
Citation: Prundurel, A.P.; Stan, I.G.;

Pană, I.; Eparu, C.N.; Stoica, D.B.;

Ghet,iu, I.V. Production Forecasting at

Natural Gas Wells. Processes 2024, 12,

1009. https://doi.org/10.3390/

pr12051009

Academic Editors: Qingbang Meng

and Chuanliang Yan

Received: 3 April 2024

Revised: 8 May 2024

Accepted: 13 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Production Forecasting at Natural Gas Wells
Alina Petronela Prundurel, Ioana Gabriela Stan, Ion Pană , Cristian Nicolae Eparu, Doru Bogdan Stoica * and
Iuliana Veronica Ghet,iu

Well Drilling, Extraction and Transport of Hydrocarbons Department, Petroleum-Gas University of Ploiesti,
100680 Ploiesti, Romania; alina.prundurel@upg-ploiesti.ro (A.P.P.); gabriela.stan@upg-ploiesti.ro (I.G.S.);
ion.pana@upg-ploiesti.ro (I.P.); ceparu@upg-ploiesti.ro (C.N.E.); iuliana.ghetiu@upg-ploiesti.ro (I.V.G.)
* Correspondence: dstoica@upg-ploiesti.ro

Abstract: In Romania, natural gas production is concentrated in two large producers, OMV Petrom
and Romgaz. However, there are also smaller companies in the natural gas production area. In these
companies, the deposits are mostly mature, or new deposits have low production capacity. Thus, the
production forecast is very important for the continued existence of these companies. The model
is based on the pressure variation in the gas reservoir, and the exponential model with production
decline is currently used by gas and oil producers. Following the variation in the production of the
gas wells, we found that in many cases, the Gaussian and Hubbert forecast models are more suitable
for simulating the production pattern of gas wells. The models used to belong to the category of
poorly conditioned models, with little data, usually called gray models. Papers published in this
category are based on data collected over a period of time and provide a forecast of the model for
the next period. The mathematical method can lead to a very good approximation of the known
data, as well as short-term forecasting in the continuation of the time interval, for which we have
these data. The neural network method requires more data for the network learning stage. Increasing
the number of known variables is conducive to a successful model. Often, we do not have this
data, or obtaining it is expensive and uneconomical for short periods of possible exploitation. The
network model sometimes captures a fairly local pattern and changing conditions require the model
to be remade. The model is not valid for a large category of gas wells. The Hubbert and Gauss
models used in the article have a more comprehensive character, including a wide category of
gas wells whose behavior as evolutionary stages is similar. The model is adapted according to
practical observations by reducing the production growth period; the layout is asymmetric around
the production peak; and the production range is reduced. Thus, an attempt is made to replace the
exponential model with the Hubbert and Gauss models, which were found to be in good agreement
with the production values. These models were completed using the Monte Carlo method and matrix
of risk evaluation. A better appreciation of monthly production, which is an important aspect of
supply contracts, and cumulative production, which is important for evaluating the utility of the
investment, is ensured. In addition, we can determine the risk associated with the realization of
production at a certain moment of exploitation, generating a complete picture of the forecast over the
entire operating interval. A comparison with production results on a case study confirms the benefits
of the forecasting procedure used.

Keywords: gas production; wells; forecast; Gauss and Hubbert models; Monte Carlo method

1. Introduction

In the context of a continuously growing global demand for energy sources, the
efficient management of natural resources becomes crucial for society as a whole. The
natural gas industry in particular faces complex challenges in forecasting and optimizing
production at gas wells. In this sense, it is necessary to develop and implement advanced
forecasting methods to ensure sustainable and efficient natural gas extraction [1,2]. Oil
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and gas reserve prediction methods include analogy, volume, material balance, production
decline, extrapolation, and gray system methods [3].

The ways of making production forecasts at natural gas wells emphasize distinct
models: the exponential model, the Gaussian model, and the Hubbert model, or numerical
reservoir simulation methods, the Weibull model, the Weng cycle model, and the HCZ
model [4–7].

Hubbert’s basic petroleum resource depletion model, the Hubbert curve, became the
foundation for a variety of curve-fitting techniques that are still widely used today. The
strengths and weaknesses of these models were expressed in the current literature for
determining their suitability for use in different situations [8–11].

Each of these approaches provides a unique perspective and specific methodologies
for evaluating the production and forecasting future quantities of natural gas that can be
extracted. The Hubbert model [12], originally developed for estimating oil production,
has also been adapted for the natural gas industry. The model focuses on the concept of
peak production and how it provides a long-term perspective on production evolution,
contributing to the development of sustainable strategies for resource utilization.

However, studies have shown that the incorrect selection of initial values [13] can lead
to poor modeling capacity and adaptability and to troubles in obtaining high-performance
results. The Hubbert model has been improved and the results thus obtained are much
more accurate for the prediction of natural gas reserves and consistent with the trend of
increasing production and then maintaining production after commissioning [14,15].

In [16], a gray model is built for the prediction of tight gas production. The Gray
Model Tight Gas Production (GMTGP) presented in this paper solves the problem of the
reasonable prediction of tight gas production in China. The model is compared with other
classic models of gray model theory: the GM(1,1) model, a univariate first-order derivative
gray prediction model mainly used to study prediction problems of time-series data with
homogeneous approximate exponential growth; GM(2,1) has a second-order derivative
and two characteristic roots and can reflect the monotony situation or the oscillation of
the theoretical system; GVM (Grey Verhulst Model) is mainly used to study the prediction
problems of S-shaped sequences with saturation.

In [17], the reduction in the drilling cost of new wells is analyzed. One of these
methods is the optimization of drilling parameters to establish the maximum available rate
of penetration (ROP). There are many parameters that affect ROP. Therefore, developing a
logical link between them to help in the correct selection of ROP is highly necessary and
complicated. In such a case, artificial neural networks (ANNs) are proven to be useful in
recognizing the complex connections between these variables. The ANNs could also be
applied to the study of production forecasting problems.

The Hubbert and Gauss models are combined with Monte Carlo simulation, used
to calculate the probability of production achievement. It is also used in the risk level
assessment matrix of natural gas production [18]. These methods with promising results
are also used in this article. The Monte Carlo method makes an important contribution in
this sense by simulating multiple possible scenarios [19]. This technique generates a set of
results based on random variables, reflecting the diversity of production conditions. By
exploring these scenarios, a deeper understanding of potential risks and possible changes
in production is obtained, providing essential information for strategic decisions [20,21].
In support of these models, a large collection of production data is continuously made.
Modern data measurement, storage, and analysis tools are used [22–24].
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The Gauss method is a mathematical approach that uses the normal distribution to
estimate future natural gas production [25,26].

The Gauss model is better suited for predicting the growth pattern of natural gas
reserves with gradual changes. This is because the peak time of the model is relatively
late, and the curve tends to be wide and increases gradually at first, then rises rapidly,
before increasing slowly and eventually reaching a peak and declining in a symmetrical
form [27]. By modeling the normal distribution of key variables such as gas flow, this
method accurately estimates the probabilities associated with each scenario, providing a
more comprehensive view of possible fluctuations in production. This statistical approach
provides a rigorous framework for evaluating production variability and anticipating
unexpected events that may impact natural gas exploitation. There are also studies and
models used to forecast the evolution trend of natural gas reserves using the multi-cycle
Hubbert and Gauss models that give very good results [28,29].

The Hubbert and Gauss models can be used to assess the multi-cycle evolution of
natural gas reserves, assuming that the parameter values are known and a mathematical
forecasting method can be applied [30,31]. By combining the multi-peak Gauss model
with the characteristics of reserves and production growth, some researchers were able to
predict the growth trend of reserves and production by fitting historical curves [32].

Researchers have used various models to predict the proven reserves of natural gas.
The Poisson model was used to show that the growth trend of proved natural gas reserves
has a significant cyclical characteristic [33]. The improved Weng model and Weibull model
were also applied, and the potential and exploration status of natural gas resources were
analyzed [34]. Additionally, the HCZ model was used to predict the growth trend of proven
natural gas reserves throughout the life cycle [35].

By analyzing and comparing these models, the article aims to provide a comprehensive
perspective on the various approaches used in natural gas well production forecasting.
Finally, we evaluated the advantages and limitations of each model, highlighting the
importance of adaptability and the integration of multiple methods to obtain more accurate
forecasts and useful information in the decision-making process in the natural gas industry.

For statistical forecasting models applied to production fields with a short interval of
use, customization is required. In this article, the Hubbert and Gauss models were adapted
according to practical observations by reducing the production growth period; the layout
is asymmetric around the production peak; and the production range is reduced. These
models were completed using the Monte Carlo method and a matrix of risk evaluation.

The steps of making the article are shown in Figure 1.



Processes 2024, 12, 1009 4 of 25Processes 2024, 12, 1009 4 of 25 
 

 

 

Figure 1. The stages of making the article. 

2. Theoretical Elements Related to Natural Gas Production Estimation Models 

2.1. Production Models 

The statistical examination of the authentic historical data of a huge number of gas 

field reservoirs helped many researchers to find and propose a series of natural gas reserve 

prediction models [22,29]. 
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2. Theoretical Elements Related to Natural Gas Production Estimation Models
2.1. Production Models

The statistical examination of the authentic historical data of a huge number of gas
field reservoirs helped many researchers to find and propose a series of natural gas reserve
prediction models [22,29].
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2.1.1. Exponential Model of the Production Variation

In this case, the production forecast for a gas well involves the following steps:
Collection of gas well information. Geological information is used on the structure where

the positioning of the new gas well is planned. This information includes the type of
new or matured field; reservoir limits; existing seismic data (3D seismic data require 3D
seismic reinterpretation); and gas pressure and temperature at the reservoir level [23]. The
difficulties that might arise during the execution of wells related to cementing operations
are well route; disposition of productive layers; problems of unconsolidated layers and
sand problems; and gas layers inter-bedded with thin water layers. To execute a new
well, structural maps are used that are in the company’s database or the ANRM (National
Agency for Mineral Resources of Romania) database and that contain information about
productive, abandoned, and suspended wells; drilling difficulties; etc.

For a new gas well, proposed coordinates for its placement are suggested, and seismic
investigations are conducted to substantiate the elements used in the forecast [34,35].

Selecting the possible production flow values. In general, knowing the exploitation history,
the values of the minimum, average, and maximum hydrocarbon flows that can be obtained
are anticipated. Usually, three forecast variants—High Estimation, Best Estimation, and
Low Estimation—are elaborated.

These variants also assess the extracted condensate flow and the extracted water flow.
Cumulative quantities of natural gas, condensate, and water are also evaluated.

The optimistic forecast High Estimation sets a high flow rate for gas and a correspond-
ingly high cumulative production. The exploitation period of the well is longer. The Low
Estimation variant reduces all of these values, ultimately resulting in lower cumulative
production and a reduced gas well life. Comparing the extreme variants, High Estimation
and Low Estimation, the former offers a lower probability of realization, while the latter
has a higher probability of occurring. Therefore, we are either at a high risk or a low risk
with the forecast.

The assumption of a gas flow rate variation law. The realization of the forecast starts from
an initial value of the average gas flow that can be obtained daily Qnb. Relation (1) is used
to express the evolution of this flow over time. The assessment is to decrease the average
daily flow with a production decline factor d, the law of variation being exponential; see
Relation (1) [6,18].

Qnt= Qnb·e−d·t (1)

where Qnt is the average daily gas flow achieved in the production month t. The production
time is measured in months. Logarithmizing Relation (1) shows that the variation in the
logarithm of the average flow is linear concerning time. The slope of this line is the decline
factor d:

ln(Q nt)= −dt + ln(Qnb) (2)

The decline factor is for gas exploitations of 0.04 month−1. The monthly throughput is
obtained by multiplying this relationship by the number of production days per month (3).
The number of production days that is generally chosen identically for all months is equal to
29.5 days/month; see Relation (3). This takes into account possible production interruptions.

Qntl= 29.5·Qnb·e−d·t (3)

Cumulative production is calculated by summing the monthly productions. The
production time (starting from month 1) is measured until a minimum gas flow is reached,
beyond which the expenses for the well maintenance exceed the benefits obtained through
selling the production, in month n. The usual values of this minimum flow are between 5
and 12 mScm/day (148–354 mScm/month).

The economic evaluation. Based on these assumptions, a final economic analysis is
conducted for all three estimation variants (High Estimation, Best Estimation, and Low
Estimation), which includes expenses related to well construction, production maintenance,
and abandonment. Profits from the sale of production are assessed. These calculations are
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performed with the idea of an update of the values to take into account the influence of
time on the expenses. The decision to dig the new gas well or to abandon the project is
finally made.

In Figure 2 and Table 1, the forecast for the three estimations based on initial flow rates
and the minimum acceptable flow rate is observed (an example). The possible duration of
production exploitation is determined from the cumulative production charts until reaching
the economically minimum flow rate, as shown in Figure 2.

Processes 2024, 12, 1009 6 of 25 
 

 

The economic evaluation. Based on these assumptions, a final economic analysis is con-

ducted for all three estimation variants (High Estimation, Best Estimation, and Low Esti-

mation), which includes expenses related to well construction, production maintenance, 

and abandonment. Profits from the sale of production are assessed. These calculations are 

performed with the idea of an update of the values to take into account the influence of 

time on the expenses. The decision to dig the new gas well or to abandon the project is 

finally made. 

In Figure 2 and Table 1, the forecast for the three estimations based on initial flow 

rates and the minimum acceptable flow rate is observed (an example). The possible dura-

tion of production exploitation is determined from the cumulative production charts until 

reaching the economically minimum flow rate, as shown in Figure 2. 

 

Figure 2. The time variation model for the production of a gas well expressed in the monthly gas 

flow due to the decrease in the pressure in the reservoir (exponential model), for each of the three 

initial flow hypotheses (start/end flow values): case A—High Estimation (17,194/327 mScm/month), 

case B—Best Estimation (10,030/309 mScm/month), and case C—Low Estimation (2865/230 

mScm/month). 

The cumulative production charts in Figure 3 show the maximum amount of gas that 

can be obtained by exploiting the respective deposit. The idea of the exponential model 

leads to a decreasing monthly production starting from a maximum value, a total volume 

of gas recoverable from the deposit, and a duration of exploitation of that deposit. How-

ever, taking into account the gas flow through the interstices, the supercritical flow regime 

provides a constant flow rate through these wells when the pressure drops until the criti-

cal threshold. These aspects can be seen in the form of production diagrams in some gas 

wells after a period of making circulation paths through the deposit. Thus, we have to give 

up on the exponential model in certain situations. The exponential model is much more 

suitable for crude oil wells. 

Commenting on Table 1, the optimistic forecast case starts from a flow of 17,194 
𝑚𝑆𝑐𝑚⁡

𝑚𝑜𝑛𝑡ℎ
 

and stops when the daily flow reaches the value of 327 
⁡𝑚𝑆𝑐𝑚

𝑚𝑜𝑛𝑡ℎ
. Included in this range is 99 

months of production. The cumulative production is 430.48 𝑀𝑆𝑐𝑚. 

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

20,000

0 20 40 60 80 100 120

M
o

n
th

ly
 p

ro
d

u
ct

io
n

, 
m

Sc
m

/m
o

n
th

Production month

Variation in the monthly gas flow

Case A Case B Case C

Figure 2. The time variation model for the production of a gas well expressed in the monthly gas flow
due to the decrease in the pressure in the reservoir (exponential model), for each of the three initial flow
hypotheses (start/end flow values): case A—High Estimation (17,194/327 mScm/month), case B—
Best Estimation (10,030/309 mScm/month), and case C—Low Estimation (2865/230 mScm/month).

Table 1. The exponential production decline analysis model.

Case Comment Start Flow
Value Qnb

End Flow
Value

Duration of
Exploitation

Cumulative
Production

Production
Decline Index

mScm/day mScm/day months MScm/MWh month−1

(a) High
estimation

Optimistic, maximum
flow value 582.86 11.11 99 430.48/4,261,752 0.04

(b) Best
estimation

Balanced, medium
flow value 340.00 10.47 87 248.23/2,457,477 0.04

(c) Low
estimation

Pessimistic, lower flow
value 97.14 7.82 63 67.44/667,656 0.04

The cumulative production charts in Figure 3 show the maximum amount of gas
that can be obtained by exploiting the respective deposit. The idea of the exponential
model leads to a decreasing monthly production starting from a maximum value, a total
volume of gas recoverable from the deposit, and a duration of exploitation of that deposit.
However, taking into account the gas flow through the interstices, the supercritical flow
regime provides a constant flow rate through these wells when the pressure drops until the
critical threshold. These aspects can be seen in the form of production diagrams in some
gas wells after a period of making circulation paths through the deposit. Thus, we have
to give up on the exponential model in certain situations. The exponential model is much
more suitable for crude oil wells.
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Figure 3. Cumulative production variation in the three cases of analysis of a gas well based on
the exponential model (end flow values): case A—High Estimation (430.48 MScm), case B—Best
Estimation (248.23 MScm), and case C—Low Estimation (67.44 MScm).

Commenting on Table 1, the optimistic forecast case starts from a flow of 17,194 mScm
month

and stops when the daily flow reaches the value of 327 mScm
month . Included in this range is

99 months of production. The cumulative production is 430.48 MScm.
The end flow value of the natural gas is an economic minimum value of the flow,

shown in Figure 2. The cumulative production values are calculated for the number of
months of production anticipated by the model.

A production decline factor of 0.04 month−1 was considered. The assessments are
similar for the other two situations, the Best Estimation and the Low Estimation. Some
examples of variation in the predicted production are introduced (in the exponential model)
compared to actual gas well production. It can be seen in Figure 4 that the forecast model
is the one in Figure 4b (exponential) and this is achieved (from the point of view of the
form of variation) in certain situations (gas wells 1 and 5) but sometimes presents both
quantitative and qualitative differences (gas wells 2, 3, and 4).
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Figure 4. Comparison of actual and anticipated production results: (a) actual production of five
natural gas wells from zone 1; (b) production forecast of the natural gas wells from zone 1.

2.1.2. Hubbert Model

In the work on gas well production estimation, many approaches try to model these
wells and assess the associated production stability risks. For these models [6,18], gas
production decreases continuously from an initial value.
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Although this model is not valid for all gas wells, it is used because it coincides with
the behavior of many wells in the field (mostly oil wells). How communication occurs
between different areas of the reservoir, the influence that gas flow has on communication
possibilities within the deposit, the interaction with adjacent reservoir zones, the rock
nature, and the extraction technology constitute many of the factors that are challenging to
incorporate into a model [35,36].

The Hubbert model is often used to predict the production of natural gas wells. The
model has the following features, according to [7–9,16]. After gas exploitation has been put
into operation, production starts from zero, increases over time, and reaches its maximum
value. Subsequently, there is the production decline phase, which can occur at a faster or
slower pace. In the last phase of exploitation, the gas well has a production with a slow
decrease, and after a while, the production stops; see Figure 5a.

Next, the production decreases until the resources are depleted and the area under the
graph of the variation of production over time is equal to the total volume of resources that
can be obtained (expressed in standard cubic meters of gas or megawatt hours), according
to [6,18]. Hubbert’s formula for cumulative production in this model is as follows:

CP =
URR

1 + e−b(t−tm)
(4)

where CP is the cumulative natural gas production; URR is the value of the recoverable
resource from the deposit; tm means the time at which the production peak is reached;
and b is the slope corresponding to periods of increased or decreased production (in the
Hubbert asymmetric model, the values are different).
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Figure 5. Prediction of natural gas production: (a) symmetric Gauss and Hubbert models; (b) Gauss
and asymmetric Hubbert models; (c) Gauss and symmetrical Hubbert models with a reduced
production growth interval; (d) Gauss and asymmetric Hubbert models with a reduced production
growth interval.

By deriving Formula (4) concerning time, the expression of the monthly production Q
(expressed in Smc/month) can be obtained:

Q =
d(CP)

dt
=

b·URR·e−b(t−tm)(
1 + e−b(t−tm)

)2 (5)

This derives monthly production:

dQ
dt

=
−b2·URR·e−b(t−tm)(

1 + e−b(t−tm)
)3

(
1− e−b(t−tm)

)
(6)

where t is equal to tm, the maximum monthly production, which is given in the relation:

Qm =
1
4

b·URR (7)

Formula (7) can be substituted in the expression number (5) and a simpler relationship
is obtained for the production value using the Hubbert model [9,30]:

Q =
2Qm

1 + cosh[b(t− tm)]
(8)

In Figure 5a, Qm = 106, 153 MWh
month ; tm = 20 months; b = 0.122 month−1.

Since the rising phase of a well’s production is faster than its declining phase, the asym-
metric Hubbert model is suitable to suggest this aspect; in Figure 5b, Qm = 106, 153 MWh

month ;
tm = 20 months; b1 = 0.228 month−1; b2 = 0.122 month−1. Although the Hubbert model
is used for the exploitation of various resources, in natural gas wells, the production
does not increase from zero to the maximum value and the first values obtained for a
gas well are (initially) higher [16]. The rising phase of a gas well’s production is also
shorter than its declining phase. Thus, it is preferred to eliminate a part of the left side
within this model; values that are not obtained in practical situations. In Figure 5c, the
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following situation is represented for the Hubbert symmetric model: Qm = 106, 153 MWh
month ;

tm = 10 months; b = 0.122 month−1, and in Figure 5d for the Hubbert asymmetric model:
Qm = 106, 153 MWh

month ; tm = 10 months; b1 = 0.228 month−1; b2 = 0.122 month−1.

2.1.3. Gauss Model

The Gauss model is similar to the Hubbert model and expresses the production value
of a gas well [6,18,30,37]. The relation expressing the probability density for the Gaussian
model is as follows:

f (t) =
1√
2π

exp
[
−(t− µ)2/

(√
2σ

)2
]

(9)

where µ is the average value and s is the standard deviation in the well exploitation process.
The cumulative production in the interval [0,+∞], considering the exploitation time t, is
denoted by URR. Multiplying the probability density function f (t) with the URR gives
the relationship for the monthly natural gas production:

Q =
URR
σ
√

2π
exp

[
−(t− µ)2/

(√
2σ

)2
]

(10)

Taking the derivative of natural gas production concerning time and equating one to
zero gives the maximum production at time tm = µ.

dQ
dt

= − URR
σ
√

2π
exp

[
−(t− µ)2/

(√
2σ

)2
]

t− µ

σ2 (11)

Substituting this relationship into the monthly production yields the maximum pro-
duction value:

Qm =
URR
σ
√

2π
, (12)

Finally, the relationship of production can be arranged in the following form [18]:

Q = Qmexp
[
−(t− tm)

2/
(√

2σ
)2

]
(13)

Shown in Figure 5a,b, Qm = 106, 153 MWh
month ; µ = 10 months; σ = 13 months. In the same

way as the Hubbert model, the area to the left of the maximum point for small production
values was excluded so that the study could be conducted on a domain equal to 3 sigma
(σ): 1 sigma (σ) domain to the left of the maximum point and 2 sigma (σ) domains to its
right side; see Figure 5c,d, where Qm = 106, 153 MWh

month ; µ = 10 months; σ = 13 months.

2.2. Theoretical Elements Related to the Evaluation of Production Risk

The Monte Carlo method is frequently used to emphasize the connection between a
model of a physical system [19,37]. To use the method, the following steps are necessary:
establishing the mathematical model for the target parameter, for example, the value of gas
production; establishing the independent variables in the model; determining distribution
functions for the independent variables; setting the number of simulations; determining
the distribution function and the characteristic elements for the observed quantity.

In Equation (13), which expresses the value of production through the Gauss model,
this method of production appreciation is used. There are three variables in the model:
the maximum value of production; the time at which the maximum production value is
obtained; and scattering the values of production times around the mean value. All these
three variables have certain probability distribution functions. Considering the performance
of modern programs, the number of tests can be greatly increased. Thus, the distribution
function for the gas production value is estimated and the probability of obtaining a certain
value is evaluated. These elements are useful during the early development of a well to
anticipate possible performance during development.
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For assessing the risk in production realization, an evaluation matrix is created based
on two indicators: the first indicator is the probability of achieving the production P and
the second indicator C is the degree of dispersion of the production. For the degree of
dispersion of production, the following relationship is applied [18]:

C = 1− µ

σ
(14)

Essentially, the risk matrix for a gas well expresses the probability of extracting gas
from the discovered deposit and the duration of the exploitation of the well. These models,
like the model used for production forecasts, have a degree of uncertainty and may fail in
some situations. However, in their construction, a whole series of elements are used that
are related to the deposit, the construction method of the gas well, and its exploitation, so
that decisions are made based on better information. We cannot determine the probabilities
of how long a well will last and the quantities of gas that can be extracted without using
these models, which (hopefully) will become better and better.

The risk matrix is represented in Figure 6 and structured on four levels [18]. Level
I of risk is represented by the green color on the chart. In this situation, production can
be conducted very easily. The criteria are the probability of achievement being P > 0.80
and the spread level being C ≤ 0.05. Level II of risk is represented by the blue color, where
production is easy to achieve; the criteria used are the probability being 0.50 ≤ P ≤ 0.80 and
the dispersion of production being C ≤ 0.10%, or the probability of achieving production
being P > 0.80 and the degree of dispersion being 0.05 < C ≤ 0.10%. Level III of risk is
represented by the yellow color. The production can be obtained when the probability
of obtaining the production is 0.20 ≤ C < 0.50 and the dispersion is C ≤ 0.10, or the
probability of obtaining the production is P > 0.50 and the dispersion is 0.10 < C ≤ 0.25
The risk of level IV is represented by the red color, where production is not easily achieved.
The evaluation criteria are the probability of obtaining production being P < 0.20 or the
probability of obtaining production being 0.20 ≤ P and the dispersion being C > 0.25.
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Commenting on the relationship that provides the degree of dispersion of production,
it can be observed that when there is a larger spread of production data, the value of
dispersion approaches one, indicating a high risk. When the average value of the data is
higher, then the degree of dispersion of the production is lower because the time interval
in which the production is achievable is wider, which implies a greater period of the
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exploitation of the well. These arguments together with the probability of production
realization are the basic elements that underlie the construction of the risk matrix [8,18,30].
It is useful for these aspects of assessment risk to be implemented in production analyses.

3. Case Study Analysis of the X Gas Well
3.1. Establishing the Gaussian Model of the Gas Well

To establish the Gaussian model of the gas extraction well, the following elements
are known.

The gas capacity of the gas storage was determined through specific investigations [23,36].
Expressed in the energy unit MWh (or in a volume unit, Scm), this capacity is equal to
1.19 × 107 MWh (1.21 × 109 Scm), at a higher calorific value of the gases from the deposit
of 9900 kWh/Scm (note that the previously shown example of the exponential model was
applied to the same gas well).

An insight into the relationship between the gas volume estimated by measuring
instruments and the proven gas volume in the region where these deposits are exploited is
expressed by the factor f1. The factor f1 is included in f1ε[0.5; 0.7] of the estimated value.
We can, therefore, anticipate a gas quantity between [5.97 × 106 and 8.36 × 106] MWh.

The recovery factor of the amount of gas for that area is estimated using the exploita-
tion history at f2 = 0.69. Thus, the gas volume range that can be recovered is [4.12 × 106;
5.77 × 106] MWh.

In addition, we consider the effect of the technical conditions, including the ways
of making the well hole and the possible problems that appear during exploitation as a
factor f3 that can decrease the amount of gas obtained [13]. We estimate the influence of
this factor on the amount of gas to be equal to f3 = 0.72. Finally, the gas volume range
that can be exploited URR is [2.88 × 106; 4.04 × 106] MWh. It is noted that within these
assessments, we are quite prudent. If the production model provides higher values, it is all
the better. There are many factors whose values are estimated. Thus, very large variations
of the values appear, decreasing the quality of the estimate [16,36].

The history of gas production areas does not provide a long time for a particular
production field. In general, the deposits available in Romania for small companies are
mature deposits or deposits with reduced capacities. The large gas producers in Romania
own most of the large fields where the exploitation period is much longer. Taking into
account this observation, the discrete moments of analysis are in the order of months. In
the example given for one of these companies with a small production capacity, which
represents a small part of natural gas extraction in Romania, the possible duration of
exploitation is between three to five years. We anticipated a production period of 39 months.

It is known that within the Gaussian model, 95% of the possible values are entered in
the 4-sigma interval. As we stated when presenting the relations of the theoretical model,
we used an interval equal to 3 sigma (positive values in that interval), because the initial
production period does not have small values for gas production. Then, an acceptable
value for the standard deviation is 13 months (39 months assumed to be in operation
divided by 3). In the case of the model considered for this gas well, this standard deviation
value was used in Relation (12). Using Relation (12), the maximum amount of gas that
can be extracted monthly can be determined. It is included in the range [88,461; 123,846]
MWh/month. The time taken to achieve the production peak was 10 months from the start
of the project tm = 10 months. Generally, after reaching a production maximum, this value
is maintained for some time. This time point tm of the beginning of maximum production
was chosen. With these considerations, Figure 7 shows the forecast made with the help of a
program for the exponential model, the Gauss model, and the symmetric and asymmetric
Hubbert model.
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Figure 7. The models used to make the production forecast at the analyzed gas well, f1 = 0.6;
f2 = 0.69; f3 = 0.72 (PNG, Production of Natural Gas).

The choice of Gauss/Hubbert models for this well was also suggested through the
history of productions in the considered area, which departs from a decreasing pattern
of production, as suggested using the exponential model. This history is represented in
Figure 8, associated with wells in this production area.
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Figure 8. Variation in the production at natural gas wells in the oil field of which the exemplified
well is a part (PNG, Production of Natural Gas).

3.2. Results Regarding the Risk Analysis in the Case of the Forecast Made with the Gaussian Model

From the Gaussian model [6,37], the following useful elements can be identified in
Relation (13); see Table 2. The production phases identified in Figure 9 are the following:
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increased growth 0–5 months; stable of 5–10 months; rapid decline of 10–23 months; slow
decline of 23–36 months.

Table 2. Gaussian model characteristics.

Case URR Qm µ σ f1 f2 f3

MWh MWh/month month months - - -
I 2.88 × 106 88, 461 10 13 0.5 0.69 0.72
II 3.46 × 106 106, 153 10 13 0.6 0.69 0.72
III 4.04 × 106 123, 846 10 13 0.7 0.69 0.72
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The dispersion degree of production calculated with Relation (14) is
C = 1− 10/13 = 1− 0.77 = 0.23. For the three situations highlighted above the proba-
bilities of achieving production are

0.5·0.69·0.72 = 0.24; 0.6·0.69·0.72 = 0.29; 0.7·0.69·0.72 = 0.34.

Using the risk matrix, it is possible to identify the area where the future natural gas
exploitation will be placed; see Figure 10 [18]. It is noted that the designed well is in level
III—a risk zone from the point of view of the possibilities of achieving production in the
provided time interval.

This model has the advantage of obtaining an associated risk coefficient, but it can
also be used to obtain better indications of the relationship between production and the
probability of its realization. Relation (13) is considered. In this relationship, the time
indicated for each production area is assumed; see Figure 9.

By choosing a moment in time in the fourth phase (slow decrease in production, for
example, t = 33 months) we can find out information about the probability of achieving some
production in this phase. The values of the variables related to the maximum production,
data average, and dispersion are considered variables whose distribution laws are uniform
in the following intervals: for the value of the gas volume in the deposit used to establish
the maximum production value, this is considered within the limits of [0.95 URR; 1.05 URR],
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where URR was calculated using Relation (12) for the three values of Qm indicated above;
for the mean of the tm values, the interval is [9.5; 10.5] months; and for the dispersion σ, the
interval is [12.5; 13.5] months. We performed several simulations (1000 values) using the
Monte Carlo method to determine the production values.
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Sequence 1, used to generate the values for URR, tm, and σ in the Matlab 2022b [37]
program, is presented in the Supplementary Materials.

It was verified that the values of Q obtained with Relation (13) have a normal distribu-
tion with the Lillie test and graphical tests (Figure 11) using Matlab sequence 2 from the
Supplementary Material [37].
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Figure 11. The graphical tests used to establish the normal distribution for the monthly production
value variable Q: (a) normal probability plot; and (b) histogram plot.

For a normal probability plot, if the data points appear along the reference line, the
sample data have a normal distribution and aspects checked; see Figure 11a. Histogram



Processes 2024, 12, 1009 16 of 25

representations for gas production values have to be similar to a typical Gauss variation,
with aspects checked; see Figure 11b.

We have two possibilities to use the results of a Monte Carlo simulation. First, we
compare the production values with a limit value of, for example, 22,000 MWh/month.
If the production value is above this level, we record this situation and finally report the
number of trials where the production value exceeded this threshold to the total number of
trials performed using the Monte Carlo method [19,37]. We roughly find the probability of
achieving production above this level by measuring the frequency. Successive trials have
some scattering but generally stabilize around a value.

The second possibility that gives us a broader picture of the relationship between
production value and its probability is to take the production data obtained by applying
the Monte Carlo method and test the distribution law of these data. As can be seen, the
ranges in which the variations of the variables on which the model depends are quite
narrow, so the production values obtained with Relation (13) are likely to remain around a
normal distribution. We checked this aspect with a test, in the present case being the Lillie
test (see Supplementary Material [37]), and because the condition of maintaining the null
hypothesis was met, we can use the theoretical elements from the normal distribution to
establish a link between production and the probability of achievement [16,37]. Graphical
tests revealed the same conclusion as in Figure 11. So, we used the second possibility in
Figure 12, using Matlab sequence 3.

For the area of slow production decline, the production achievement probabilities
are established according to the production value; see Figure 12 for the following val-
ues of the f1 factor: 0.5, 0.6, and 0.7. Assuming that the factor f1 expressing the actual
amount of gas in the deposit is half of the amount of gas estimated in the initial inves-
tigations, influence of production is shown in the diagram in Figure 12a. Interpreting
this diagram, we have a probability of 0.93 of achieving production values greater than
18,000 MWh/month. In this case, correlating the probability of obtaining a production
greater than 18,000 MWh/month with the production dispersion coefficient of 0.23, we
find that we are in the level III risk zone for this operation; see Figure 10. If we want a
production of greater than 22,000 MWh/month in an operation where we have 0.5 ( f1) of
the amount of gas predicted in the investigations as the actual volume of gas, a recovery
factor of 0.69 ( f 2), and a technical limitation of 0.72 ( f 3), achieving a production of over
22,000 MWh/month in the last well exploitation period (in month 33) is very risky, with a
probability of 0.05. This means that we do not have enough of a chance to achieve such a
production. We are in risk zone level IV.

Figure 12b,c correspond to higher values of proximity between the gas volume deter-
mined through investigations and the real gas volume, respectively, 0.6 and 0.7, leading
to higher probabilities of achieving productions greater than 22,000 MWh/month, namely
0.86 and near 1. In these cases, the transition from risk level IV to risk level III is observed
in the realization of such production.

This result, based on previous assumptions, tells us more about this exploitation. It
can be seen that depending on the production we propose, we have different probabilities
of achievement and a certain risk factor.

Similarly, the Hubbert model can be used where we have the following characteristic
values: b = 0.122 month−1; tm = 10months; Qm = 88, 461 MWh

month ; Qm = 106, 153 MWh
month ; and

Qm = 123, 846 MWh
month . The symmetric Hubbert model expresses values very close to the

Gaussian model. The asymmetric Hubbert model allows production values to approximate
the production variation aspect of many gas wells, where the production phase to peak is
shorter than the production phase after peak production.
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Figure 12. The influence of production on the probability of realization in the phase of slow produc-
tion decline at a gas well: (a) f1 = 0.5; (b) f1 = 0.6; and (c) f1 = 0.7 ( f2 = 0.69; f3 = 0.72).

4. Verification of Theoretical Models with Actual Production Data for the X Gas Well

Through Gauss and Hubbert’s theoretical models, well production values were antici-
pated over a 39-month interval. The risk factor corresponding to this exploitation was also
evaluated. That gas well had a continuous exploitation period of 32 months after which
production was interrupted for three months. Production was resumed for two months,
after which in the following two months, an attempt was made to put the well back into
production, but it was abandoned. In conclusion, the production period was 34 months (of
39 months) and is expressed in Table 3. The production values can be compared with the
established forecast models and the following conclusions can be drawn from Figure 12.
For the use of the two models, the production data provided by the production company
are known and shown in Table 3. These data are for the entire duration of the exploitation
of the well.

The higher calorific value of the gases is 9.9 kWh/Scm.
It is observed that the value of the extracted gas volume is within the predicted range

of 2.90 × 106 MWh ε [2.88 × 106; 4.04 × 106] MWh. Validation of the model with actual
production data for this well depends on the factors f1, f2, and f3. From the three situations
presented in Figure 13, it can be observed that there is an alignment of the forecast with
the production data in the scenario at point c, f1 = 0.7; f2 = 0.69; f3 = 0.72. A good
agreement with the actual values is obtained in the case of Figure 13c on the asymmetric
Hubbert model.

Regarding the difference between the model established using the exponential model
(case (b) from Figure 2) for the gas well and the actual production values, it is observed in
this case that the difference is very large (2.00× 106 MWh compared with actual cumulative
production 2.90 × 106 MWh), so this production model is inadequate for anticipating the
production of gas of this well; see Table 4. The criteria for evaluating forecast models are
listed below [37]:

R square:

R square = 1− SSE/SST, (15)
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adjusted R square Ra:

ajusted R− square = Ra = 1− SSE(n− 1)
SST(n−m)

, (16)

root mean square error, RMSE, and mean square error, MSE:

RMSE =
√

MSE, (17)

MSE =
SSE

n−m
, (18)

Table 3. Production data from well X.

No. Date Production Month Production Value

Month/year Month MWh
month

Scm
month

1 07.2018 1 31,198 3,151,340
2 08.2018 2 49,510 5,001,000
3 09.2018 3 69,795 7,050,000
4 10.2018 4 82,170 8,300,000
5 11.2018 5 91,080 9,200,000
6 12.2018 6 92,070 9,300,000
7 01.2019 7 96,890 9,786,898
8 02.2019 8 106,264 10,733,815
9 03.2019 9 118,578 11,977,626
10 04.2019 10 114,832 11,599,250
11 05.2019 11 120,321 12,153,698
12 05.2019 12 116,287 11,746,210
13 07.2019 13 120,738 12,195,772
14 08.2019 14 120,810 12,203,097
15 09.2019 15 116,841 11,802,211
16 10.2019 16 121,051 12,227,402
17 11.2019 17 117,660 11,884,914
18 12.2019 18 122,230 12,346,546
19 01.2020 19 119,282 12,048,723
20 02.2020 20 106,225 10,729,809
21 03.2020 21 107,752 10,884,099
22 04.2020 22 99,020 10,002,023
23 05.2020 23 95,284 9,624,675
24 06.2020 24 86,378 8,725,094
25 07.2020 25 82,847 8,368,470
26 08.2020 26 76,480 7,725,284
27 09.2020 27 68,320 6,901,024
28 10.2020 28 64,574 6,522,667
29 11.2020 29 54,155 5,470,298
30 12.2020 30 53,111 5,364,833
31 01.2021 31 44,791 4,524,385
32 02.2021 32 12,537 1,266,439
33 03.2021 33 0.0 0.0
34 04.2021 34 0.0 0.0
35 05.2021 35 0.0 0.0
36 06.2021 36 16,742 169,117
37 07.2021 37 11,205 113,185
38 08.2021 38 0.0 0.0
39 09.2021 39 0.0 0.0

Total 2,907,028 288,263,698
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Figure 13. Comparison between production values and theoretical forecasting mod-
els: (a) Gauss model, symmetric/asymmetric Hubbert models, and production values,
f1 = 0.5; f2 = 0.69; f3 = 0.72; (b) Gauss model, symmetric/asymmetric Hubbert models, and pro-
duction values, f1 = 0.6; f2 = 0.69; f3 = 0.72; and (c) Gauss model, symmetric/asymmetric Hubbert
models, and production values, f1 = 0.7; f2 = 0.69; f3 = 0.72, (PNG, Production of Natural Gas).

Table 4. Assessing agreement with forecast models.

Model SSE SST R Square RMSE Ra CP(
MWh
month

)2 (
MWh
month

)2 - MWh
month - MWh

Gauss 1.86 × 1010 7.39 × 1010 0.75 2.27 × 104 0.67 3.04 × 106

Hubbert symmetric 1.99 × 1010 7.39 × 1010 0.73 2.35 × 104 0.65 2.97 × 106

Hubbert asymmetric 1.09 × 1010 7.39 × 1010 0.85 1.77 × 104 0.79 2.77 × 106

Exponential 7.55 × 1010 7.39 × 1010 −0.02 4.51 × 104 −0.18 2.00 × 106

Cumulative Production 2.90 × 106

It is recommended that SSE and RMSE be as small as possible and that the values of
R and Adjusted R− square be close to 1 [37].

5. Conclusions

1. Establishing a suitable forecasting model allows the following advantages for a natu-
ral gas producer: a. it can predict the cumulative production of a gas well and b. it
can appreciate the production values with an accepted risk.
These elements ensure the monthly value of the quantities of gas extracted, an es-
sential aspect for the realization of the concluded contracts, and provide in advance
the cumulative production that highlights the economic profitability of the project,
comparing the costs of making and maintaining the gas well with the revenues.

2. The forecasting model used by Romanian companies is almost exclusively the ex-
ponential one. It is successfully applied to oil wells. To gas wells, this model has
led to numerous failures, which have practically meant missed supply contracts and
unprofitable investments.
There are three reasons why the traditional pattern of output variations through a
continuous decline from a maximum initial value has persisted. The first is related
to the difficulty of obtaining information that anticipates production values as well
as possible. The second reason is related to the expenses associated with obtaining
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this information. Thus, we continue to rely on what we already know. Sometimes,
the forecasting companies cut their expenses a lot and rely only on the history of the
wells in the production area. The third reason is related to the fact that this model
has a fairly high frequency of agreement with the results in practice, in particular to
oil wells.
We note that the exponential model does not give negative results in all situations due
to the short period of stable production of (followed by decline in) some gas wells,
where this model has been successful.

3. The article provides a forecasting alternative for gas wells that leads to better accor-
dance with production value results. The asymmetric Hubbert model offers good
possibilities for assessing the behavior of gas wells. This model was adapted according
to field observations of gas wells, where the initial production is quite high and rises
to the peak level quite quickly. The following changes were introduced: the initial
phase of the model was shortened, the slope of the growth period was increased, and
the operating interval was shortened.

4. The model presented in the article is an attempt to adapt a Hubbert or Gaussian model
that is generally applied for long periods and to make these models suitable for a well
with a short operating interval. Figure 13 and Table 4 highlighted the results obtained,
compared to the actual production of the analyzed gas well.
In the exemplified case, the asymmetric Hubert forecast model proved to be the closest
to real production conditions Ra = 0.79; Rsquare = 0.85; from the example presented,
it can be seen that there is a good agreement between the forecast model and the real
production. The cumulative production values agree quite well with the real produc-
tion of 2.90 × 106 MWh in the case of Gauss and Hubbert symmetric/asymmetric
models 3.04 × 106/2.97 × 106/2.77 × 106 MWh. There is a difference between the
cumulative production values of the 2.0e6 MWh exponential model and the actual
production values because the exponential model assumes a longer production period
(87 months; see Table 1); the exponential model does not agree with the production
variation at the exemplified well, according to the comparison indicators in Table 4.

5. An interesting attempt to use the Hubbert/Gauss models for gas wells is the work
conducted in the Sichuan Basin [18]. The paper presents a way to assess the production
and the risk of realizing the forecast at a gas field. Gaussian and symmetric Hubbert
models are used. The study period is 60 years: 2010–2070. The model used in this
article is adapted to a much shorter production period and with asymmetric behavior.

6. There are systems where the characterization is based on little data. The gray systems
theory is a useful tool for solving uncertain problems with limited data. The new
GMTGP (Gray Model Tight Gas Production) model presented in [16] solves the
problem of reasonably predicting tight gas production in China. However, it may not
be suitable for predicting other unconventional gas production. So, we must adapt
the models to the situations in the field. The selection of gray models must be based
on the data characteristics of the modeling system; otherwise, it is difficult to achieve
satisfactory model accuracy. Specifically, this model GMTGP makes a prediction for
the years 2018–2020 based on tight gas production data throughout China between
2009 and 2017. The present article uses a similar approach based on field situations as
in Figure 8: fit classical models based on sparse information. The article succeeds in
pointing to a better model for the cases it deals with.

7. The use of artificial neural network, ANN, models is based on training datasets to
determine the network followed by solving test cases [17]. The method of neural
networks is also a way to approach forecasting. The method is based on varied data
specific to an area, which in many situations makes it difficult to determine what
constitutes an impediment. The team carrying out this work proposes a continuation
of the study in this direction.

8. It is also intended to change the opinion of gas producers on their exclusive use of the
exponential model. This may lead to large errors in the gas production forecasting.



Processes 2024, 12, 1009 23 of 25

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/pr12051009/s1.

Author Contributions: Conceptualization, A.P.P., I.P., I.G.S. and C.N.E.; methodology, A.P.P., I.P.,
I.G.S. and C.N.E.; software, I.P. and C.N.E.; validation, A.P.P., I.P., I.G.S., C.N.E., D.B.S. and I.V.G.;
formal analysis, A.P.P., I.P., I.G.S. and C.N.E.; investigation, I.P., I.G.S., C.N.E., D.B.S. and I.V.G.;
resources, A.P.P., I.P., I.G.S., C.N.E., D.B.S. and I.V.G.; data curation, I.P., I.G.S. and I.V.G.; writing—
original draft preparation, A.P.P., I.P., I.G.S. and C.N.E.; writing—review and editing, C.N.E., D.B.S.
and I.V.G.; visualization, A.P.P., I.P., I.G.S., C.N.E., D.B.S. and I.V.G.; supervision, A.P.P. and I.P.;
project administration, A.P.P.; funding acquisition, A.P.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Petroleum-Gas University of Ploiesti for the Study of the
possibilities of increasing the storage/extraction capacity of natural gas in an underground storage,
no. 11065/08.06.2023.

Data Availability Statement: Other data are not available due to the confidentiality clause in the
contracts with the natural gas producers who supported this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviation

mScm 103 Scm
MScm 106 Scm
Scm standard cubic meter

Nomenclature

CP is the cumulative natural gas production, MWh;

MSE mean squared error,
(

MWh
month

)2
;

Qm maximum monthly production of natural gas, MWh/month;
Qnb initial value of the average gas flow that can be obtained daily, mScm/day;
Qnt is the average daily gas flow production in the month t, mScm/day;
Qntl is the average monthly gas flow production in the month t, mScm/month;
RMSE root mean squared error, MWh/month;
SSE is the sum of the squares of the differences between the values of the variable and the

values on the regression curve,
(

MWh
month

)2
;

SST is the sum of the squares of the differences between the values of the variable and their

mean value,
(

MWh
month

)2
;

URR is the value of the ultimate recoverable resource from the gas deposit, MScm;
b the slope corresponding to periods of increased or decreased production, at Hubbert

model month−1;
d decline factor at exponential model, month−1;
cosh(x) hyperbolic cosine, cosh(x) = 0.5

(
ex + e−x);

m is the number of coefficients used to determine the approximation curve of the
model values;

n is the number of production months;
t production month, month;
tm means the time at which the production peak is reached, month;
σ is the standard deviation for the Gauss model, months;
µ is the average value of production time for the Gauss model, month.
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