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Abstract: Intuitionistic fuzzy sets provide a viable framework for modelling lifetime distribution
characteristics, particularly in scenarios with measurement imprecision. This is accomplished by
utilizing membership and non-membership degrees to accurately express the complexities of data
uncertainty. Nonetheless, the complexities of some cases necessitate a more advanced approach
of imprecise data, motivating the use of generalized intuitionistic fuzzy sets (GenIFSs). The use of
GenIFSs represents a flexible modeling strategy that is characterized by the careful incorporation of an
extra level of hesitancy, which effectively clarifies the underlying ambiguity and uncertainty present
in reliability evaluations. The study employs a methodology based on generalized intuitionistic
fuzzy distributions to thoroughly examine the uncertainty related to the parameters and reliability
characteristics present in the Burr XII distribution. The goal is to provide a more accurate evaluation of
reliability measurements by addressing the inherent ambiguity in the distribution’s shape parameter.
Various reliability measurements, such as reliability, hazard rate, and conditional reliability functions,
are derived for the Burr XII distribution. This extensive analysis is carried out within the context
of the generalized intuitionistic fuzzy sets paradigm, improving the understanding of the Burr XII
distribution’s reliability measurements and providing important insights into its performance for
the study of various types of systems. To facilitate understanding and point to practical application,
the findings are shown graphically and contrasted across various cut-set values using a valuable
numerical example.

Keywords: new type generalized intuitionistic fuzzy set (GenIFS); α,β-cut sets; generalized intuitionistic
fuzzy probability (GenIFP); generalized intuitionistic fuzzy reliability characteristics (GenIFRCs);
Burr XII distribution

1. Introduction

Reliability analysis has always depended on specific data and parameters, making
it essential for evaluating lifetime data. Nevertheless, real-world situations frequently
result in inaccurate and partial information, which raises questions about the precision of
these evaluations. This requires the development of approaches that can reliably interpret
ambiguous data and maintain the integrity of reliability assessments in the context of
incomplete data. In order to meet the obstacles presented by uncertain circumstances,
a customized approach to reliability evaluation is required, particularly when dealing
with ambiguous lifetime data. In response to the need for a more flexible framework,
Zadeh [1] pioneered the development of fuzzy set theory. This theory offers a framework
for a sophisticated and flexible reliability analysis in circumstances that are uncertain and
complex. Fuzzy set theory is a pragmatic method for handling uncertain data, which
utilizes a membership degree to express the probability of an event. This degree quantifies
the level of association between an element and a fuzzy set. Through successful research
efforts, the concept of fuzzy sets has evolved significantly, leading to the development of
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different expansions. Type 1, type 2, and intuitionistic fuzzy sets (IFSs) are examples of
extensions that increase the utility of fuzzy set theory. Each extension corresponds to a
specific situation, providing a versatile framework for collecting and expressing various
aspects of uncertainty in many different kinds of situations. Atanassov’s fundamental
work [2] pioneered the definition of intuitionistic fuzzy sets, while his recent work [3]
provided novel operations and bridged conceptual gaps between intuitionistic and type
1 fuzzy sets theories. After that, Zeng et al. [4] presented a new multi-attribute decision-
making method using intuitionistic fuzzy values and a modified VIKOR method. In a
different case, experienced specialists were limited to provide options within the scope of
IFS. To address this problem, Yager [5–7] proposed Pythagorean and generalized orthopair
fuzzy sets. The concept of IFSs has been utilized to address various decision-making [8–10]
and reliability evaluation issues [11–13].

Several influential research articles have significantly contributed to the advancement
of system reliability analysis through the application of fuzzy set theory. One notable
approach involves employing fuzzy probability for reliability analysis, by utilizing fuzzy
random numbers to represent uncertain probabilities of system events [14]. To enhance
the system reliability engineering, fuzzy set theory is also expanded to address numerous
multi-objective system reliability optimization scenarios [15–17]. These techniques optimize
system reliability under conflicting objectives, considering both probabilistic and imprecise
reliability measures [18]. Furthermore, Refs. [19–21] employed intuitionistic fuzzy sets to
construct and systematically evaluate the reliability of both time-dependent and blended
systems, meticulously accounting for the inherent uncertainties associated with lifetime
data. Moreover, the authors also presented the studies (Refs. [22–24]) that apply simulation-
based techniques to analyze complex systems, highlighting how these methods enhance
understanding and reliability assessments across various contexts. Recently, q-rung or-
thopair fuzzy sets have been utilized in system reliability analysis to sophisticatedly handle
and model the inherent uncertainties in system performance predictions [25–28].

The Burr XII distribution is one of the twelve distributions in the Burr family. It is
defined by two positive shape parameters, referred to as η and γ. This distribution is
critical in survival analysis, especially when studying heavy-tailed survival time data [29].
Burr XII’s probability density function can have a declining or unimodal structure, giving
it versatility in representing many events. The curve of hazard rate function of the Burr
distribution is flexible, as it can exhibit either diminishing trends or an upside-down
bathtub shape. Its versatility enables it to accurately simulate diverse risk patterns [30].
The application of fuzzy approaches has improved the reliability study of the Burr family
distribution. One study presents a compound class of the unit Burr XII model, analyzing
parameters and fuzzy reliability using both nonfuzzy and fuzzy estimators [31]. In another
study, the Burr XII distribution is utilized to apply sophisticated statistical techniques for
modeling two competing failure modes [32]. Furthermore, a comparison of classical and
Bayesian estimates of a Burr type XII distribution using fuzzy technique is explored in
Ref. [33]. Moreover, Burr XII is used in several excellent works pertaining to lifetime and
fuzzy analysis [34–39].

Jamkhaneh and Shabani [40,41] presented a new type of generalized intuitionistic
fuzzy numbers (GenIFNs) based on Mondal’s [42] fundamental generalized intuitionistic
fuzzy sets (GenIFSs) for the reliability study of life distribution. They investigated several
reliability measures and derived different system reliability for life distribution using this
new fuzzy set [43–45]. In a recent work, Kalam, A. et al. [46] also used this new fuzzy set
to study the reliability characteristics for Lomax life distribution. The existing literature
clearly emphasizes the utmost importance of comprehending fuzzy reliability in the context
of fuzzy life distribution, both in theoretical and practical domains.

To achieve this, we used the Burr XII distribution to study the dynamics of life dis-
tribution, concentrating on the uncertainty in one of its shape parameters, γ. By fixing
the first shape parameter η and fuzzifying the other into a GenIFN, we developed a fuzzy
probability framework for the Burr XII distribution. Extending our exploration, we pro-
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vided generalized intuitionistic fuzzy probability and reliability for this life distribution by
applying new (α, β)-cut sets. This approach effectively unraveled the inherent fuzziness
in the form of reliability characteristic bands. Our study also involved a comprehensive
analysis of the nature of these reliability characteristics over time, shedding light on their
temporal evolution and dynamics. This new methodology aims to significantly improve the
precision and comprehension of reliability evaluations in the domain of system reliability
engineering. Its emphasis point is the intricate analysis of complex systems where the
inherent challenges of uncertainty and imprecision play a critical role. By addressing these
critical variables, the approach attempts to raise the standard for reliability evaluation,
contributing to a finer understanding necessary for the construction and maintenance of
highly reliable and resilient systems.

The subsequent parts of the paper are methodically arranged as follows: Section 2
provides a thorough examination of the fundamental ideas of generalized intuitionistic
fuzzy set theory. Sections 3 and 4 elaborate on the methodological framework used to
derive GIFSs probability, illuminating the intricate process underlying the development
of key reliability features, namely, reliability, conditional reliability, and hazard functions
modified for the Burr XII life distribution. The subsequent Section 5 systematically gives a
numerical example, complemented by a graphical representation, deliberately utilized to
support and strengthen the theoretical constructions presented in the preceding sections.

2. Definitions
2.1. Generalized Intuitionistic Fuzzy Set (GenIFS)

A GenIFS [40] within a non-empty universal set X is defined as

A =
{〈

x, µA(x), λA(x) : x ∈ X
〉}

, (1)

where µA : X → [0, 1] , λA : X → [0, 1] are the extent of membership and non-membership
functions of X in A, respectively. Also, 0 ≤ µε

A(x) + λε
A(x) ≤ 1, for each x ∈ X and

ε = n (or 1
n

)
, n = 1, 2, 3, . . . ,N.

2.2. Generalized Intuitionistic Fuzzy Number (GenIFN)

A new type of GenIFN, A [41], can be given as

µA(x) =



µL(x) =
(
(x−a)µ

b−a

) 1
ε , x ∈ [a, b],

u = µ
1
ε , x ∈ [b, c],

µR(x) =
(
(d−x)µ

d−c

) 1
ε , x ∈ [c, d],

0, o.w,

λA(x) =



λL(x) =
(

1 − (1−λ)(x−a′1)
b−a′1

) 1
ε

, x ∈ [a′1, b],

v = λ
1
ε , x ∈ [b, c],

λR(x) =
(

1 − (1−λ)(d′1−x)
d′1−c

) 1
ε

, x ∈ [c, d′1],

1, o.w,

(2)

where µA(x), λA(x) are the membership and non-membership functions of X, respectively.
The GenIFN A is represented as A = (a′1, a, b, c, d, d′1, µ, λ, ε) if a′1 ≤ a ≤ b ≤ c ≤ d ≤ d′1
and 0 ≤ µε

A(x) + λε
A(x) ≤ 1, ∀ x ∈ X.

The above expression indicates that a generalized intuitionistic fuzzy number (GenIFN)
has an equal distribution in its membership and non-membership functions, centered
around a main value and showing symmetry in its left and right sides.
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2.3. GenIFN Based on (α, β)-Cut Sets

A generalized intuitionistic fuzzy number (GenIFN) based on the α-cut and β-cut sets
can be defined by

A (α, β, ε) =
{

Aµ[α, ε], Aλ[β, ε]
}

. (3)

Suppose that the fixed numbers α, β ∈ [0, 1] such that 0 ≤ α ≤ µ
1
ε , λ

1
ε ≤ β ≤ 1 and

0 ≤ αε ≤ βε ≤ 1; then the (α, β)-cut sets are derived as

A [α, β, ε] =
{〈

x, µA(x) ≥ α, λA(x) ≤ β : x ∈ X
〉}

. (4)

Note that the above expression contains two cut-sets, the α-cut set of GenIFN,

Aµ [α, ε] =
{〈

x, µA(x) ≥ α : x ∈ X
〉}

,
= [L(α), R(α)],

(5)

where

L(α) = a +
(b − a)αε

µ
, R(α) = d +

(d − c)αε

µ
,

and the β-cut set of GenIFN,

Aλ [β, ε] =
{〈

x, λA(x) ≤ β : x ∈ X
〉}

,
= [L(β), R(β)],

(6)

where

L(β) = a′1 +
(b − a′1)(1 − αε)

1 − λ
, R(β) = d′1 +

(d′1 − c)(1 − βε)

1 − λ
.

The (α, β)-cut sets of a GenIFN are the intersection of these two cut-sets,

A [α, β, ε] = {x, x ∈ [L(α), R(α)] ∩ [L(β), R(β)]}, (7)

which can be simplified as

A [α, β, ε] =
{〈

x, µA(x) ≥ α, λA(x) ≤ β : x ∈ X
〉}

. (8)

2.4. Several Relations and Operations on GenIFNs

Let us consider two GenIFNs, B [α, β, ε] and C[α, β, ε], then.

I. B [α, β, ε]⊕ C[α, β, ε] =
{

Bµ[α, ε] ⊕ Cµ[α, ε], Bλ[β, ε] ⊕ Cλ[β, ε]
}

,
II. m ⊗ B [α, β, ε]⊕ k =

{
m ⊗ Bµ[α, ε]⊕ k, m ⊗ Bλ[β, ε]⊕ k

}
,

III. k ⊖ B[α, β, ε] =
{

k ⊖ Bµ[α, ε], k ⊖ Bλ[β, ε]
}

,
IV. B[α, β, ε] ≼ C[α, β, ε] i f f

{
Bµ[α, ε] ≼ Cµ[α, ε] and Bλ[β, ε] ≼ Cλ[β, ε]

}
,

V. B[α, β, ε] = C[α, β, ε] i f f Bµ[α, ε] = Cµ[α, ε] and Bλ[β, ε] = Cλ[β, ε] .

3. Generalized Intuitionistic Fuzzy Probability

Lifetime data uncertainty often arises from random variables or imprecise model
parameters. In this context, we specifically address parameters represented as fuzzy
numbers, enhancing our approach by employing generalized intuitionistic fuzzy numbers
(GenIFNs). This leads to the introduction of a refined concept, fuzzy probability, which
accommodates and quantifies the inherent uncertainty in model parameters.

Let us consider a lifetime variable X characterized by a density function f (x, γ), where
γ are represented as generalized intuitionistic fuzzy parameters. So, we can define the α
cut for membership and β cut for the non-membership function within the provided fuzzy
probability framework for a constant point c as

Pj(c)[k, ε] = [P(c)
∣∣γ ∈ γj [k, ε], (j, k) = (µ, α), (λ, β)]

=
[

PL
j (c) [k], PR

j (c) [k]
]
,

(9)
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for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ αε + βε ≤ 1, where P(c) is the crisp probability de-
fined as P(c) =

∫
c f (x, γ) dx, and PL

j (c)[k] = infγ∈γj [k, ε]P(c), PR
j (c)[k] = supγ∈γj [k, ε]P(c).

Consequently, the generalized intuitionistic fuzzy probability (GenIFP) can be given by

P(c) = P(c) (α, β, ε) = Pµ(c) [α, ε], Pλ(c) [β, ε], (10)

and the (α, β)-cut sets of GenIFP for c are

P(c) [α, β, ε] =
{

ν
∣∣ν ∈ Pµ(c) [α, ε] ∩ Pλ(c) [β, ε]

}
, (11)

with [0, 0] ≼ Pµ(c)[α, ε], Pλ(c)[β, ε] ≼ [1, 1] and [0, 0] ≼ P(∅)[α, β, ε], P(c)[α, β, ε] ≼ P(Ω)[α, β, ε] ≼
[1, 1] for empty set ∅ and universal set Ω.

To be more specific, we considered a lifetime variable X from the Burr XII distribution
with two shape parameters, η and γ, having the cumulative distribution function

F(x) = 1 − (1 + xη)−γ, x ≥ 0, (12)

and the probability density function

f (x) = γηxη−1(1 + xη)−(γ+1), x ≥ 0, (13)

Moreover, changing the values of γ leads to different shapes in the probability density
function graph while η remains constant, and vice versa. Fuzzification with generalized
intuitionistic fuzzy sets (GenIFSs) enhances the modeling of Burr XII distribution’s shape
parameters, offering a more flexible uncertainty representation by considering membership,
non-membership, and hesitancy levels. This might be flexibly applied to one or both shape
parameters, accommodating the specific needs of diverse datasets.

Consider the lifetime variable X from the Burr XII distribution with fuzzification to
the one shape parameter, γ, into a GenIFN as γ = (a′1, a, b, c, d, d′1, µ, λ, ε), while the other
shape parameter, η = 1, remains constant.

Since 1 − (1 + xη)−γ is the monotonically decreasing function of γ, the cut-sets of the
generalized intuitionistic fuzzy distribution function is given by

Pµ(x)[α, ε] =

[
1 − (1 + xη)

−( (d−c)αε

µ +d), 1 − (1 + xη)
−(a+ (b−a)αε

µ )
]

,

Pλ(x)[α, ε] =

[
1 − (1 + xη)−(

(d′1−c) (1−βε)

1−λ +d′1), 1 − (1 + xη)−(a′1+
(b−a′1) (1−βε)

1−λ )
]

.
(14)

which leads to the cut-sets for the specific point x = c:

Pµ(c)[α, ε] =

[
1 − (1 + cη)

−( (d−c)αε

µ +d), 1 − (1 + cη)
−(a+ (b−a)αε

µ )
]

,

Pλ(c)[α, ε] =

[
1 − (1 + cη)−(

(d′1−c) (1−βε)

1−λ +d′1), 1 − (1 + cη)−(a′1+
(b−a′1) (1−βε)

1−λ )
]

.
(15)

Corollary 1. Let us consider the GenIFP P(c), then.

(I) P(cc) = 1 ⊖ P(c)(α, β, ε)
(II) I f c1⊂ c1 then P(c1)(α, β, ε) ≼ P(c2)(α, β, ε)
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Proof.
(I) From the definition of GenIFP, for (j, k) = (µ, α), (λ, β),

Pj(cc)[k, ε] =
[
1 − P(c)|γ ∈ γj[k, ε]

]
=
[

PL
j (c

c)[k], PR
j (c

c)[k]
]

=
[
in f γ∈γj [k,ε](1 − P(c)), supγ∈γj [k,ε](1 − P(c))

]
=
[
1 − supγ∈γj [k,ε]P(c), 1 − in f γ∈γj [k,ε]P(c)

]
= 1 ⊖

[
PL

j (c)[k], PR
j (c)[k]

]
which is substantiated by relation 2.4 (V).

(II) Since P(c1) ≤ P(c2), it is

Pj(c1)[k, ε] =
[
in f γ∈γj [k,ε]P(c1), supγ∈γj [k,ε]P(c2)

]
⪯
[
in f γ∈γj [k,ε]P(c1), supγ∈γj [k,ε]P(c2)

]
= Pj(c2)[k, ε]

and based on the relation 2.4 (IV), the proof is completed. □

4. Generalized Intuitionistic Fuzzy Reliability Characteristics

The generalized intuitionistic fuzzy sets method enhances the analysis of reliability
parameters by considering membership, non-membership, and hesitancy levels, effectively
addressing subjective, uncertain, and vague aspects of information. This sophisticated
technique goes beyond the limits of conventional binary logic, adapting to the inherent
unpredictability found in intricate systems and thereby improving the accuracy of their
representations.

Let a lifetime variable X from the density function f (x, γ), where the parameter γ
is vectorized by a generalized intuitionistic fuzzy number (GenIFN) and the generalized
intuitionistic fuzzy reliability characteristics (GenIFRCs) is denoted by ω(t).

Then, the (α, β)-cut sets for GenIFRC for (j, k) = (µ, α), (λ, β) can be given by the
following equation:

ωj(t) [k, ε] =
{

ω(t)
∣∣γ ∈ γj[k, ε], (j, k) = (µ, α), (λ, β)

}
=
[
ωL

j (t) [k], ωR
j (t) [k]

]
,

(16)

where ωL
j (t)[k] = infγ∈γj [k, ε]ω(t), ωR

j (t)[k] = supγ∈γj [k, ε]ω(t), with the following restric-

tions: 0 ≤ α ≤ µ
1
ε , λ

1
ε ≤ β ≤ 1, 0 ≤ αε + βε ≤ 1 and t > 0. The function ω(t) may be

considered reliability measures, including hazard rate, reversed hazard rate, or cumulative
risk functions.

Finally, the GenIFRC is shown as ω(t)(α, β, ε) =
(
ωµ(t) [α, ε], ωλ(t) [β, ε]

)
and the

(α, β)-cut sets of GenIFRC are given by

ω [α, β, ε] =
{

ν
∣∣ν ∈ ωµ(t) [α, ε] ∩ ωλ(t) [β, ε]

}
. (17)

where ωj(t) [k, ε], k = α, β is a two-variate function of k and time t. For every special time,
t = ts, ω(ts) is a generalized intuitionistic fuzzy number. In this method, for every special
value of α = αs and β = βs, curves of ωµ(t)[αs, ε], ωλ(t)[βs, ε] and ωµ(t)[αs, βs, ε] behave as
bands with lower and upper limits.

These reliability measures possess some important properties, which can be remarked
as follows:
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Remark 1. If µ1 ≤ µ2 and λ1 ≤ λ2, then ωµ1(t) [α, ε] ⊂ ωµ2(t) [α, ε] and ωλ2(t) [β, ε] ⊂
ωλ1(t) [β, ε],

Remark 2. If ε1 ≤ ε2, then ωµ(t) [α, ε1] ⊂µ ω [α, ε1] and ωλ(t) [β, ε2] ⊂ ωλ(t) [β, ε2].

4.1. Generalized Intuitionistic Fuzzy Reliability

Using the developed notion of reliability characteristics, the cut-sets for one of the
measures of GenIFR are

Rj(t) [k, ε] = {R(t)|γ ∈ γi[k, ε], (j, k) = (µ, α), (λ, β)}
=
[

RL
j (t) [k], RR

j (t) [k]
]
.

(18)

where R(t) =
∞∫
t

f (t, η, γ)dx, RL
j (t)[k] = infγ∈γj [k, ε]R(t) and RR

j (t)[k] = supγ∈γj [k, ε]R(t)

with constraint 0 ≤ αε + βε ≤ 1.
The GenIFR is shown as R(t)(α, β, ε) =

(
Rµ(t) [α, ε], Rλ(t) [β, ε]

)
and the cut-sets of

GenIFR are given by the following equation:

R(t) [α, β, ε] =
[
ν
∣∣ν ∈ Rµ(t) [α, ε] ∩ Rλ(t) [β, ε]

]
. (19)

For the Burr XII distribution,

Rj(t)[k, ε] =

[
1

(1 + tη)γ

∣∣∣∣γ ∈ γj[k, ε], (j, k) = (µ, α), (λ, β)

]
(20)

Since (1 + tη)−γ is a monotonically decreasing function of γ, the α and β cut-sets for
GenIFR can be modified as

Rµ(t)[α, ε] =

[
1

{1+tη}(R(α)) , 1
{1+tη}(L(α))

]
,

Rλ(t)[β, ε] =

[
1

{1+tη}(R(β)) , 1
{1+tη}(L(β))

]
.

(21)

Moreover, for the Burr XII life distribution,

Rµ(t)[α, ε] =

[
(1 + tη)

−( (d−c)αε

µ +d), (1 + tη)
−(a+ (b−a)αε

µ )
]

,

Rλ(t)[β, ε] =

[
(1 + tη)−(

(d′1−c) (1−βε)

1−λ +d′1), (1 + tη)−(a′1+
(b−a′1) (1−βε)

1−λ )
]

.
(22)

Note that for every set of (α, β), the reliability bands hold the given relations:

1. Rj(0) [k, ε] = [1, 1],
2. Rj(∞) [k, ε] = [0, 0],
3. Rj(t1) ≥ Rj(t2) i f f t1 ≤ t2.
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Since Rj(t) [k, ε], k = α, β is a two-variate function of k and time t. For every special
time t = ts, the membership µR(ts)(x) and non-membership λR(ts)(x) functions of GenIFR
based on Equation (2) can be derived as

µR(ts)(x) =




(

d+ log(x)
log(1+tηs )

)
µ

d−c


1
ε

, x ∈
[

1
(1+tη

s )
d , 1

(1+tη
s )

c

]
,

µ
1
ε , x ∈

[
1

(1+tη
s )

c , 1
(1+tη

s )
b

]
,

(
a+ log(x)

log(1+tηs )

)
µ

a−b


1
ε

, x ∈
[

1
(1+tη

s )
b , 1

(1+tη
s )

a

]
,

0, o.w,

λR(ts)(x) =



 d′1−c+(1−λ)

(
log(x)

log(1+tηs )
+d′1

)
d′1−c


1
ε

, x ∈
[

1

(1+tη
s )

d′1
, 1
(1+tη

s )
c

]
,

λ
1
ε , x ∈

[
1

(1+tη
s )

c , 1
(1+tη

s )
b

]
, b−a′1+(1−λ)

(
a′1+

log(x)
log(1+tηs )

)
b−a′1


1
ε

, x ∈
[

1
(1+tη

s )
b , 1

(1+tη
s )

a′1

]
,

1, o.w,

(23)

4.2. Generalized Intuitionistic Fuzzy Conditional Reliability

The concept of conditional reliability focuses on the probability that an object will
continue to function at a given time (t), provided it has remained operational up to that
point (T). This concept is particularly crucial in reliability engineering and risk assessment.
To accommodate uncertainty and imprecision often found in real-world scenarios, this
traditional notion of conditional reliability is explored through the application of fuzzy sets.
The cut-sets of GenIFCR are

Rj(t
∣∣T) [k, ε] = [R(t|T)|γ ∈ γi[k, ε], (j, k) = (µ, α), (λ, β)]

=
[

RL
j (t
∣∣∣T) [k], RR

j (t
∣∣∣T) [k]]. (24)

where R(t
∣∣∣T) = R(t+T)

R(T) , RL
j (t
∣∣∣T)[k] = infγ∈γj[k, ε]R(t

∣∣∣T), RR
j (t
∣∣∣T)[k] = supγ∈γi[k, ε]R(t

∣∣∣T) for all

0 ≤ αε + βε ≤ 1. Hence, GenIFCR can be given as R(t|T)(α, β, ε) =
(
Rµ(t

∣∣T)[α, ε], Rλ(t
∣∣T)[β, ε]

)
and the cut-sets of the GenIFCR function is described as

R (t
∣∣T)[α, β, ε] =

[
ν
∣∣ν ∈ Rµ(t

∣∣T) [α, ε] ∩ Rλ(t
∣∣T) [β, ε]

]
. (25)

Considering the Burr XII distribution, the cut-sets of GenIFCR can be given as

Rj(t
∣∣∣∣T) [k, ε] =

[ (
1 + Tη

1 + (t + T)η

)γ∣∣∣∣γ ∈ γj[k, ε], (j, k) = (µ, α), (λ, β)

]
(26)

The function
(

1+Tη

1+(t+T)η

)γ
exhibits a monotonic decrease in relation to its parameter

γ, leading to the subsequent formulation for GenIFCR bands.

Rµ(t

∣∣∣∣∣T) [k, ε] =

[(
1+Tη

1+(t+T)η

)( (d−c)αε

µ +d)
,
(

1+Tη

1+(t+T)η

)(a+ (b−a)αε

µ )
]

,

Rλ(t

∣∣∣∣∣∣T) [k, ε] =

( 1+Tη

1+(t+T)η

)( (d′1−c) (1−βε)

1−λ

ε

+d′1),
(

1+Tη

1+(t+T)η

)(a′1+
(b−a′1) (1−βε)

1−λ )

.
(27)
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4.3. Generalized Intuitionistic Fuzzy Hazard

The hazard function, also commonly referred to as the instantaneous failure rate, is a
critical component of life distribution analysis. It essentially provides an estimate of the
likelihood that a component will fail at a given point in time, given that it has survived
up to that moment. This function is instrumental in predicting the time-dependent failure
rates of components or systems in service. For the generalized intuitionistic fuzzy hazard
GenIFH functions, the cut-sets play a significant role. These cut-sets provide a means to
evaluate the hazard function under varying degrees of uncertainty and fuzziness, allowing
for a more comprehensive and elaborated understanding of the failure dynamics of the
system. The cut-sets of GenIFH are

hj(t) [k, ε] = [h(t)|γ ∈ γi[k, ε], (j, k) = (µ, α), (λ, β)],

=
[

hL
j (t) [k], hU

j (t) [k]
]
.

(28)

where h(t) = f (t)
R(t) , hL

j (t)[k] = infγ∈γj [k, ε]h(t) and hL
j (t)[k] = supγ∈γi [k, ε]h(t) for ∀ 0 ≤

αε + βε ≤ 1.
The GenIFH can be given as h(α, β, ε) =

(
hµ(t)[α, ε], hµ(t)[β, ε]

)
and the (α, β)-cut sets

of GenIFH are
h (t)[α, β, ε] =

[
ν
∣∣ν ∈ hµ(t) [α, ε] ∩ hλ(t) [β, ε]

]
. (29)

For the Burr XII distribution, the above equations will be adjusted as follows:

hj(t) [k, ε] =

[ (
γ η

(1 + tη)t(1−η)

)∣∣∣∣γ ∈ γj[k, ε], (j, k) = (µ, α), (λ, β)

]
. (30)

Given that the function γ η

(1+tη)t(1−η) is characterized by a monotonic increase with

respect to its parameter γ, the hazard bands can be described as follows:

hµ(t) [k, ε] =

[( (
a+ (b−a)αε

µ

)
η

(1+tη)t(1−η)

)
,

( (
d− (d−c)αε

µ

)
η

(1+tη)t(1−η)

)]
,

hλ(t) [k, ε] =


(

a′1+
(b−a′1)(1−βε)

1−λ

)
η

(1+tη)t(1−η)

,


(

d′1−
(d′1−c)(1−βε)

1−λ

)
η

(1+tη)t(1−η)

.

(31)

Corollary 2. Consider the two lifetime random variables T1 and T2, from two different GenIF
density functions f1(x, γ, η) and f2(x, γ, η), respectively. If the condition h1(t) ≽ h2(t) and
R1(T) = R2(T) hold, then R1(t|T) ≼ R2(t|T) for each t > 0.

Theorem 1. The function R(x
∣∣t) must be increasing, which is a necessary and sufficient condition

on R(x
∣∣t) for f (x, γ, η) to belong to a class of distribution with a decreasing failure rate.

Proof. As stated, for every t1 < t2, R(x|t1) ≼ R(x|t2) and R(x|t1)(α, β, ε) ≼ R(x|t2)(α, β, ε),
so, it can be observed that(

R1µ(x|t1)[α, ε], R1λ(x|t1)[β, ε]
)
≼
(

R2µ(x|t2)[α, ε], R2λ(x|t2)[β, ε]
)
,

or
R1µ(x|t1)[α, ε] ≼ R2µ(x|t2)[α, ε],R1λ(x|t1)[β, ε] ≼ R2λ(x|t2)[β, ε].

Equating lower and upper bands to ξ, then

Rξ
µ(x|t1)[α, ε] ≼ Rξ

µ(x|t2)[α, ε],
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Rξ
λ(x|t1)[β, ε] ≼ Rξ

λ(x|t2)[β, ε].

Rξ
µ(x
∣∣∣t1) [α, ε] ≼ Rξ

µ(x
∣∣∣t2) [α, ε] and Rξ

λ(x
∣∣∣t1) [β, ε] ≼ Rξ

λ(x
∣∣∣t2) [β, ε].

Hence, Rξ
µ and Rξ

λ are increasing functions, and by using the definition of the GenIFCR,
we have

Rξ
j (x

∣∣∣∣∣∣t) [k, ε] =
Rξ

j (x + t) [k, ε]

Rξ
j (t) [k, ε]

,

∂Rξ
j (x
∣∣∣t) [k, ε]

∂t
=

− f ξ
j (x + t) [k, ε]Rξ

j (t) [k, ε] + f ξ
j (t) [k, ε]Rξ

j (x + t) [k, ε]

Rξ
j (t) [k, ε]2

.

Since Rξ
j is increasing,

∂Rξ
j (x
∣∣∣t) [k,ε]

∂t ≥ 0 and f ξ
j (t) [k]R

ξ
j (x + t)[k] ≥ f ξ

j (x + t) [k]Rξ
j (t) [k],

then,

hξ
j (t) [k, ε] ≥ hξ

j (x + t) [k, ε],

or
hξ

µ(t) [k, ε] ≥ hξ
µ(x + t) [k, ε] and hξ

λ(t) [k, ε] ≥ hξ
λ(x + t) [k, ε],

hence proving that h(t) ≥ h(x + t).□

5. Numerical Illustration

The application of a generalized intuitionistic fuzzy Burr XII distribution in traffic
control systems offers a sophisticated approach to managing complex traffic dynamics.
This distribution, characterized by its ability to represent asymmetric behaviors and adapt
to varying data scenarios, can be integrated with intuitionistic fuzzy logic to handle the
inherent uncertainties and ambiguities in traffic patterns. This integration allows for
better interpretation of traffic data, more efficient traffic flow management, and improved
adaptive signal system performance, leading to reduced congestion and enhanced road
safety.

Let us consider that a traffic control system is modelled by the generalized intuitionistic
fuzzy Burr XII distribution with a fixed shape parameter η = 1, fuzzified shape parameter
γ = (0.4, 0.5, 0.7, 0.9, 1.1, 1.2, 1, 0, 2), and special values of µ = 1, λ = 0, ε = 2. The
(α, β)-cut sets for GenIFP for x = 2 are

Pµ(2)[α, 2] =
[
1 − (3)−0.5−0.2α2

, 1 − (3)−1.1+0.2α2]
,

Pλ(2)[α, 2] =
[
1 − (3)−0.7+0.3β2

, 1 − (3)−0.9−0.3β2]
.

(32)

The concept here pertains to the idea of generalized intuitionistic fuzzy probability
(GenIFP) functions acting as bands. These bands, referred to as the lower and upper bands,
define the range or scope of reliable functioning in a system. The bandwidth, which is
the measure of this range, varies depending on specific values set (α, β). This variability
implies that the extent of reliable performance, denoted by the bandwidth, can expand or
contract based on certain conditions or values. The GenIFP bands for different sets of (α, β)
and x = 2 are calculated in Table 1.
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Table 1. The cut-sets of GenIFP bands for various (α, β).

(α,β) Pµ(2)[α,2] Pλ(2)[β,2] P(2)[α,β,2]

(0, 1) [0.2987, 0.5774] [0.2676, 0.3333] [0.2987, 0.3333]
(0.3, 0.9) [0.3046, 0.5660] [0.2849, 0.3549] [0.3046, 0.3549]
(0.5, 0.7) [0.3155, 0.5465] [0.3166, 0.3943] [0.3166, 0.3943]
(0.7, 0.5) [0.3326, 0.5184] [0.3426, 0.4268] [0.3426, 0.4268]
(0.9, 0.3) [0.3568, 0.4832] [0.3612, 0.4499] [0.3612, 0.4499]

(1, 0) [0.3720, 0.4635] [0.3720, 0.4635] [0.3720, 0.4635]

Since the GenIFP bands are function of (α, β) and x, then for a special set of (α = 0, β = 1),
(µ = 1, λ = 0) and x = 2, the membership and non-membership curves are

µP(2)(x) =



(
log(1−x)

log(2) +0.5
0.2

)0.5

, x ∈ [0.4226, 0.5365],

1, x ∈ [0.5365, 0.6280],(
1.1+ log(1−x)

log(2)
0.2

)0.5

, x ∈ [0.6280, 0.7013],

0, o.w,

λP(2)(x) =



(
0.7+ log(1−x)

log(2)
0.3

)0.5

, x ∈ [0.3556, 0.5365],

0, x ∈ [0.5365, 0.6280],(
log(1−x)

log(2) +0.9
0.3

)0.5

, x ∈ [0.6280, 0.7324],

1, o.w,

(33)

Hence, the functions of membership µP(2) and non-membership λP(2) curve of the GenIFP
bands are described by the above expressions and graphically shown in Figure 1.
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Figure 1. Membership and non-membership curves of GenIFP for x = 2.

In the same way, the GenIFR bands for different sets of (α, β) at fixed time t = 2 are
calculated in Table 2 using the following expressions:

Rµ(t)[α, 2] =
[
(1 + tη)−(1.1−0.2α2), (1 + tη)−(0.5+0.2α2)

]
,

Rλ(t)[β, 2] =
[
(1 + tη)−(0.9+0.3β2), (1 + tη)−(0.7−0.3β2)

]
.

(34)
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Table 2. The cut-sets of GenIFR bands.

(α,β) Rµ(t)[α,2] Rλ(t)[β,2] R(t)[α,β,2]

(0, 1) [0.2987, 0.5774] [0.2676, 0.3333] [0.2987, 0.3333]
(0.3, 0.9) [0.3046, 0.5660] [0.2849, 0.3549] [0.3046, 0.3549]
(0.5, 0.7) [0.3155, 0.5465] [0.3166, 0.3943] [0.3166, 0.3943]
(0.7, 0.5) [0.3326, 0.5184] [0.3426, 0.4268] [0.3426, 0.4268]
(0.9, 0.3) [0.3568, 0.4832] [0.3612, 0.4499] [0.3612, 0.4499]

(1, 0) [0.3720, 0.4635] [0.3720, 0.4635] [0.3720, 0.4635]

The functions for membership and non-membership curves of GenIFR bands at special
time t = 2, (µ = 1, λ = 0) and fixed set (α = 0, β = 1) are given as

µR(2)(x) =



(
1.1+ log(x)

log(2)
0.2

)0.5

, x ∈ [0.2987, 0.3720],

1, x ∈ [0.3720, 0.4635],(
log(x)
log(2)+0.5

0.2

)0.5

, x ∈ [0.4635, 0.5774],

0, o.w,

λR(2)(x) =



(
log(x)
log(2)+0.9

0.3

)0.5

, x ∈ [0.2676, 0.3720],

0, x ∈ [0.3720, 0.4635],(
0.7+ log(x)

log(2)
0.3

)0.5

, x ∈ [0.4635, 0.6444],

1, o.w,

(35)

It can be observed that Table 2 shows the reliability bands for various cut-sets but for
a fixed time point t = 2. It is necessary to observe the reliability bands for various time
points. So, we fixed a cut-set value at (α = 0, β = 1) and observed the reliability bands over
time t, as shown in Figure 2a.
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and non-membership curves of GenIFR bands for t = 2.

Similarly, the membership (green solid line) and non-membership (red solid line)
functions for GenIFR bands for special time t = 2 and cut-set (α = 0, β = 1) are shown in
Figure 2b.

Figure 3 provides a detailed perspective by presenting additional sets of (α, β) values
with respect to time t. These values demonstrate that fuzziness in GenIFR can be reduced
by simultaneously increasing α and decreasing β.
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The reliability features of generalized intuitionistic fuzzy characteristics (GenIFRC)
are influenced by parameter ε. This is illustrated in Figure 4, where the reliability bands for
varying ε values are presented with parameters α and β set equal to 0.5. This illustration
suggests that as ε increases, the reliability of the system becomes more precise or accurate.
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The cut-sets of GenIFCR bands for various values of (α, β) and time T = 3 are obtained
using the following relations and presented in Table 3.

Rµ(t
∣∣∣∣T)[α, 2] =

[(
1+3η

1+(t+3)η

)1.1−0.2α2

,
(

1+3η

1+(t+3)η

)0.5+0.2α2]
,

Rλ(t
∣∣∣∣T)[β, 2] =

[(
1+3η

1+(t+3)η

)0.9+0.3β2

,
(

1+3η

1+(t+3)η

)0.7−0.3β2]
.

(36)

Table 3. The cut-sets of GenIFCR bands.

(α,β) Rµ(t|T)[α,2] Rλ(t|T)[β,2] R(t|T)[α,β,2]

(0, 1) [0.6402, 0.8165] [0.6147, 0.8503] [0.6147, 0.8503]
(0.3, 0.9) [0.6449, 0.8106] [0.6291, 0.8309] [0.6291, 0.8309]
(0.5, 0.7) [0.6533, 0.8001] [0.6541, 0.7991] [0.6533, 0.8001]
(0.7, 0.5) [0.6661, 0.7847] [0.6735, 0.7761] [0.6661, 0.7847]
(0.9, 0.3) [0.6836, 0.7646] [0.6867, 0.7612] [0.6836, 0.7646]

(1, 0) [0.6943, 0.7529] [0.6943, 0.7529] [0.6943, 0.7529]
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Also, the functions of membership and non-membership curves for GenIFCR at t = 5,
T = 3 are

µR(2|3)(x) =



(
1.1+ log(x)

log(2.25)
0.2

)0.5

, x ∈ [0.4098, 0.4820],

1, x ∈ [0.4820, 0.5669],(
log(x)

log(2.25)+0.5
0.2

)0.5

, x ∈ [0.5669, 0.6667],

0, o.w,

λR(2|3)(x) =



(
log(x)

log(2.25)+0.9
0.3

)0.5

, x ∈ [0.3779, 0.4820],

0, x ∈ [0.4820, 0.5669],(
0.7+ log(x)

log(2.25)
0.3

)0.5

, x ∈ [0.5669, 0.7230],

1, o.w,

(37)

The generalized intuitionistic fuzzy conditional reliability (GenIFCR) bands varying
with time t are shown in Figure 5a. Also, their membership and non-memberships curves
are presented in Figure 5b.
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Figure 5. (a) The cut-sets of GenIFCR bands for (α = 0, β = 1). (b) Membership and non-membership
curves of GenIFCR.

Finally, the cut-sets of generalized intuitionistic fuzzy hazard (GenIFH) bands based
on the following expressions are given in Table 4.

hµ(t)[α, 2] =
[
(0.5+0.2α2)η tη

1+tη , (1.1−0.2α2)η tη

1+tη

]
,

hλ(t)[β, 2] =
[
(0.7−0.3β2)η tη

1+tη , (0.9+0.3β2)η tη

1+tη

]
.

(38)

Table 4. The cut-sets of GenIFH bands.

(α,β) hµ(t)[α,2] hλ(t)[β,2] h(t)[α,β,2]

(0, 1) [0.1667, 0.3667] [0.1333, 0.4000] [0.1667, 0.3667]
(0.3, 0.9) [0.1727, 0.3607] [0.1523, 0.3810] [0.1727, 0.3607]
(0.5, 0.7) [0.1833, 0.3500] [0.1843, 0.3490] [0.1843, 0.3490]
(0.7, 0.5) [0.1993, 0.3340] [0.2083, 0.3250] [0.2083, 0.3250]
(0.9, 0.3) [0.2207, 0.3127] [0.2243, 0.3090] [0.2243, 0.3090]

(1, 0) [0.2333, 0.3000] [0.2333, 0.3000] [0.2333, 0.3000]
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Analogously, the functions of membership and non-membership curves for GenIFH
are given as

µh(2)(x) =



( 3x−0.5
0.2

)0.5
, x ∈ [0.1667, 0.2333],

1, x ∈ [0.2333, 0.3000],(
1.1−3x

0.2

)0.5
, x ∈ [0.3000, 0.3667],

0, o.w,

λh(2)(x) =


( 0.7−3x

0.3
)0.5

, x ∈ [0.1333, 0.2333],
0, x ∈ [0.2333, 0.3000],( 3x−0.9

0.3
)0.5

, x ∈ [0.3000, 0.4000],
1, o.w,

(39)

In the same way, Figure 6a shows the decreasing GenIFH bands with time t for the
case of least vagueness, which is attended for the greatest and lowest values of α = 0 and
β = 1, respectively. Also, the curves for membership and non-membership functions of
hazard bands are graphically shown in Figure 6b.
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6. Results and Discussion

This study employs a generalized intuitionistic fuzzy approach to examine the Burr
XII lifetime distribution, introducing a novel methodological paradigm. The main goal
is to evaluate uncertainty in many aspects of reliability measures in a comprehensive
manner. The study achieves this goal by precisely quantifying the inherent fuzziness
in one of the essential shape parameters of the Burr XII distribution, indicated as γ =
(a′1 = 0.4, a = 0.5, b = 0.7, c = 0.9, d = 1.1, d′1 = 1.2). Concerning the fuzzy method,
we concentrated on a particular case of the generalized intuitionistic fuzzy framework
containing predetermined values for µ = 1, λ = 0. In this study, the parameter ε is set to a
value of 2, and the cut-set approach is used to precisely determine the bands of various
reliability measures.

The cut-set bands of the generalized intuitionistic fuzzy probability (GenIFP) bands
for various sets are presented in Table 1, which indicates that for x = 2, the most reliable
band can be found at the highest cut-set of the membership function and the lowest
cut-set of the non-membership function. Furthermore, the α-cut of membership and β-
cut of non-membership function for generalized intuitionistic fuzzy reliability (GenIFR)
bands at time t = 2 have been shown in Table 2. It indicates that most precise bands are
attended at the greatest α and lowest values of β for fixed time. Since the reliability bands
change over time, we have also included the GenIFR bands for (α = 0, β = 1) over time
t in Figure 2a and a few more sets in Figure 3. Based on Figures 2a and 3, we conclude
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that the reliability bands lead to a great reduction in the level of uncertainty over time t.
Additionally, the membership and non-membership curves for t = 2 and (α = 0, β = 1)
have been graphically shown in Figure 2b. It is important to discuss the significance
of parameter ε as it has a substantial impact on the uncertainty in both reliability and
probability characteristics. Figure 4 shows that the best reliable bands are obtained at the
maximum value of parameter ε = 2.

Another characteristic discussed here is the generalized intuitionistic fuzzy conditional
reliability (GenIFCR) bands, which are presented in Table 3 for t = 2 and for varying t in
Figure 5a. They exhibit the same trend as the GenIFCR bands. Eventually, we also studied
the generalized intuitionistic fuzzy hazard (GenIFH) bands, evaluating them in Table 4 for
a fixed time parameter t and displaying results in Figure 6a for varying t. Notably, Table 4
shows improved precision in hazard bands, particularly for the greatest cut-set value for
the membership function and the lowest cut-set value for the non-membership function at
a fixed time. Also, Figure 6a shows an obvious reduction in bandwidth over time.

In conjunction with the above outcomes, our study encompasses a thorough exami-
nation detailing the computation of membership and non-membership functions for each
reliability measure. This comprehensive analysis is visually presented in Figures 2b, 5b and
6b, employing a graphical representation with the green line symbolizing the membership
function and the red line depicting the non-membership function.

In summary, the findings from Tables 1–4 underscore the significance of optimizing the
cut-sets for membership and non-membership, revealing improved precision in probability
and diverse reliability measures. Furthermore, the observed trend across all reliability mea-
sures indicates a systematic decrease in the value of uncertainty or fuzziness corresponding
to increasing time t.

7. Conclusions

This study assesses the fuzzy reliability of the Burr XII lifetime distribution using
the notion of generalized intuitionistic fuzzy sets. In the Burr type XII distribution with
two parameters, one of the shape parameters remains fixed while the other is treated as a
generalized intuitionistic fuzzy number (GenIFN) so as to calculate probability and various
reliability measures. The fuzziness or uncertainty of parameters can be assessed using
bands formed by the various reliability measures, with each individual pair of cut-set
values related to a distinct band width. The results demonstrate that optimal bandwidth
precision is reached when the cut-set of membership functions is large, paired by a small
cut-set of non-membership functions. In addition, all measures exhibit a declining trend as
time progresses. Remarkably, this approach surpasses alternative fuzzy sets by effectively
exposing greater levels of ambiguity.

The current study focuses on enhancing the field of system reliability engineering. The
presented technique provides a way to evaluate the reliability of different systems, including
those organized in series and parallel configurations. In addition, the combination of
extended intuitionistic fuzzy approaches with the Hausdorff distance also has the potential
to greatly improve models used for spatial and image data analysis for further research
and practical use.

Acknowledging certain limitations inherent in applying the generalized intuitionistic
fuzzy technique in reliability analysis is imperative. A notable constraint arises in the
heightened complexity of modeling and computational processes. This increased complex-
ity poses potential challenges in real-world applications, necessitating careful consideration.
The identified difficulties underscore the significance of further research endeavors aimed
at overcoming these challenges in the practical domain of reliability analysis.
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