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Abstract: The bulk density of the particles, which is directly related to transportation and storage costs,
is an important basic characteristic of products as well as an important parameter in many processing
systems. This work quantified the relationship between the tapped bulk density of raspberry ketone
with different degrees of agglomeration and morphological metrics (particle shape descriptors and
roughness descriptors) and size metrics (size descriptors) and developed an artificial neural network
(ANN) prediction model for the tapped bulk density of raspberry ketone. Samples prepared under
different conditions were sieved and remixed, the tapped bulk density of the particles was then
measured, and the descriptor features of the particles were obtained by combining them with image
processing. The dimensions of the variables were decreased by principal component analysis and
variance processing. To overcome the hyperparameter estimation of the heuristic-based artificial
neural networks, the network model architectures were optimized by a neural architecture search
strategy combining two-objective optimization. The results demonstrated that the tapped bulk density
of raspberry ketone products is not only related to the descriptors of particle size and shape but also
has a non-negligible relationship with particle roughness descriptors. The performance of the optimal
ANN model demonstrated that the model can well predict the tapped bulk density of raspberry
ketone with different degrees of agglomeration. The ANN model obtained by extracting morphology
and size metrics through online image analysis can be used to measure the tapped bulk density in
real-time and has the potential to be used for developing model-based online process monitoring.

Keywords: bulk density; artificial neural networks; multi-objective optimization; neural architecture
search; NSGA II algorithm; particle shape and size and roughness descriptors

1. Introduction

The bulk density of particles is a fundamental physical property as well as an important
parameter describing the flowability of particles, and many processes require a priori
knowledge of its value [1–3]. Bulk density is important for products in industry because
it affects the storage and transportation of products, all of which influence the profit of
product processing [4]. For example, high bulk density can reduce the cost of shipping and
packaging materials when transporting products over long distances. Furthermore, “it is
also essential for pharmaceutical particles, as it determines the complexity of handling and
processing these powders” [5].

The bulk density of crystal particles is determined by many factors. For example,
the relative humidity and drying can affect the particles’ bulk density [2,6,7]. It is also
determined by the void fraction, the density and the size of particles [8,9]. Additionally,
Abdullah and Bhandari pointed out that particle shape and agglomeration process also
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affect the bulk density of particles, respectively [7,10]. Furthermore, Pisecky indicated
that particle shape and interstitial air are the main factors in determining the bulk density
of agglomerated particles, whereas the bulk density of non-agglomerated particles is
controlled by the particle size distribution [11]. At present, particle shape analysis in some
papers has gradually shifted from qualitative analysis using microscopy to quantitative
analysis using image processing [8,12]. However, “in these studies, shape characteristics
have not often been the key focus but rather have merely been supporting information”. The
feature descriptors obtained through image analysis are rarely correlated with the packing
characteristics of particles. In addition, agglomeration during crystallization not only affects
particle shape and size but also has a great impact on the particle surface, for example,
the surface of heavy agglomerates tends to be rough which affects the void fraction to a
certain extent. Therefore, it is necessary to investigate the quantitative relationship between
the morphological metrics (particle shape and roughness) and size metrics and the bulk
density of particles with different degrees of agglomeration. It is significant to investigate
the relationship above for achieving bulk density prediction, as well as for controlling and
optimizing the bulk density of the product during the crystallization process.

Machine learning is able to give reasonable predictions based on the available data,
which has shown great potential to reduce the investigative efforts of experiments and
simulations [13–15]. It is generally observed that ANNs are more advantageous than other
methods such as Support Vector Machines (SVMs) [16] and Response Surface Methodolo-
gies (RSMs) [17], regarding their ability to capture complex nonlinearities in the data [18–20].
Therefore, ANNs have been widely used in control, optimization, prediction and many
other practical application fields [21]. However, in developing ANN models, difficulty is
encountered in selecting hyper-parameters that determine the accuracy of ANNs, such
as the number of layers, the number of nodes in each hidden layer, and the activation
function [22]. These drawbacks sometimes limit the applicability of artificial neural net-
works. Hence, in recent years, several algorithms that have been developed within the
Neural Architecture Search (NAS) framework to determine the optimal configuration of
ANNs without the need for heuristic algorithms have emerged, for example, by utilizing
techniques such as Bayesian Optimization and Reinforcement Learning to determine the
optimal network architecture [23–25]. The NAS strategy was used in this work to find the
optimal ANN prediction model.

Raspberry ketone, also known as 4-(4-hydroxyphenyl)-2-butanone, is widely used in the
food industry, cosmetic industry, agriculture, pharmaceutical manufacturing, etc. It has a great
economic value and has been widely attention in recent years, the demand is also increasing
year by year. Since oiling-out occurs during the crystallization of raspberry ketone, resulting in
product agglomeration, raspberry ketone was used as a model material in this work.

This research explored the quantitative connection between the shape, roughness, and
size descriptors of raspberry ketone with different degrees of agglomeration versus the
bulk density, with the ultimate goal of achieving prediction over the bulk density. Different
samples prepared under different conditions were sieved into three particle size groups
and then recombined by a simple lattice design. The quantitative information on different
shapes, sizes, and roughness descriptors of the samples was gathered by light microscopy
and image processing, and the tapped bulk density of each sample was measured by tap
testing. Twelve characteristic descriptors with relatively high variability were determined
using principal component analysis, followed by reducing the dimensions of the variables
by analysis of variance. Finally, regression analysis using the optimal ANN model found
by the NAS strategy was used to evaluate the effectiveness of predicting bulk density using
the selected feature descriptors.

2. Experimental Section
2.1. Materials and Design

Raspberry ketone (99% purity) was purchased from Meryer (Shanghai, China). The 1-
propanol solvent (analytical reagent grade) was purchased from Tianjin Jiangtian Chemical
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Co. (Tianjin, China), and the ultrapure water was purchased from Wahaha Group Co., Ltd.
(Hangzhou, China). All the chemicals were used without further purification. A stereo
microscope (VIYEE) was used to record crystal images.

2.2. Sample Preparation and Sieving

Crystallization experiments were conducted in a 250 mL jacket crystallizer at 15 ◦C
(controlled by a thermostat water bath, Huber, Ministat 230, Germany); 9.75 g of raspberry
ketone was dissolved in 30 g of 1-propanol at 15 ◦C in the crystallizer with an agitation
speed of 300 rpm. The antisolvent (ultrapure water) was added continuously at a rate of
1 mL/min for 150 min by a peristaltic pump (model 77200-50, Cole-Parmer Masterflex
L/S, USA), and the slurry was maintained at 15 ◦C for 15 min after the complete addition
of antisolvent.

Seeding crystallization (control of product agglomeration) was optimized by varying
seed addition time (i.e., before or after liquid-liquid phase separation (LLPS)) and seed
sizes. Four sets of experiments under different conditions were performed. The particle
size and agglomeration degree of the products obtained in these sets varied. The degree
of agglomeration used in this work was defined based on the number of primary parti-
cles in the agglomerates. The agglomerates in products were classified into three types:
heavy agglomerates (i ≥ 10, where i represents the number of primary particles in each
agglomerate), medium agglomerates (i = [6, 9]), and light agglomerates (i = [2, 5]). These
types were defined according to our rules for evaluating the degree of agglomeration of
raspberry ketone crystals, which represent an increasing complexity (number of primary
particles) of the agglomerated particles. The detailed experimental conditions are shown in
Table S1. At the end of each experiment, the samples were collected by vacuum suction
filtration and then dried in an oven at 50 ◦C for 24 h. Different particle size groups have
different diameter ranges and the prediction performance of the model may be affected by
the range of diameters. Therefore, each sample after drying was sieved through a standard
sieve into three particle size range groups: coarse particles (>400 µm), medium particles
(300–400 µm) and fine particles (<300 µm). Particles in three size ranges were subsequently
recombined according to a simplex-lattice design (see Section 2.3).

2.3. Simplex-Lattice Design

The simplex-lattice design is an effective tool for designing experiments of mixtures that
can analyze variable-response relationships, with component proportions ranging from 0 to 1,
totaling 1 [26]. In this study, a simplex-lattice design was used to reallocate the particle size
fractions (coarse, medium, and fine) of the recombined samples. Figure 1 shows the particle
size fractions of the raspberry ketone samples, the number of test points designed in this
research was ten (Table S2). Finally, the tapped bulk densities of the samples were obtained by
the average value of the three repeated experiments using tap testing, which was conducted
with a Quantachrome Autotap device. The mean value and standard deviation of the tapped
bulk densities of different particle size fraction ratios are listed in Table 1.
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Table 1. The mean value and standard deviation of the tapped bulk densities of samples with different
particle size fraction ratios.

Mixture Ratio Tapped Bulk Density (kg/m3)

Fine Medium Coarse Sample 1 a Sample 2 b Sample 3 c Sample 4 d

1 0 0 611.2 ± 1.5 515.4 ± 0.3 558.5 ± 1.3 569.0 ± 1.1
0 1 0 612.5 ± 1.7 408.3 ± 1.1 528.7 ± 2.2 506.0 ± 2.4
0 0 1 484.6 ± 2.6 398.6 ± 1.8 515.0 ± 3.3 454.4 ± 3.2
0 1/2 1/2 5155 ± 3.2 578.1 ± 1.7 486.6 ± 1.8 485.8 ± 1.3

1/2 0 1/2 538.1 ± 1.5 499.3 ± 1.1 606.5 ± 3.1 459.6 ± 2.1
1/2 1/2 0 725.9 ± 1.0 508.7 ± 0.6 551.6 ± 0.8 522.9 ± 1.1
1/6 1/6 2/3 472.7 ± 2.3 452.6 ± 1.2 509.9 ± 1.1 568.3 ± 3.7
1/6 2/3 1/6 538.2 ± 1.7 445.2 ± 1.3 480.1 ± 2.6 478.1 ± 2.1
2/3 1/6 1/6 545.8 ± 0.3 571.5 ± 0.6 686.2 ± 1.5 636.2 ± 1.8
1/3 1/3 1/3 730.1 ± 1.0 499.6 ± 1.5 666.0 ± 1.7 563.6 ± 2.0

a Note: Sample 1 was obtained during the conditions of adding large-sized seeds (75–100 µm) before LLPS
(liquid-liquid phase separation). b Note: Sample 2 was obtained during the conditions of adding small-sized seeds
(150–180 µm) before LLPS (liquid-liquid phase separation). c Note: Sample 3 was obtained during the conditions of
adding large-sized seeds (75–100 µm) after LLPS (liquid-liquid phase separation). d Note: Sample 4 was obtained
during the conditions of adding small-sized seeds (150–180 µm) after LLPS (liquid–liquid phase separation).

3. Methodology
3.1. Image Processing and Analysis

Image descriptors of particles obtained by light microscopy and image processing. A
small number of product particles from each particle size fraction were placed in a Petri dish
(by tapping the dish to maximize dispersion of the particles), and images were collected
using a stereo microscope. Approximately 3000 particles for each sample were investigated
in this research. Figure S2a shows microscope images of different degrees of agglomeration.
Next, image processing is performed on the images captured. Threshold segmentation
was performed using the maximum interclass variance method (OTSU algorithm) [27] to
produce a binary image after processing (thresholding). Subsequently, a morphological
region-filling strategy was used to fill up the area confined by the boundaries of the objects
(hole filling). Simultaneously, the morphological opening operation was used to smooth the
object boundaries while eliminating objects that have contact with the image border (border
kill). Finally, dust and blurred particles were effectively removed by setting the minimal
projected area threshold of 0.0032 mm2 which corresponds to an equivalent diameter of
65 µm. The processed images are shown in Figure S2b. Eighteen image descriptors were
extracted by further analyzing the processed images (The three types of image descriptors
describing particle size, shape, and roughness). Figure 2 shows a schematic diagram of
some image descriptors and a complete list of all image descriptors including definitions
and formulas refer to Table S3.
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3.2. Principal Component Analysis (PCA)

Principal component analysis is a widely used dimensionality reduction technique for
data analysis [28]. “It can transform a high-dimensional dataset into a low-dimensional
space while retaining the maximum amount of information. A large number of corre-
lated variables can be transformed into a smaller dataset containing uncorrelated compo-
nents” [29]. Thus, “PCA can elucidate and simplify complex relationships between initial
variables”. It has been widely used in various scientific fields [30]. In this study, PCA was
used to determine which image descriptors have greater variability.

3.3. Artificial Neural Networks

“ANN is a computer algorithm for processing, predicting and categorizing data, and
its invention is inspired by the biological nervous system” [22]. In the last decade, ANN
has been widely used in many fields, including hydrodynamics, chemical solubility, reactor
performance, and mechanical wear rate [31–38]. The computation of ANN is divided into
three main stages: input layer, hidden layer and output layer. The input layer receives the
input data and the output layer produces the final output results. The hidden layer is used
to process the input data and gradually extract the feature information. The samples in
this research were divided into three subsets: training, validation and testing. The training
subset occupied 70%, the validation subset 15%, and the rest of the data was used for testing
(We used a fully random division of the dataset and cannot ensure that each sample type
a-d was included in each subset.). However, due to the randomness of initialization and
data division, the ANN obtained after each training process is normally different. Generally,
the basic principle for selecting the best ANN is to choose the ANN with the minimum
mean square error (MSE) or the maximum coefficient of determination (R2) [39]. “Since the
nature of the data can be nonlinear, a multilayer ANN is required in this work to explore
the architecture of the neural network with more than one hidden layer. A gradient-based
unconstrained method called the Levenberg–Marquardt algorithm was chosen to train the
model” [22]. The training ended automatically when the mean square error (MSE) of the
validation samples stopped decreasing. The flowsheet of the ANN is shown in Figure 3.
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3.4. Neural Architecture Search Optimization Network Architecture (NSGA-II-ANN)

It is a time-consuming and challenging task to pre-determine parameters such as
the number of hidden layers, the number of nodes per layer, and the activation function
before training the model. Multiple hidden layers are required for some nonlinear data to
improve the accuracy of the model, but the increase in the number of nodes and hidden
layers can cause overfitting. Therefore, a trade-off between maximizing the prediction
accuracy and minimizing the number of parameters (weights and biases) is necessary.
A multi-objective optimization framework for neural architecture search [22] was used
for the above problem to find the ANN model with maximum prediction accuracy and
minimum number of parameters. In this research, the number of hidden layers, the
number of nodes in each hidden layer and the activation function were used as decision
variables. The non-dominated sorting genetic algorithm II (NSGA-II) was used to solve
the two-objective optimization problem. The optimization objective function is firstly
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the number of the model parameters (N, represented by the function f 1) and secondly
the coefficient of determination (R2, represented by the function f 2) on the test set. The
architecture and activation function obtained from the optimizer was used for training
using the backpropagation algorithm. The flowsheet of the neural architecture search
algorithm used is shown in Figure 4. The detailed algorithm is shown in Table S4.

Processes 2024, 12, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. Pictorial representation of an artificial neural network. 

3.4. Neural Architecture Search Optimization Network Architecture (NSGA-II-ANN) 
It is a time-consuming and challenging task to pre-determine parameters such as the 

number of hidden layers, the number of nodes per layer, and the activation function be-
fore training the model. Multiple hidden layers are required for some nonlinear data to 
improve the accuracy of the model, but the increase in the number of nodes and hidden 
layers can cause overfitting. Therefore, a trade-off between maximizing the prediction ac-
curacy and minimizing the number of parameters (weights and biases) is necessary. A 
multi-objective optimization framework for neural architecture search [22] was used for 
the above problem to find the ANN model with maximum prediction accuracy and min-
imum number of parameters. In this research, the number of hidden layers, the number 
of nodes in each hidden layer and the activation function were used as decision variables. 
The non-dominated sorting genetic algorithm II (NSGA-II) was used to solve the two-
objective optimization problem. The optimization objective function is firstly the number 
of the model parameters (N, represented by the function f1) and secondly the coefficient of 
determination (R2, represented by the function f2) on the test set. The architecture and ac-
tivation function obtained from the optimizer was used for training using the backpropa-
gation algorithm. The flowsheet of the neural architecture search algorithm used is shown 
in Figure 4. The detailed algorithm is shown in Table S4. 

 
Figure 4. Flowsheet of the neural architecture search strategy. Figure 4. Flowsheet of the neural architecture search strategy.

3.5. Non-Dominated Sorting Genetic Algorithm II

“Compared with the traditional genetic algorithm, The NSGA-II algorithm has obvious
advantages in the optimization process” [40]. It is an improvement over traditional genetic
algorithms by introducing non-dominated sorting, the proposal of crowding distance and
crowding degree comparison operator, and the introduction of elite strategy, which reduces
the computational complexity, greatly reduces the computation time and improves the
optimization speed and results of optimization to a great extent. Based on its simplicity
and efficiency, the NSGA-II algorithm has been widely used in multi-objective optimization
problems [41–43]. The execution flowchart of NSGA-II is shown in Figure 5. The NSGA-II
algorithm steps are as follows:

Step 1: Create the initial parent population of size N.
Step 2: Generate an offspring population through crossover and mutation.
Step 3: Merge the parent and child populations to create a new population of size 2N.
Step 4: All individuals in the population are ranked by non-dominated sorting, and the
crowding distance is computed if the individuals have the same rank, then the suitable
individuals are selected to create the next population of size N.
Step 5: Determine the termination conditions and perform the above steps until the termi-
nation conditions are satisfied.
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4. Results and Discussion
4.1. Image Descriptor Analysis

As shown in Figure S2, the differences in shape and surface of particles with differ-
ent degrees of agglomeration are obvious. Therefore, three types of image descriptors
describing particle size, shape and surface roughness, respectively, were introduced to
describe the relationship between agglomerated particles and tapped bulk density. Since
using the image descriptor values for all individual particles results in numerical com-
plexity for PCA calculations, the mean values of all 18 image descriptors were used for
PCA to determine which descriptors had higher variability, and the effects of size, shape
and surface roughness could be assessed in this way. Figure 6a shows the PCA score
plot, where the numbers 1 to 12 represent, respectively, coarse, medium, and fine particles
from four different samples. As shown in the Figure 6a, all but the sample 5 are well
classified along the axes. The loading plot of PCA is shown in Figure 6b, combined with
the third principal component (as shown in Figure S5), among the 18 extracted descriptors,
12 image descriptors with relatively high loadings were chosen to train the ANN model
to predict the tapped bulk density of raspberry ketone. These descriptors are the number
of concave points (1), number of primary particles (3), maximal scaled depth of concavity
(2), elongation (9), aspect ratio (11), circularity (12), roundness (13), maximum/minimum
Feret diameter (16/17), particle perimeter/area (18/14), and equivalent diameter (15). For
detailed methods of the descriptors selected, refer to the Supplementary File.
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Furthermore, the empirical cumulative distribution function values of 12 image de-
scriptors determined by PCA were used to represent each descriptor variable in order to
quantitatively describe the morphology, size and surface roughness characteristics of the
raspberry ketone products with different agglomeration degrees. However, each point on
the empirical cumulative distribution curve will generate a large amount of input data.
When the dimension of the input data is much larger than the number of samples, the data
sparsity increases, and the training ANN model will become more difficult and prone to
overfitting problems. Therefore, based on the distance measurement (variance) between
the empirical cumulative distribution curves, i.e., the variance was computed separately for
each y = {0.1, 0.2, . . ., 1}, the first three variables with high variance in each descriptor were
selected for decreasing variable dimensions, as shown in Figure 7. The variance can be
calculated from Equation (1). Finally, the ANN input consisted of 36 values, that is, 3 points
from the cumulative distribution function of each of the 12 selected feature descriptors.

S =

√
1

N − 1 ∑N
i=1|xi − x|2 (1)

where,

x =
1
N ∑N

i=1 xi, N = 4 (2)
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Figure 7. Schematic illustration for selecting variables with large variance in the selected image
descriptors. y represents the value of the cumulative distribution function, and x represents the
number of concave points. The a–d in the figure represent the corresponding points on the curve.

4.2. Quantitative Analysis between Typical Descriptors and Tapped Bulk Density

Since particle size and morphology have an effect on the tapped bulk density of
raspberry ketone products with different agglomeration degrees, each sample was divided
into three particle size groups: coarse, medium and fine. The cumulative distribution curves
of three typical descriptors (maximum Ferret diameter, aspect ratio, and maximum scaled
concavity depth) among the 12 image descriptors are compared within the same particle
size fraction (Figure 8). The cumulative distribution functions of the image descriptors for
different samples within the same particle size fraction are significantly different. As shown
in Figure 9, the differences among the samples can be observed to be relatively large under
the same descriptor. Figure S3 shows the relationship between the descriptor mean values
of samples with different particle size fractions and their tapped bulk densities, indicating
that different samples within the same particle size fraction have different tapped bulk
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densities, which generally decrease with the decrease in the maximum Feret diameter and
aspect ratio and the increase in the maximum scaled concavity depth. It may be because
the particles with a more regular shape and less roughness will result in a low void fraction,
which will lead to a high tapped bulk density.
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4.3. Multi-Objective Optimization Results Based on NSGA-II

The bounds of the decision variables for multi-objective optimization and the parame-
ters of NSGA-II are listed in Table 2. Setting such a number of generations and probabilities
is to ensure convergence while setting such a number of neurons in one layer is to improve
the network search space. In this work, to improve the convergence speed of the NSGA-II
and ensure accurate ANN architecture, the genetic algorithm was programmed such that
the third hidden layer could have nonzero items only if the second layer existed. The evo-
lution of the Pareto front during the iterative process is shown in Figure S4. The gradually
increasing accuracy demonstrates the importance of exploring multiple hidden layers and
nodes. By tracking the evolution of the Pareto front in each generation, it is found that the
Pareto front gradually converges as the iteration proceeds.
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Table 2. List of parameters used in the neural architecture search algorithm for optimal ANN.

Parameter Value

Number of decision variables in NSGA-II 4
Number of population and generations in NSGA-II 100 and 100

Mutation and Crossover Probability in NSGA-II 0.01 and 0.9

Choice of activation function nonlinear activation function
(tansigmoid, logsigmoid)

Lower and upper bound on number of hidden layers 1 and 3
Lower and upper bound on nodes in each hidden layer {1, 0, 0} and {15, 15, 15}

Given that samples vary in their degree of agglomeration and that agglomeration has
an impact on the smoothness of particle surfaces, this work also examined the impact of
roughness descriptors (concave points, number of primary particles, maximal scaled depth
of concavity) on the accuracy of the prediction model. Figure 10 shows the final Pareto
front obtained by training with nine image descriptors (a) and 12 image descriptors (b),
respectively. If the prediction accuracy is the single objective, point A (R2 = 0.8336, RMSE
= 33.79 kg/m3) is considered the best solution in the Pareto front obtained in Figure 10a,
while point B (R2 = 0.8903, RMSE = 15.02 kg/m3) is considered as the best solution in
Figure 10b, which indicates that the importation of the roughness descriptors significantly
improves the accuracy of the model after training. Therefore, there is a certain influence
of the particle surface roughness on the product tapped bulk density for products with
different agglomeration degrees.
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Figure 10. (a) Final Pareto front obtained by training using nine descriptors. (b) Final Pareto front
obtained by training using 12 descriptors (including roughness descriptors). The functions f1 and f2

represent the prediction accuracy and the number of model parameters, respectively. A and B are
considered to be the best solution points in the Pareto front in the figure (with the prediction accuracy
as a single objective).

4.4. Selection of Optimal ANN Model Based on AIC

In this work Akaike Information Criterion (AIC) [44] was used to obtain the optimal
ANN model from the list of Pareto solutions. A trade-off between prediction accuracy and
the number of model parameters was made in this method. The list of Pareto solutions
obtained after training and optimization using the selected 12 image descriptors is shown
in Table S6. The optimal ANN model selected based on AIC has 264 parameters with five,
eight and three nodes in the hidden layer, tansigmoid activation function in the hidden
layer, and linear activation function for the neuron in the output layer. The performance
of the model is shown in Figure 11, the coefficient of determination (R2) and root mean
square error (RMSE) on the test set are 0.8773 and 17.15 kg/m3, respectively. In addition,
the k-fold cross-validation method (k is 10) was used to train and evaluate the model
according to the selected model architecture, with the coefficient of determination (R2) and
root mean square error (RMSE) on the test set at this point being 0.8697 and 25.78 kg/m3,
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respectively. The R2 and RMSE on all data sets were 0.9016 and 8.32 kg/m3, respectively.
Furthermore, the cross-validation error is evaluated as the mean value of validation error
obtained in K runs. Therefore, the ANN model developed can be considered potentially
useful for on-line prediction on this basis. More information about AIC is included in the
Supporting Information.
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In summary, the tapped bulk densities of raspberry ketones mainly depend on the
shape of the particles and the particle size, which is also related to the roughness of the
particles. Furthermore, since the obtained ANN model is independent of the prepara-
tion conditions of raspberry ketone with different degrees of agglomeration, this model
is suitable for predicting the tapped bulk density of raspberry ketone. The ANN model
developed in this work may be useful for developing model-based online process monitor-
ing, compared to traditional time-consuming and labor-intensive offline bulk density tests.
Image processing techniques that can obtain more accurate 3D information about particles
may be applied to online process monitoring in the future.

5. Conclusions

By investigating the relationship between particle shape, roughness, size descriptors
and the tapped bulk density, this work aims to develop an ANN model for online prediction
of the tapped bulk density, which has the potential to be used for model-based online
process monitoring. As an alternative to the conventional bulk density test, the developed
model can improve plant efficiency and reduce operating costs. It was found that the
image descriptors of raspberry ketone samples prepared under different conditions are
different. The trends of the tapped bulk density versus the changes of the three typical
descriptors (maximum Ferriter diameter, aspect ratio, and maximum scaled depression
depth) are similar for the different particle size fractions. Subsequently, it was revealed
that the surface roughness of the particles has a certain effect on the tapped bulk density
by model training and optimization of the selected nine and 12 descriptors, respectively.
Finally, the test results of the optimal ANN model selected by model evaluation indicated
that the use of the shape, roughness, and size descriptors of raspberry ketone can be used
to predict the tapped bulk density well.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12050902/s1. Table S1: Detailed Experimental Conditions
for Seeding Crystallization; Figure S1: (a) LLPS was observed by stopping the stirring and then
standing for a period of time. (b) Oil droplets were observed under the microscope; Figure S2:
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(a) Microscope images of crystals with different degrees of agglomeration. (b) The images after
image processing; Table S2: Ratios of different particle size fractions based on simplex-lattice design;
Table S3: The 18 image descriptors extracted and their definitions; Table S4: Algorithm for Auto-
tuning of parameters in ANNs; Table S5: The image descriptors represented by numbers 1 to 18;
Figure S3: The mean values of the image descriptors for fine (a), medium (b), and coarse (c) particles
of the four samples versus their tapped bulk densities; Figure S4: The evolution of pareto front with
iterative process; Table S6. ANN model architecture on Pareto front ( training with 12 descriptors);
Akaike Information Criterion(AIC); The detailed method for selecting the descriptors.
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