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Abstract: This case report sheds light on the management of skeletal deformity in a young child with
X-linked hypophosphatemia (XLH), emphasizing the significance of a timely orthotic intervention
alongside pharmacological treatment, which is a strategy not frequently highlighted in the XLH
literature. The patient, a 2-year-and-7-month-old female, presented with classic XLH symptoms,
including short stature, pronounced genu varum, and hypophosphatemia, with deformities observed
in both the coronal and sagittal planes of the femur and tibia. Despite initial reliance on pharma-
cotherapy, which proved insufficient for skeletal realignment, the integration of orthotic treatment at
age 3 marked a pivotal turn in the management strategy. By the age of 5 years and 9 months, this
combined approach yielded significant improvements: the deformities in the femur and tibia were
notably corrected, tibial torsion was addressed, and enhanced limb alignment was achieved, as cor-
roborated by radiographic evidence. This case underscores the effectiveness of orthotic intervention
as a critical and underemphasized adjunct to pharmacological therapy in managing XLH in early
childhood. It advocates for the early inclusion of orthotic measures to optimize treatment outcomes
and expand the range of management strategies for limb deformities.

Keywords: X-linked hypophosphatemic rickets; non-surgical treatment; skeletal deformity; therapeutic
orthotics; bone alignment

1. Introduction

X-linked hypophosphatemia (XLH) is a rare metabolic disorder associated with pro-
gressive rickets (XLHR), severe deformities, and osteomalacia, resulting from a loss-of-
function mutation in the PHEX gene on the X chromosome [1,2]. This mutation leads to
the dysregulation of fibroblast growth factor 23 (FGF23), causing chronic renal phosphate
wasting and influencing the activation of 1,25-dihydroxyvitamin D [1,25(OH)2D] [1,3].

Patients with XLH commonly exhibit rachitic deformities in the lower limbs, which
contribute to short stature due to sustained phosphate deficiency and its impact on growth
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plate development [2,4,5]. Common deformities include bilateral genu varum with in-
ternal tibial torsion and bilateral genu valgum [6,7]. Pediatric hypophosphatemic rickets
management aims to control hypophosphatemia, prevent long bone deformities, promote
normal growth and minimize bony lesions [3]. Initial treatments often include vitamin D
or its analogs and oral phosphate supplementation, though their efficacy varies [2,3,8]. The
effectiveness of knee–ankle–foot orthoses in XLH treatment remains a topic of debate [4,8].
When varus deformity persists or worsens despite medical treatment, surgical interventions
are considered, employing guided growth for mild cases and osteotomies with internal
fixation for more severe cases unresponsive to guided growth [6]. However, osteotomies in
early childhood carry a high risk of recurrence and complications [4].

This case report presents our approach to managing a young patient with XLH who
exhibited severe bowleg deformity. Initially managed with conventional therapy, the pa-
tient’s transition to orthotic treatment was pivotal when conventional methods alone failed
to correct mechanical alignment. This report highlights the successful correction achieved
through orthotic management with diligent compliance, thereby avoiding surgery. It under-
scores the importance of timely intervention and the role of orthosis, documenting detailed
changes in skeletal coronal, sagittal, and torsional alignment, as well as radiographic
improvements, to demonstrate the effects of the combined orthotic treatment.

2. Case Description
2.1. Diagnosis

A girl aged 2 years and 4 months, with a height of 76.7 cm (<3rd percentile) and a
weight of 9.1 kg (<3rd percentile), was presented to our pediatric endocrinology and ortho-
pedic outpatient clinic due to concerns regarding short stature, progressive bowleg, and
bilateral knee pain. There was no notable family history of X-linked hypophosphatemia
(XLH) or short stature in her immediate family. Laboratory evaluations indicated hy-
pophosphatemia, elevated alkaline phosphatase (ALP), diminished 1,25-dihydroxyvitamin
D (1,25(OH)2D) levels, a decreased renal tubular threshold for phosphate (TmP/GFR), and
reduced urine calcium excretion (urine Ca/Creatinine ratio) (Table 1). Radiographic assess-
ments revealed abnormalities in the distal femur, proximal tibia, and distal radius and ulna,
characterized by cupping, fraying, and physeal widening [9] (Figure 1). Genetic analysis
identified a mutation in the PHEX gene (exon 8, C.931C > T), confirming a diagnosis of
X-linked hypophosphatemia rickets. This case study received approval from the National
Cheng Kung University Hospital Institutional Review Board (IRB No. B-EC-113-012).

Table 1. Biochemical profile at diagnosis and throughout pharmacological treatment.

Pharmacological Treatment (2 y 7 m–8 y) Reference Range

2 y 7 m
(Diagnosis Age) 3 y 4 y 5 y 6 y 7 y 8 y

(Current Age)

ALP(U/L) 635 372 456 416 362 415 388 1–10 yrs old: 156–369

Ca(mmol/dL) 2.31 2.25 2.37 2.27 2.27 2.34 2.29 1–5 yrs old: 2.35–2.70
6–12 yrs old: 2.35–2.57

P(mmol/dL) 0.97 0.91 0.97 1.59 1.10 1.17 0.97 1–5 yrs old: 1.05–1.95
6–12 yrs old: 1.00–1.80

25(OH)D (ng/mL) 16.1 NA NA NA 26.4 NA NA 1–3 yrs old: 45–145
3–19 yrs old: 43–98

Intact PTH
(pg/mL) 60 39.5 26.2 50.8 40.9 27.1 35.7 10–65

U-Ca/U-Cre
(mg/mg) 0.06 NA NA NA 0.22 0.19 0.13

1–3 yrs old: 0.03–0.56
3–5 yrs old: 0.02–0.41
5–7 yrs old: 0.01–0.30

7–10 yrs old: 0.01–0.25
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Table 1. Cont.

Pharmacological Treatment (2 y 7 m–8 y) Reference Range

2 y 7 m
(Diagnosis Age) 3 y 4 y 5 y 6 y 7 y 8 y

(Current Age)

TmP/GFR
mmol/dL) 0.78 NA NA NA NA NA NA 1–5 yrs old: 1.05–1.78

6–12 yrs old: 0.97–1.64

TRP 0.84 NA NA NA NA NA NA 0.85–0.95

IGF-1 (ng/mL) 111 NA NA NA NA NA NA 51–218

Phosphorus
(mg/kg/day) 25 23 55 44 57 49 55 20–60 mg/kg/day

Dihydroxycholecalciferol
(mg/kg/day) 25 24 29 31 31 27 26 20–30 ng/kg/day

NA, not available; ALP, alkaline phosphatase; Ca, calcium; P, phosphate; 25(OH)D, 25-hydroxyvitamin D; PTH,
parathyroid hormone; U-Ca/U-Cre, ratio of urine calcium to creatine; U-P/U-Cre, ratio of urine phosphate to
creatine; TmP/GFR, ratio of tubular maximum reabsorption rate of phosphate to glomerular filtration rate; TRP,
tubular reabsorption of phosphorus.
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2.2. Treatment Transition

The patient commenced treatment at the Pediatric Endocrine and Orthopedics Surgery clinic
at the age of 2 years and 7 months. The regimen included oral phosphate (20–60 mg/kg/day [3],
starting dose of 25 mg/kg/day) and active vitamin D—Calcitriol (20–30 ng/kg/day [6],
starting dose of 25 ng/kg/day), with adjustments based on serum phosphorus levels until
the age of 8 (Table 1). Despite six months of pharmacological intervention, her bowleg
deformity progressed, necessitating the implementation of a full-time knee–ankle–foot
orthosis (KAFO) [4] at 3 years of age (Figure 2). This orthosis was maintained until she
achieved appropriate mechanical alignment at 5 years and 9 months, followed by nighttime
bracing until age 7, which was then discontinued due to substantial improvement in lower
limb alignment (Figure 2).
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Figure 2. Scanograms illustrating mechanical axis deviation during initial pharmacological therapy
(age 2 years 7 months), post combination orthotic management (age 3 years to 7 years), and at final
evaluation (age 8 years).

2.3. Skeletal Profile Changes
2.3.1. Coronal Alignment

During the initial phase of pharmacological treatment, a majority of the coronal
alignment parameters showed deterioration; however, upon initiating orthosis therapy,
these parameters exhibited improvement (Figure 2). Complete correction was observed
in the mechanical axis and mechanical axis deviation (MAD) [6], accompanied by notable
improvements in the angles of the femur and tibia (Table 2).

Table 2. Sequential radiographic changes across different treatment phases.

Conventional Therapy (2 y 7 m–8 y)

Orthosis Therapy (3 y–7 y) Mean Correction Rate †

2 y 7 m 3 y 4 y 5 y 5 y 9 m 7 y 8 y
Before

Orthosis
(2 y 7 m–3 y)

During
Orthosis
(3 y–7 y)

Mechanical axis (◦) *
R 24 26 10 3 0 −2 −3

+4◦/year −7◦/year
L 20 27 11 3 0 −1 −2

Mechanical axis
deviation (mm) *

R 35 40 17 4 0 −4 −0.5
+15 mm/year −10.5 mm/year

L 28 38 16 5 0 −2 −0.6
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Table 2. Cont.

Conventional Therapy (2 y 7 m–8 y)

Orthosis Therapy (3 y–7 y) Mean Correction Rate †

2 y 7 m 3 y 4 y 5 y 5 y 9 m 7 y 8 y
Before

Orthosis
(2 y 7 m–3 y)

During
Orthosis
(3 y–7 y)

mLPFA (◦)
R 74 73 69 73 69 81 83

−8.0◦/year +2.6◦/year
L 72 65 65 68 68 78 82

mLDFA (◦)
R 96 97 94 91 89 89 88

+1.0◦/year −1.9◦/year
L 96 96 97 93 90 89 87

mMPTA (◦)
R 70 73 80 87 90 90 91

+5.0◦/year +3.8◦/year
L 75 77 81 87 90 90 90

mLDTA (◦)
R 94 93 92 86 88 90 90

+1.0◦/year −1.0◦/year
L 93 95 90 86 88 90 90

Metaphyseal-diaphyseal
angle (◦)

R 19 13 7 2 1 −2 −1
−9◦/year −3.5◦/year

L 14 11 7 2 1 −2 −1

Coronal femoral
diaphyseal bow (◦)

R 16 20 16 16 15 14 7
+10◦/year −2.3◦/year

L 14 20 16 13 10 8 8

Coronal tibia diaphyseal
bow (◦)

R 28 23 23 19 17 10 8
−5.0◦/year −4.0◦/year

L 29 29 26 21 14 10 8

Sagittal femoral
diaphyseal bow (◦)

R 31 NA NA NA NA 18 6
−3.5◦/year ‡

L 31 NA NA NA NA 20 18

Sagittal tibia diaphyseal
bow (◦)

R 25 NA NA NA NA 8 2
−4.1◦/year ‡

L 28 NA NA NA NA 6 6

NA, not available; R, right; L, left; y, year; m, month; mLPFA: mechanical lateral proximal femoral angle; mLDFA,
mechanical lateral distal femoral angle; mMPTA, mechanical medial proximal tibial angle; mLDTA, mechanical
lateral distal tibial angle. * +: varus; −: valgus. † +: positive correction; −: negative correction. ‡: during whole
treatment period.

2.3.2. Femur/Tibia Bow and Metaphyseal-Diaphyseal Angle

Improvements in the coronal tibia bow and the metaphyseal-diaphyseal angle (MDA) [5]
were noted with the start of pharmacological treatment, and these improvements were
enhanced with the introduction of orthosis therapy (Figures 2 and 3 and Table 2). Although
the coronal bowing of the femur initially worsened with pharmacological treatment alone,
it showed enhancement with the addition of orthosis therapy (Table 2). Additionally,
significant improvements were observed in the sagittal bowing of the femur and tibia
(Table 2 and Figure 4).
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2.3.3. Axial Alignment

At 2 years and 7 months of age, the patient demonstrated an in-toeing gait char-
acterized by an average negative thigh–foot angle (TFA) [6] of 28◦. This angle showed
considerable improvement by the age of 7, with an average TFA of 10◦. Computed tomog-
raphy scans revealed femoral anteversion with angles of 21◦ (right) and 20◦ (left), and tibial
internal torsion with angles of 13◦ (right) and 7◦ (left), confirming significant corrections in
axial alignment (Figure 4).
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2.3.4. Radiographic Grades and Healing

The Rickets Severity Score (RSS) [4] saw an improvement from five to zero by the age
of 8. Additionally, the Radiographic Global Impression of Change (RGI-C) score [10] was
recorded at +3 (Figure 1).

2.3.5. Growth Chart and Bone Age

Despite the patient’s height and weight remaining below the third percentile post
treatment, there was an observable trend toward catch-up growth, with height approaching
the third percentile by age 8. The bone age was consistent with the chronological age of the
patient (Figure 5).

Children 2024, 11, 487 7 of 10 
 

 

2.3.4. Radiographic Grades and Healing 
The Rickets Severity Score (RSS) [4] saw an improvement from five to zero by the age 

of 8. Additionally, the Radiographic Global Impression of Change (RGI-C) score [10] was 
recorded at +3 (Figure 1). 

2.3.5. Growth Chart and Bone Age 
Despite the patient’s height and weight remaining below the third percentile post 

treatment, there was an observable trend toward catch-up growth, with height 
approaching the third percentile by age 8. The bone age was consistent with the 
chronological age of the patient (Figure 5). 

 
Figure 5. Growth curve displaying changes in height, weight and bone age before and after 
pharmacological intervention. 

3. Discussion 
Lower limb deformities, such as gait alterations and pain, are prevalent complaints 

among patients with X-linked hypophosphatemic rickets (XLHR), affecting both children 
and adults and impacting their quality of life. In this report, we discuss a 2-year-7-month-
old female with XLHR who presented with genu varum, as well as bowing of the femur 
and tibia in both coronal and sagittal planes, accompanied by significant in-toeing. 
Initially, she was treated with conventional pharmacologic therapy, which was followed 
by the integration of orthotic treatment at the age of 3 years due to an inadequate response 
to the initial treatment. This combined approach successfully corrected the mechanical 
alignment and improved the deformities in the femur and tibia, as well as tibia torsion, 
alongside radiographic healing. This case is notable as it provides detailed insights into 
the efficacy of orthotic treatment in managing XLHR in early childhood. 

Figure 5. Growth curve displaying changes in height, weight and bone age before and after pharma-
cological intervention.

3. Discussion

Lower limb deformities, such as gait alterations and pain, are prevalent complaints
among patients with X-linked hypophosphatemic rickets (XLHR), affecting both children
and adults and impacting their quality of life. In this report, we discuss a 2-year-7-month-
old female with XLHR who presented with genu varum, as well as bowing of the femur
and tibia in both coronal and sagittal planes, accompanied by significant in-toeing. Initially,
she was treated with conventional pharmacologic therapy, which was followed by the
integration of orthotic treatment at the age of 3 years due to an inadequate response to the
initial treatment. This combined approach successfully corrected the mechanical alignment
and improved the deformities in the femur and tibia, as well as tibia torsion, alongside
radiographic healing. This case is notable as it provides detailed insights into the efficacy
of orthotic treatment in managing XLHR in early childhood.
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The primary objective of non-surgical management for X-linked hypophosphatemic
rickets (XLHR) limb deformities is to enhance growth, development and gait while cor-
recting deformities [2]. Traditional approaches have relied heavily on oral phosphate
supplements and active vitamin D [4,5]. The overarching goal is the resolution of rickets in
children, coupled with efforts to diminish skeletal deformities, promote growth, alleviate
bone pain, and potentially avoid surgical interventions [5]. Studies have demonstrated
that conventional treatment elevates serum phosphate levels and decreases both osteoid
thickness and volume, which significantly correlates with reduced symptoms of bone and
joint pain [2]. Effective phosphate management through these treatments may reduce the
necessity for orthopedic surgeries [2,4]. Nonetheless, variability in treatment response is
noted, particularly in severe XLHR cases where radiographic improvement in rickets does
not always correspond with corrections in leg bowing or deformities [2,7].

Burosumab, an anti-fibroblast growth factor 23 antibody, has gained regulatory ap-
proval for the treatment of XLHR [5,11]. Initially approved by the European Medicines
Agency and the U.S. Food and Drug Administration in 2018 for use in children over one
year of age—and subsequently for infants as young as six months—the treatment has
also been authorized for adults in the EU as of 2020 [2]. Current guidelines suggest ini-
tiating Burosumab for patients with radiographically confirmed rickets that is resistant
to standard treatments or in those who cannot tolerate or experience complications from
conventional therapies [2]. While Burosumab has shown promising outcomes in reducing
bone deformities and enhancing growth, comprehensive studies comparing its efficacy
specifically for bone deformities are currently limited, focusing mostly on lower limb
deformity scores [5,12]. However, some evidence indicates that Burosumab may not sig-
nificantly impact lower limb deformities after one year of treatment [4]. Future research
is essential to evaluate both the short- and long-term comparative effects of Burosumab
against traditional treatments for correcting bone deformities.

Orthotic management, particularly the use of knee–ankle–foot orthoses, may represent
an adjuvant non-operative strategy for addressing lower limb deformities in XLHR in
early childhood [4,13]. However, evidence of the efficacy of such orthoses is sparse and
derives mostly from studies on vitamin-D-resistant rickets, yielding mixed results [4]. A
study from Japan noted that orthotic treatment was effective in a limited cohort of rachitic
patients, including those with XLHR [13]. In cases where varus deformities persist or
worsen despite medical management, orthopedic specialists may consider orthotic manage-
ment or opt for surgical interventions like guided growth or corrective osteotomies [2,6].
There remains no consensus on prioritizing orthotic over surgical treatments, and the effec-
tiveness of orthosis in managing rickets continues to be debated, with studies reporting
conflicting outcomes [4,8,13]. Our findings demonstrate that while the initial pharmaco-
logical treatment only addressed the coronal tibia bow and medial distal angle (MDA),
the introduction of orthotic treatment yielded significant improvements in both coronal
and sagittal alignments, as well as rotational adjustments, aligning with previous studies
that suggest conventional therapy can improve coronal alignment but may not effectively
correct rotational deformities [2,4,6].

In late childhood and adolescence, when deformities such as severe varus, valgus,
or windswept lower leg deformities become more pronounced, treatment often involves
surgical interventions [4,14]. Surgical interventions like guided growth surgery offer a
less invasive option for correcting coronal plane deformities, allowing patients a quicker
return to normal activities [3,4,6–8,10]. However, mostly in cases of severe deformities, such
procedures may not provide sufficient correction, necessitating more intensive surgeries
involving osteotomies with internal or external fixation [4,6]. Earlier surgical interven-
tions, while addressing the deformities, are associated with high rates of recurrence and
complications, and some studies have reported a recurrence rate as high as 90% after the
initial corrective osteotomy, despite adequate phosphate management [6]. Moreover, these
surgical procedures carry the risk of iatrogenic physeal disruption [4].
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This study has limitations, including its focus on a single case, highlighting the need
for further larger-scale research to assess the effectiveness of orthotic treatment broadly.
Additionally, while Burosumab [5,11] emerges as a promising treatment alternative, its
unavailability in our region calls for future research to evaluate its efficacy in conjunction
with conventional or combined orthotic therapies.

4. Conclusions

This case underscores the effectiveness of orthotic intervention as a critical and under-
emphasized adjunct to pharmacological therapy in XLH, advocating for its early inclusion
to optimize treatment outcomes and broaden the spectrum of management strategies for
limb deformities.
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