra-electrode stability was tested at least five times on the same electrode, using
a 100 µg/mL DOX solution with abundant washing and a 0.5 M H2SO4 electrochemical
pretreatment between tests, due to the adsorptive nature of the electrochemical process.
The recovery of the analyte obtained for these tests was very good and an RSD value of
5.81% was obtained. The RSD value obtained from tests on five different electrodes for
inter-electrode stability was 4.15%. Stability, for up to 30 days, was tested weekly, reaching
92% (±4.36%) after 30 days.

The selectivity of the sensor was evaluated in the presence of common interferents
found in pharmaceutical formulations or serum, such as glucose, oxalic acid, citric acid and
starch. Neither of the tested substances presented significant interferences with the DOX
detection, as can be seen in Table 5.

Table 5. Selectivity and real sample analysis parameters and recoveries.

Sample Recovery (%) RSD (%)

100 µg/mL DOX +10 µg/mL oxalic acid 111.71 1.11
100 µg/mL DOX + 10 µg/mL citric acid 98.57 3.46

100 µg/mL DOX + 10 µg/mL starch 81.19 2.04
100 µg/mL DOX + 1000 µg/mL glucose 99.46 1.97

Tests in human serum 1:50

DOX concentration (µg/mL) Recovery (%) RSD (%)Added Found
5 5.47 109.42 3.67
25 24.38 97.52 2.59

100 113.21 113.21 1.46

The monitoring of DOX serum concentrations can help to ensure therapeutic efficiency
and reduce adverse reactions. DOX serum concentration monitoring is also important for
comparing treatment methods and evaluating the efficiency of different pharmaceutical
formulations based on their DOX release profiles in serum [53]. All this justifies the
application of the developed sensor on serum samples. Different DOX concentrations were
spiked into commercial serum samples, but the recoveries obtained were too low, so the
serum was diluted with 0.1 M PBS, pH 7.4, in a ratio of 1:50. Good recoveries, ranging from
97.52% to 113.21% (calculated as average of three measurements for each sample), were
obtained with RSD values between 1.46% and 3.67%, after minimal sample pretreatment
(dilution with buffer) (Table 5).
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3.7. DOX Spectrophotometric Behavior

A spectrophotometric method for DOX quantification was used as a control. DOX
solutions of different concentrations were prepared in all used solvents and the maximum
absorption of DOX was registered in all cases. The calibration curves obtained for all
solutions are presented in Table S3.

3.8. DOX Loading

The loading of nanosomes was performed from a 2 mg/mL DOX solution prepared in
acetate buffer, pH 3, due to the lower solubility of DOX at higher pH values. The solution
was left in contact with the nanosomes for 24 h, followed by centrifugation.

The spectra obtained for DOX before and after incubation with the nanosomes indicate
a decrease in the absorbance, corresponding to a decrease in the DOX concentration in
the solution, indicating the successful loading of DOX in the nanosomes (Figure S2).
While spectrometry can be applied to monitor the drug loading process, there are many
advantages to using an electrochemical method, similar to the one proposed in this work.
First, the sample volumes required for DPV are much smaller compared to spectrometry.
Thus, the method is more economical and eco-friendly. Moreover, in the initial stages of
pharmaceutical formulation development, small batches of pharmaceutical formulations
are developed, so the number of samples is generally limited. Secondly, while method
optimization can be difficult, once optimized, a DPV method can be used with minimum
training, even by non-specialized personnel. Moreover, DPV methods can be applied in a
decentralized and portable manner.

The EE and LC were calculated using both the UV–Vis and the optimized DPV
method and the results obtained (Table 6) were similar, indicating the applicability of
the electrochemical method for the characterization of the loading process.

Table 6. Comparison of the loading parameters calculated using the UV–Vis and DPV methods.

Loading Solution Quantification
Method EE (%) LC (%)

2 mg/mL DOX in acetate buffer pH 3 UV–Vis 41.15 1.48
DPV 42.95 1.54

3.9. DOX Release

The release of DOX from the loaded nanosomes was evaluated in 0.1 M PBS, pH 5, 6
and 7.4, and the cumulative release was determined using the DPV (Figure 9A) and UV–Vis
methods (Figure 9B). The release was the most efficient at pH 6, followed by pH 5 and
pH 7.4. Images of the nanosome suspensions after different steps of the loading and release
processes are presented in Figure S2.
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Figure 9. Cumulative release of DOX from the nanosomes detected using the DPV (A) and spectropho-
tometric (B) methods. (C) Cumulative release profiles obtained for DOX at pH 6 using the optimized
DPV (brown) and UV–Vis methods (blue). DPV parameters—scan between –1.2 and −0.4 V, potential
step 5 mV, amplitude 0.2 V, interval time 0.1 s, modulation time 0.05 s and scan rate 50 mV/s. UV–Vis
parameters—absorbance measurement at λmax = 482 nm.
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A higher release at pH 6 is convenient for drug delivery applications, since it is
known that the pH of tumor tissues is more acidic than that of healthy tissues [54,55]. The
cumulative release profiles obtained at pH 6 with the DPV and UV–Vis methods were
compared (Figure 9C) and an average correlation of 94.32% (RSD 7.74) was determined,
considering a 72 h release time.

The relatively low difference between the two methods can be attributed to differences
in the sensitivity of the procedures, the DPV showing a superior sensitivity. The good
correlation between the results indicates the applicability of the DPV method for the control
of the release of DOX from nanosomes.

4. Conclusions

In conclusion, this study successfully developed an electrochemical sensor for the
detection of DOX, using in-house screen-printed electrodes modified with AuNPs to
enhance sensitivity. The reversible oxidation of DOX at the electrodes occurred through
an adsorption-based process. The optimized DOX detection method was based on DPV
and exhibited a wide dynamic range between 1 and 500 µg/mL, as well as a low detection
limit. The sensor’s efficacy was further demonstrated through its application in the quality
control of novel DOX-loaded nanosomes, providing a quantification of DOX loading and
release. Comparative analysis with UV–Vis spectrophotometry yielded consistent results,
affirming the reliability of the electrochemical method. This study represents a significant
advancement in pharmaceutical formulation control, with high potential for the optimized
electrochemical method application for formulation stages.

This opens new perspectives in the field of pharmaceutical formulation control, demon-
strating that electrochemical methods could be successfully used in the formulation stage
due to their numerous advantages such as portability, rapidity and accuracy.
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Author Contributions: Conceptualization, A.P., M.T. and C.C.; Data curation, D.B. and M.S.; Method-
ology, A.P., M.T., I.B., D.B. and M.S.; Formal analysis, A.P., M.T., I.B., D.B. and M.S.; Investigation,
A.P., M.T. and I.B., Writing—original draft, A.P., M.T., I.B. and S.M. Writing—review and editing,
M.T., S.M. and C.C.; Project administration, M.T. and C.C.; Resources, M.T. and C.C; Supervision,
S.M. and C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Romanian Ministry of Education and Research, CNCS-
UEFISCDI, project number PN–III–P1-1.1-TE-2021–1543. DB acknowledges financial support from
the MCID through the Nucleu Program within the National Plan for Research, Development, and
Innovation 2022–2027, project PN 23 24 01 05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: A.P. acknowledges UMF internal PCD grant no. 649/5/11.01.2024.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/chemosensors12040069/s1


Chemosensors 2024, 12, 69 17 of 19

References
1. Sritharan, S.; Sivalingam, N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021, 278, 119527.

[CrossRef]
2. Johnson-Arbor, K.; Dubey, R. Doxorubicin. Stat Pearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459232/

#article-20695.s11 (accessed on 5 December 2023).
3. Luu, A.Z.; Chowdhury, B.; Al-Omran, M.; Teoh, H.; Hess, D.A.; Verma, S. Role of Endothelium in Doxorubicin-Induced

Cardiomyopathy. JACC Basic Transl. Sci. 2018, 3, 861–870. [CrossRef]
4. Kalyanaraman, B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the

wrong tree? Redox Biol. 2020, 29, 101394. [CrossRef]
5. Mirhadi, E.; Mashreghi, M.; Askarizadeh, A.; Mehrabian, A.; Alavizadeh, S.H.; Arabi, L.; Badiee, A.; Jaafari, M.R. Redox-sensitive

doxorubicin liposome: A formulation approach for targeted tumor therapy. Sci. Rep. 2022, 12, 11310. [CrossRef]
6. Iman, M.; Moosavian, S.A.; Zamani, P.; Jaafari, M.R. Preparation of AS1411 aptamer-modified PEGylated liposomal doxorubicin

and evaluation of its anti-cancer effects in vitro and in vivo. J. Drug Deliv. Sci. Technol. 2023, 81, 104255. [CrossRef]
7. Shahraki, N.; Mehrabian, A.; Amiri-Darban, S.; Moosavian, S.A.; Jaafari, M.R. Preparation and characterization of PEGylated

liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in
mice bearing C26 colon carcinoma. Colloids Surf. B Biointerfaces 2021, 200, 111589. [CrossRef]

8. Sonju, J.J.; Shrestha, P.; Dahal, A.; Gu, X.; Johnson, W.D.; Zhang, D.; Muthumula, C.M.R.; Meyer, S.A.; Mattheolabakis, G.; Jois,
S.D. Lyophilized liposomal formulation of a peptidomimetic-Dox conjugate for HER2 positive breast and lung cancer. Int. J.
Pharm. 2023, 639, 122950. [CrossRef]

9. Chen, H.; Sun, R.; Zheng, J.; Kawazoe, N.; Yang, Y.; Chen, G. Doxorubicin-encapsulated thermosensitive liposome-functionalized
photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. J. Mater. Chem. B 2022, 10, 4771–4782.
[CrossRef]

10. Bahrami Parsa, M.; Tafvizi, F.; Chaleshi, V.; Ebadi, M. Preparation, characterization, and Co-delivery of cisplatin and doxorubicin-
loaded liposomes to enhance anticancer Activities. Heliyon 2023, 9, e20657. [CrossRef]

11. Aloss, K.; Hamar, P. Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Pharmaceutics 2023, 15, 893. [CrossRef]
12. O’Brien, M.E.R.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.G.; Tomczak, P.; Ackland, S.P.;

et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil)
versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2004,
15, 440–449. [CrossRef]

13. Saharkhiz, S.; Zarepour, A.; Nasri, N.; Cordani, M.; Zarrabi, A. A comparison study between doxorubicin and curcumin co-
administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. Eur. J. Pharm. Sci. 2023, 191,
106600. [CrossRef]

14. Saharkhiz, S.; Zarepour, A.; Zarrabi, A. A new theranostic pH-responsive niosome formulation for doxorubicin delivery and
bio-imaging against breast cancer. Int. J. Pharm. 2023, 637, 122845. [CrossRef] [PubMed]

15. Bofill-Bonet, C.; Gil-Vives, M.; Artigues, M.; Hernández, M.; Borrós, S.; Fornaguera, C. Fine-tuning formulation and biological
interaction of doxorubicin-loaded polymeric nanoparticles via electrolyte concentration modulation. J. Mol. Liq. 2023, 390, 122986.
[CrossRef]

16. Cé, R.; Couto, G.K.; Pacheco, B.Z.; Dallemole, D.R.; Paschoal, J.D.; Pacheco, B.S.; Guterres, S.S.; Seixas, F.; Collares, T.; Pohlmann,
A.R. Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer.
Eur. J. Pharm. Sci. 2021, 165, 105943. [CrossRef]

17. Jindal, D.; Sinha, S.; Agarwal, V.; Sisodia, V.; Singh, M. Combinatorial Assessment of Doxorubicin with Chlorogenic acid by in
silico studies and development of its polymeric-nanoparticle against breast cancer. Mater. Today Proc. 2023. [CrossRef]

18. Akram, M.U.; Abbas, N.; Farman, M.; Manzoor, S.; Khan, M.I.; Osman, S.M.; Luque, R.; Shanableh, A. Tumor micro-environment
sensitive release of doxorubicin through chitosan based polymeric nanoparticles: An in-vitro study. Chemosphere 2023, 313, 137332.
[CrossRef]
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