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Abstract: Compliant physical interactions, interactive learning, and robust position control are crucial
to improving the effectiveness and safety of rehabilitation robots. This paper proposes a human–robot
cooperation control strategy (HRCCS) for lower limb rehabilitation robots. The high-level trajectory
planner of the HRCCS consists of a trajectory generator, a trajectory learner, a desired trajectory
predictor, and a soft saturation function. The trajectory planner can predict and generate a smooth
desired trajectory through physical human–robot interaction (pHRI) in a restricted joint space and
can learn the desired trajectory using the locally weighted regression method. Moreover, a triple-step
controller was designed to be the low-level position controller of the HRCCS to ensure that each joint
tracks the desired trajectory. A nonlinear disturbance observer is used to observe and compensate
for total disturbances. The radial basis function neural networks (RBFNN) approximation law and
robust term are adopted to compensate for observation errors. The simulation results indicate that
the HRCCS is robust and can achieve compliant pHRI and interactive trajectory learning. Therefore,
the HRCCS has the potential to be used in rehabilitation robots and other fields involving pHRI.

Keywords: human–robot cooperation control; lower limb rehabilitation robots; physical human–robot
interaction; interactive learning

1. Introduction

Annually, approximately 5.5 million people die from strokes, while more than 44 mil-
lion survive them [1]. Gait training is essential to stroke rehabilitation because almost
two-thirds of stroke survivors have an initial motor impairment and more than 30% of
them cannot walk independently [2]. Lower limb rehabilitation robots (LLRRs) have re-
cently drawn increased attention because they enable patients to walk naturally on the
ground and the clinical effectiveness of LLRRs has been proven [3,4].

Control strategies are crucial for rehabilitation robots, and they are usually reasonably
selected according to the patient’s motor disability level. Various passive control strategies
have been proposed for periodic, repetitive motion control in patients with weak residual
muscle strength. Proportional–integral–derivative controllers and their variants are com-
monly used in LLRRs to help patients track the reference trajectory [5,6]. However, given
their high nonlinearity and dynamic coupling, achieving accurate tracking with a model-
free proportional–integral–derivative controller is challenging for LLRRs [7]. Computed
torque control can achieve feedback linearization of a nonlinear dynamic model, but the
model parameters’ uncertainties and external disturbances affect its control performance [8].
In [9], an output-constrained controller was proposed for a lower limb exoskeleton, in
which a finite-time extended state observer was used to estimate and compensate for
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unmeasured joint velocity and lumped uncertainty. A triple-step controller with a linear
extended observer was proposed and applied in the LLRR, achieving higher accuracy
and lower energy consumption than the other comparison controllers [10]. Moreover, an
adaptive neural network-based saturated controller was designed for LLRRs, in which
the radial basis function neural networks (RBFNN) and robust terms were adopted to
compensate for the unknown dynamics [11]. However, those passive control strategies
reject patients’ active contribution during rehabilitation training.

Active control strategies are suitable for patients with residual muscle strength, en-
couraging patients to participate actively in rehabilitation training. In [12], the position-
constrained assist-as-needed control strategy was proposed for a knee exoskeleton and
can smoothly switch between human-dominated and robot-dominated modes. In [13], a
gait phase blended controller was designed for LLRRs to enhance transparency, solving
the torque discontinuity problem and increasing the stride length. Similarly, to the path
controller [14], a human-cooperative adaptive fuzzy controller was proposed, improving
the motor variability of users during robot-assisted walking [15]. Compared with the
active control strategies implemented by low-level position controllers, the active control
strategies designed based on high-level trajectory planners are more straightforward in
expanding their applications. In [16], a time-invariant force-field-based path controller was
designed for the Indego exoskeleton, allowing users to adjust the step time by changing the
inter-joint coordination tunnel shape. Many admittance control strategies were designed
for LLRRs to establish a more compliant behavior, thus reshaping the reference trajectory
through physical human–robot interaction (pHRI) [17,18]. Considering the influence of
pHRIs on both the current and future states of robotic systems [19], a human–robot cooper-
ation controller has been proposed based on the trajectory deformation algorithm (TDA),
which can generate and predict the desired trajectory [20]. Additionally, the dynamic
movement primitive (DMP) method is well established for learning and generalizing trajec-
tories [21,22] and can update the weighted parameters incrementally to model reference
trajectories and describe varying walking patterns [23]. However, to our knowledge, a
method for designing a human–robot cooperation control strategy (HRCCS) based on the
TDA and DMPs that can predict, generate, and learn desired trajectories while ensuring
trajectory tracking accuracy and robustness has not been investigated.

In this article, we propose a human–robot cooperation control strategy (HRCCS) for
LLRRs, including a high-level trajectory planner and a low-level position controller. The
main contributions are summarized as follows:

(1) We design a high-level trajectory planner based on the TDA, DMPs, and the soft
saturation function. It can generate reference trajectories by generalizing the trajectory
model, predict a smooth desired trajectory through pHRI, and learn the desired
trajectory using the locally weighted regression method.

(2) We propose a triple-step controller as the low-level position controller to ensure tra-
jectory tracking accuracy and robustness. A nonlinear disturbance observer (NDO)
is used to observe and compensate for total disturbances, and the radial basis func-
tion neural networks (RBFNN) approximation law and robust terms are adopted to
compensate for observation errors.

(3) We conduct robustness verification, compliant interaction, and trajectory interactive
learning simulation experiments. The results indicate that the HRCCS can ensure
trajectory tracking accuracy and robustness and can achieve compliant pHRI and
trajectory interactive learning.

2. Methods

Illustrated in Figure 1a is the HRCCS for LLRRs, including a high-level trajectory
planner and a low-level position controller. The high-level trajectory planner consists of a
trajectory generator, a trajectory learner, a desired trajectory predictor, and a soft saturation
function and can generate, predict, and learn the desired trajectory in a restricted joint space.
Moreover, a triple-step controller is designed to be the low-level position controller. As
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shown in Figure 1b, the triple-step controller consists of steady-state control, feedforward
control, and feedback control. The NDO and the RBFNN approximation law are integrated
into the steady-state control and feedback control to enhance the accuracy and robustness
of trajectory tracking.
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framework of the triple-step controller.

2.1. High-Level Trajectory Planner

The high-level trajectory planner comprises a trajectory generator, a trajectory learner,
a desired trajectory predictor, and a soft saturation function. Each part will be explained in
detail in the following subsections.

2.1.1. Trajectory Generator

Since DMPs can generalize motion excellently, the trajectory generator based on DMPs
can generate periodic reference trajectories for LLRRs [21]. It can be described as follows:{

κ
.
zq = αq(βq(g − qr)− zq) + f

κ
.
qr = zq

, (1)

κ
.
ϕ = 1, (2)

κ
.
r = αr(r0 − r), (3)

f =
∑m

i=1 ψiwi

∑m
i=1 ψi

r, (4)

ψi = exp(
cos(ϕ − ci)− 1

2σ2
i

). (5)

where κ is the positive temporal scaling factor; αq and βq are positive constants that ensure
the nonlinear system is in a critical damping state; g ∈ R2 and f ∈ R2 are the position goal
and forcing term vector; qr ∈ R2 and

.
qr ∈ R2 are the reference angle and angular velocity

vector; zq ∈ R2 and
.
zq ∈ R2 are the reference angular velocity and angular acceleration

vector after expansion or contraction; r and r0 are the amplitude modulation factor and
the initial value of amplitude modulation factor, respectively; αr is a positive constant that
determines the speed of the amplitude modulation factor change; ϕ is a phase variable;
ψi is the ith kernel function; σi and ci are constants that determine the width and center
of the ith kernel function; m is the number of kernel functions; and wi ∈ R2 is the weight
coefficient vector corresponding to the kernel function ψi.
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2.1.2. Trajectory Learner

The trajectory learner based on DMPs can enable robots to learn reference trajectories
and desired trajectories online, which is particularly helpful for LLRRs in handling time-
varying interaction dynamics and adapting to varying walking patterns. The trajectory
learning process is as follows:

Firstly, Equation (1) can be rewritten as follows to calculate the forcing term vector:

κ2 ..
qr + αqκ

.
qr − αq(βq(g − qr) = f. (6)

Given the target reference angle vector q∗r , angular velocity vector
.
q∗r , and angular

acceleration vector
..
q∗r and substituting them into Equation (6), we can obtain the target

forcing term vector as follows:

κ2 ..
q∗r + αqκ

.
q∗r − αqβq(g − q∗r ) = f∗. (7)

Secondly, the locally weighted regression method [21] is adopted to minimize the
quadratic error function:

Ji =
P

∑
n=1

ψi(n)( fk(n)− wk,ir)
2. (8)

The solution to the above problem is as follows:
wk,i = sTJif

∗
k /sTJis

s = [r(1), r(2), · · · , r(P)]T

Ji = diag{ψi(1), ψi(2), · · · , ψi(P)}
f∗k = [ f ∗k (1), f ∗k (2), · · · , f ∗k (P)]T

. (9)

where n = 1, · · · , P is the sample number; wk,i is the weight coefficient of the kth active
joint corresponding to the kernel function ψi; fk(n) is the forcing term of the kth active joint
at the nth sampling point; ψi(n) is the ith kernel function at the nth sampling point; r(n) is
the amplitude modulation factor at the nth sampling point; and f ∗k (n) is the target forcing
term of the kth active joint at the nth sampling point.

2.1.3. Desired Trajectory Predictor

Inspired by the motion superposition mechanism [24] and minimal jerk criterion [25]
of human motion planning, the desired trajectory predictor based on the TDA is designed
to smoothly generate and predict the desired trajectory through pHRI [19,20]. The desired
trajectory predictor can be described as follows:

q̂d,k(uk, t) = q̂d,k(0, t) + ukV(t), t ∈ [ts, t f ]

V(t) = δHτI,k(ts)

H = Wβ
(p+δ)∥W∥

, (10)

W = (I − (ZTZ)
−1

CT(C(ZTZ)
−1

CT)
−1

C)(ZTZ)
−1

, (11)

N =
p
δ
+ 1. (12)

where ts and tf are the start and end times of trajectory deformation at the current physical
interaction, respectively; uk is the deformation factor of the kth active joint; τI,k(ts) is the
interaction torque vector at time ts for the kth active joint; q̂d,k(0, t) and q̂d,k(uk, t) are the
discrete forms of the desired trajectory vector after the last iteration and deformation curve
function vector in the current iteration, respectively; β ∈ RN is the prediction vector of the
interaction torque; p is the prediction time; N is the number of waypoints; Z ∈ R(N+3)×N

is a finite differencing matrix; C ∈ R4×N is a constraint matrix; I ∈ RN×N is an identity
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matrix; and H and V(t) are the discrete forms of the motor primitive and vector field
function, respectively.

2.1.4. Soft Saturation Function

Due to abnormal interaction behavior, the desired trajectory may exceed the safe joint
space. Thus, the soft saturation function is adopted to ensure that the desired trajectory of
each joint is constrained in a predetermined safety range, enhancing rehabilitation training
safety [26]. The soft saturation function will not affect the trajectory predictor in generating
the desired trajectory through pHRIs when it is within the predetermined safety range;
conversely, it will smoothly restrict the desired trajectory within the predetermined safety
boundary. The soft saturation function for the kth active joint can be described as follows:

qd,k =


(1 − ζk)Uk(1 − e(ζkUk−q̂d,k(uk ,ts))/((1−ζk)Uk)) + ζkUk, q̂d,k(uk, ts) > ζkUk

q̂d,k(uk, ts), ζkDk ≤ q̂d,k(uk, ts) ≤ ζkUk

(1 − ζk)Dk(1 − e(ζk Dk−q̂d,k(uk ,ts))/((1−ζk)Dk)) + ζkDk, q̂d,k(uk, ts) < ζkDk

, (13)

where q̂d,k(uk, ts) and qd,k are the desired angles at time ts for the kth active joint before and
after adjustment; Uk and Dk are the upper and lower boundaries of the desired trajectory,
respectively; ζk (0 ≤ ζk < 1) is the positive constant; and the closer the positive constant
value is to 1, the closer the desired angle is to the predetermined safety boundary.

2.2. Low-Level Position Controller

In this section, the dynamics model of LLRRs in joint space is given and the triple-step
nonlinear method [27] is adopted to design the triple-step controller. Moreover, the stability
of the proposed controller is proven through the Lyapunov theorem. Each part will be
explained in detail in the following subsections.

2.2.1. Dynamics Model

As illustrated in Figure 2, each leg of an LLRR can be simplified into a two-link model
in the sagittal plane. The dynamics model in joint space can be given as follows based on
the Euler–Lagrange method [10]:

M̂(q)
..
q + Ĉ(q,

.
q)

.
q + Ĝ(q) = τA + T, (14)

T = τI + τE − f(
.
q)− (M(q)− M̂(q))

..
q − (C(q,

.
q)− Ĉ(q,

.
q))

.
q − (G(q)− Ĝ(q)). (15)

where q = [q1, q2]
T is the actual angle vector;

.
q and

..
q are the angular velocity vector and

angular acceleration vector; M(q), C(q), and G(q) are the inertia matrix, the centripetal
and Coriolis matrix, and the gravitational vector, respectively, and can be calculated with
mechanical parameters, including the mass of exoskeleton mi, the lengths of exoskeleton li,
the length from the center of mass to the revolute joint di, and the inertias of exoskeleton
Ii; i = 1 and i = 2 represent the thigh and calf, respectively; M̂(q), Ĉ(q), and Ĝ(q) are
the nominal inertia matrix, the nominal centripetal and Coriolis matrix, and the nominal
gravitational vector, respectively; τA represents the control torque vector; f(

.
q), τI , and τE

are friction torque, interaction torque, and external torque vectors; and T represents total
disturbances, consisting of internal and external disturbances.
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2.2.2. Triple-Step Controller

The triple-step method [27] is adopted to design the low-level position controller. This
method’s core concept is to divide the design process into three steps: steady-state control,
feedforward control, and feedback control. The NDO and the RBFNN are integrated into
the steady-state control and feedback control to enhance the accuracy and robustness of
trajectory tracking.

The steady-state control is used to compensate for the effect of gravity, external
disturbances, and inaccurate dynamics model, improving the steady-state performance.
Firstly, a nonlinear disturbance observer, as follows, is adopted to compensate for the total
disturbances [28]:

.
z = −L(q,

.
q)z + L(q,

.
q)(Ĉ(q,

.
q)

.
q + Ĝ(q)− τA − p(q,

.
q))

T̂ = z + p(q,
.
q)

p(q,
.
q) = c[

.
q1;

.
q1 +

.
q2]

L(q,
.
q) = c

[
1 0
1 1

]
M̂−1

(q)

c > m2l1d2
.
q2,max

(16)

where z is the auxiliary variable; c is a constant; m2 is the nominal mass of the calf exoskele-
ton; l1 is the nominal length of the thigh exoskeleton; d2 is the distance from the nominal
center of the mass to the rotation center of the knee joint;

.
q2,max is the maximum angular

velocity of the calf exoskeleton; and T̂ is the estimated value of total disturbances.
Thus, Equation (14) can be rewritten as follows:{

M̂(q)
..
q + Ĉ(q,

.
q)

.
q + Ĝ(q) = τA + T̂ − ∆T

∆T = T̂ − T
, (17)

where ∆T is the estimated error.
By assigning zero to

.
q,

..
q, and ∆T and replacing τA with τssc in Equation (17), we can

obtain the steady-state controller as follows:

τssc = Ĝ(q)− T̂. (18)

Feedforward control is adopted to improve the response speed due to the nonlinear
and time-varying characteristics of the dynamics model. By defining

..
q =

..
qd,

.
q =

.
qd, and
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τA = τssc + τffc and assigning zero to ∆T in Equation (17), we can obtain the feedforward
controller as follows:

τf f c = M̂(q)
..
qd + Ĉ(q,

.
qd)

.
qd, (19)

where
.
qd and

..
qd are the derivative and the second derivative of the desired angle qd.

The feedback control input is adopted to improve the accuracy and robustness of the
controller. Equation (14) can then be rewritten as follows:

..
q = M̂(q)−1(τA + T)− M̂(q)−1Ĉ(q,

.
q)

.
q − M̂(q)−1Ĝ(q). (20)

By letting τA = τssc + τf f c + τf bc and defining the tracking error e = qd − q, we
can obtain:

..
e = M̂(q)−1Ĉ(q,

.
q)

.
q − M̂(q)−1Ĉ(q,

.
qd)

.
qd − M̂(q)−1τf bc + M̂(q)−1(∆T). (21)

Thus, a second-order error auxiliary system can be defined as follows:

..
e = −kpe − kd

.
e + ∆H − cer, (22)

where kd and kp are the control gain matrices and cer is a compensation variable for
observation errors after decoupling ∆H = M̂(q)−1∆T.

Substituting Equation (22) into Equation (21), we can obtain a feedback controller
as follows:

τf bc = M̂(q)(kpe + kd
.
e + cer) + Ĉ(q,

.
q)

.
q − Ĉ(q,

.
qd)

.
qd. (23)

Since ∆H can be efficiently approximated by the RBFNN, Equation (22) can be rewrit-
ten as follows: 

..
e + kd

.
e + kpe = ∆H − cer

cer = ∆Ĥ + Γ

∆H = ∆Ĥ(W∗) = W∗Th(x) + σ

∆Ĥ(Ŵ) = ŴTh(x)

hj(x) = exp(−π
∥∥x − cj

∥∥2/b2
j ), j = 1, 2, · · · , n

. (24)

where ∆Ĥ = [∆Ĥ1, ∆Ĥ2]
T is the estimated value of ∆H; Γ = [Γ1, Γ2]

T is the robust term to
be designed; Ŵ is a weight matrix to be tuned; σ = [σ1, σ2]

T is the approximation error
vector of the RBFNN when taking the optimal weight matrix; W* is the optimal weight
matrix; h(x) is the hidden layer basis vector of the RBFNN; hj(x) is the Gaussian function of
the jth neuron in the hidden layer of the RBFNN; n is the number of neurons in the hidden
layer; and cj and bj are the center vector and width of the jth Gaussian function.

For the kth active joint, defining Ek = [ek,
.
ek]

T , Equation (24) can be rewritten as follows:{ .
Ek = ΛkEk + Bk Nk

Nk = (W∗
k − Ŵk)

Thk(xk) + σk − Γk

, (25)

where Λk =

[
0 1

−kp,k −kd,k

]
and Bk =

[
0
1

]
.

For a scalar ∆Hk, the RBFNN approximation law and robust term are designed as follows: ∆Hk = ŴT
k hk(xk)

.
Ŵk = γkET

k PkBkhk(xk)
, (26)

Γk = ηksat(ET
k PkBk), (27)
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sat(ET
k PkBk) =


1, ET

k PkBk > ∆
1
∆ ET

k PkBk,
∣∣ET

k PkBk
∣∣

−1, ET
k PkBk < −∆

≤ ∆, (28)

ΛkPk + PkΛk = −Qk, (29)

where γk is a positive constant; Pk is the solution of the Lyapunov equation; ηk is a positive
constant; ∆ is the boundary layer thickness; and Qk is a positive constant matrix.

Thus, Equation (23) can be rewritten as follows:

τf bc = M̂(q)(kpe + kd
.
e + Γ + ŴTh(x)) + Ĉ(q,

.
q)

.
q − Ĉ(q,

.
qd)

.
qd. (30)

Finally, according to Equations (18), (19), and (30), the triple-step controller can be
obtained as follows:

τA = τssc +τf f c +τf bc = M̂(q)(
..
qr +kpe+kd

.
e+ Γ+ ŴTh(x))+ Ĉ(q,

.
q)

.
q+ Ĝ(q)− T̂. (31)

2.2.3. Proof of Stability

The stability of the triple-step controller can be proven as follows using the Lya-
punov theorem.

Substituting Equation (31) into Equation (14), we can obtain a second-order error
auxiliary system as follows:

..
e + kpe + kd

.
e = ∆H − Γ − ŴTh(x). (32)

The closed-loop stability of the triple-step controller is transformed into the stability
of the second-order error system.

If the RBFNN can effectively compensate for the observation errors of each joint after
decoupling, i.e., ∆H − Γ − W∗Th(x) = σ (σ is close to zero), the control gain matrices kd
and kp can be determined using the pole placement method.

For the kth active joint, the control gain kp,k and kd,k are determined using:

(s + ωk)
2 = 0, (33)

where s is the Laplace variable and ωk is the pole set by the user. Thus, the control gain can
be set as follows:

kp,k = ω2
k , kd,k = 2ωk. (34)

However, it is difficult to quickly converge the weight matrix to its optimal value.
Moreover, the number of nodes in the RBFNN cannot be set too high to ensure compu-
tational efficiency. Therefore, compensation errors often exist, causing instability and a
reduction in the robustness of the HRCCS.

If we obtain the control gain matrices using the pole placement method, the second-
order error auxiliary system is a linear constant continuous system. Thus, the Lyapunov
function for the kth active joint can be defined as follows to guarantee closed-loop stability:

V =
1
2

EkPkEk +
1

2γ
(W∗

k − Ŵk)
T
(W∗

k − Ŵk). (35)

The derivation of V can be given as follows:

.
V = 1

2

.
E

T
k PkEk +

1
2 ET

k Pk
.
Ek − 1

γ (W
∗
k − Ŵk)

T
.

Ŵk

= 1
2 (ΛkEk + Bk Nk)

TPkEk +
1
2 ET

k Pk(ΛkEk + Bk Nk)− 1
γ (W

∗
k − Ŵk)

T
.

Ŵk

= 1
2 ET

k (Λ
T
k Pk + PkΛk)Ek + ET

k PkBk Nk − 1
γ (W

∗
k − Ŵk)

T
.

Ŵk

. (36)
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According to Equations (25) and (29), we can obtain:

.
V = − 1

2 ET
k QEk + ET

k PkBk((W∗
k − Ŵk)

Th(xk) + σk − Γk)− 1
γ (W

∗
k − Ŵk)

T
.

Ŵk

= − 1
2 ET

k QEk + ET
k PkBk(σk − Γk) + (W∗

k − Ŵk)
T
(ET

k PkBkh(xk)− 1
γ

.
Ŵk)

. (37)

Substituting Equations (26) and (27) into Equation (37), we can obtain:

.
V = − 1

2 ET
k QEk + ET

k PkBk(σk − ηksat(ET
k PkBk))

+(W∗
k − Ŵk)

T
(ET

k PkBkh(xk)− 1
γ γET

k PkBkh(xk))

= − 1
2 ET

k QEk + ET
k PkBkσk − ηkET

k PkBksat(ET
k PkBk))

= − 1
2 ET

k QEk + ET
k PkBkσk − ηk

∣∣ET
k PkBk

∣∣
. (38)

Since σk is close to zero, it is easy to choose ηk, which can maintain σk ≤ ηk. Thus, it
can ensure

.
V ≤ 0 and asymptotic stability of the closed-loop system can be guaranteed.

3. Simulation and Results
3.1. Simulation Setup

Three types of simulation experiments were carried out in MATLAB (2014a, Math-
Works) to verify the superiority of the HRCCS. The reference angle of each joint was fitted
from one healthy subject’s gait data, and the sample time was set to 0.01 s.

1. Robustness verification of the HRCCS

Three types of external torque were applied to the system, i.e., (A)τE = [0; 0]; (B)τE =
[15 cos(0.4πt); 15 sin(0.4πt)]; and (C)τE = [30 cos(0.4πt); 30 sin(0.4πt)]. The interaction
torque and deformation factor were set to τI = [0; 0] and u = [0; 0]. Moreover, the control
parameters remained unchanged under different external torques during the simulations.

2. Compliant interaction verification of the HRCCS

The deformation factor of each joint was set as follows:

u1(t) = u2(t) =


0.02, 5 ≤ t ≤ 15
0.04, 20 ≤ t ≤ 25
0, others

. (39)

Similarly, to [20], the interaction torque of each joint was set as follows to simulate the
physical interaction process, including the contact transition stage. Moreover, the external
torque was set to τE = [0; 0].

τI,1(t) =


5, 5 ≤ t ≤ 15
−5, 20 ≤ t ≤ 25
0, others

(40)

τI,2(t) =


−5, 5 ≤ t ≤ 15
5, 20 ≤ t ≤ 25
0, others

(41)

3. Trajectory interactive learning verification of the HRCCS

The deformation factor and external torque were set to u = [0.04; 0.04] and τE = [0; 0].
The interaction torques were assumed to be periodic, and they can be given as follows:

τI,1(t) =


5 sin(0.2πt), 20 ≤ t ≤ 30
−5 sin(0.2πt), 50 ≤ t ≤ 60
0, others

, (42)
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τI,2(t) =


−5 sin(0.2πt), 20 ≤ t ≤ 30
5 sin(0.2πt), 50 ≤ t ≤ 60
0, others

. (43)

3.2. Parameter Settings

The actual structural parameters were given as shown in Table 1. The nominal physical
parameters were set as m̂i = 1.2mi, Îi = 1.2Ii, l̂i = li, and d̂i = di.

Table 1. Structural parameters of LLRR.

Symbol Thigh (i = 1) Calf (i = 2)

mi (kg) 2.582 3.192
li (m) 0.390 0.464
di (m) 0.328 0.355

Ii (kg m2) 0.307 0.446

The positive constants in the trajectory generator were set as follows: αq = 25,
βq = 6.25, αr = 12.5, and g = 0. Moreover, the temporal scaling factor and the initial
value of the amplitude modulation factor were set to κ = 1 and r0 = 1. For the trajectory
predictor, the prediction time and the sample period were set to p = 1 s and δ = 0.01 s. In
the soft saturation function, the upper and lower boundaries of the desired trajectory were
set to U1 = 0.6 rad, U2 = 0.1 rad, D1 = −0.6 rad, and D2 = −1.2 rad, and the positive
constant of each joint was set to ζ1 = ζ2 = 0.9. For the RBFNN, the input was set to
xi = [ei,

.
ei, qd,i,

.
qd,i,

..
qd,i]

T , and the number of neurons was chosen as n = 5. The center of the
RBFNN neurons were evenly designed between the lower and upper bounds of each input
parameter, and we set their lower and upper bounds to −0.15–0.15, −0.15–0.15, −1.5–1.5,
−1.5–1.5, and −3.0–3.0. According to [29], the width vector of the Gaussian function can
be obtained as b = [5.4, 5.4, 1.7, 1.7, 1.2]T . The other parameters of the triple-step controller
were set as follows: Q1 = Q2 = diag{85, 85}, ∆ = 1, η1 = η2 = 1, kd = diag{20, 20},
kp = diag{100, 100}, c = 50, and γ1 = γ2 = 400.

3.3. Simulation Results

From Figure 3a,b, the trajectory generator can continuously generate a reference
trajectory for each joint and the triple-step controller can ensure that each joint follows the
reference trajectory well. Figure 3c,d show that the tracking error of the hip and knee joints
increases significantly with the external torque. At the same time, the tracking error is still
within 0.001 rad even when the external torque reaches 30 Nm. Additionally, as shown in
Figure 3e,f, the control torque exhibits periodic characteristics and shows no oscillations
and apparent mutations.
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Figure 3. Robustness verification results of the HRCCS: (a) Hip joint angle; (b) Knee joint angle;
(c) Tracking error of hip joint; (d) Tracking error of knee joint; (e) Control torque of hip joint; (f) Control
torque of knee joint. RT, TT, TE, and CT represent reference trajectory, tracking trajectory, tracking
error, and control torque, respectively. A, B, and C represent three types of external torques.

From Figure 4a–d, the trajectory predictor can continuously generate the desired
trajectory when a pHRI occurs, and the desired trajectory gradually converges back to the
reference trajectory once the pHRI stops. Although the magnitude of the interaction torque
between 5–15 s and 20–25 s is the same, the trajectory deviation between the reference
trajectory and the desired trajectory significantly increases because the deformation factor of
the latter is twice that of the former. As shown in the partially enlarged image in Figure 4b,
the soft saturation function can smoothly restrict the desired trajectory, ensuring that it
is within the predetermined safety range. Furthermore, the desired angular acceleration
trajectory, desired angular velocity trajectory, and desired trajectory are smooth during the
transitioning stage (from non-contact to contact or contact to non-contact). As shown in
Figure 4e,f, the control torque and tracking error of each joint suddenly change during the
transition phase.
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Figure 4. Compliant interaction verification results of the HRCCS: (a) Hip joint angle; (b) Knee
joint angle; (c) Desired angle of hip joint; (d) Desired angle of knee joint; (e) Control torque and
tracking error of hip joint; (f) Control torque and tracking error of knee joint. RT, DT, and TT represent
reference trajectory, desired trajectory, and tracking trajectory, respectively. DAV, DAA, and SIT
represent desired angular velocity trajectory, desired angular acceleration trajectory, and scaled
interaction torque, respectively.

From Figure 5a,b, the LLRR accurately tracked the reference trajectory when no
interaction torque was applied during the first to second cycles. In the third cycle, the
trajectory predictor smoothly generated the desired trajectory, and the LLRR tracked the
desired trajectory well under sinusoidal interaction torque. In the fourth and fifth cycles,
the trajectory learner learned the desired trajectory of the previous cycle and replaced
the initial reference trajectory. In the sixth cycle, a sinusoidal interaction torque of the
same magnitude and opposite direction was applied, and the trajectory learner smoothly
generated the desired trajectory again. In the seventh and eighth cycles, the trajectory
learner learned the desired trajectory from the previous cycle again and served as a new
reference trajectory. As shown in Figure 5c,d, there is a significant deviation in the joint
space for the tracking trajectories of the first to second and third to fifth cycles. However,
the tracking trajectories of the sixth to seventh cycles coincide with those of the first to
second cycles. From Figure 5e,f, the tracking error of each joint trajectory was less than
0.0005 rad during trajectory learning. Moreover, the amplitude of the control torque also
underwent significant changes due to the trajectory interactive learning.
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4. Discussion

Compliant physical interactions, trajectory interactive learning, and robust position
control are crucial for rehabilitation robots. This article effectively integrates the TDA,
DMPs, and a triple-step controller into the HRCCS, including a high-level trajectory planner
and a low-level position controller. Compared with the admittance control in [18], the high-
level trajectory planner can predict and generate the desired trajectory based on the TDA in
a restricted joint space and is more effective in increasing trajectory smoothness and robot
compliance [20]. Similarly, to [30], the high-level trajectory planner can learn the desired
trajectory based on the DMP using the locally weighted regression method. Moreover, the
triple-step controller is designed to be a low-level position controller to ensure that each
joint tracks the reference/desired trajectory. Compared with [10], disturbance observers are
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used to observe and compensate for total disturbances and the RBFNN with the robust term
is used to compensate for observation errors. Furthermore, the stability of the proposed
controller is guaranteed through the Lyapunov theorem.

Since patients have various levels of impairment, physical therapists can adjust the
control parameters of the HRCCS to meet their different rehabilitation training needs. For
patients with weak residual muscle strength, the passive training mode can be used by
setting the deformation factor to a small value [20]. It can achieve periodic, repetitive motion
control for the affected limb under an unknown dynamic contact environment caused by the
various symptoms of stroke survivors. Similarly, to the impedance parameter adjustments
in [31], increasing the deformation factor can realize the switch from the passive to active
training modes. In active training mode, rehabilitation robots can predict and generate
smooth desired trajectories through physical interaction, allowing participants to actively
participate in rehabilitation training. For patients with a high willingness and ability to
actively participate in rehabilitation training, the trajectory predictor and trajectory learner
of the HRCCS should be activated simultaneously. This can enable rehabilitation robots to
autonomously learn the patient’s movement trajectory to handle time-varying interaction
dynamics and update varying walking patterns [23]. Compared with the impedance
control strategy, which can provide different resistance levels for users and achieve various
rehabilitation training modes [32], the HRCCS is not dependent on a high-frequency
inner-loop force controller and an accurate dynamic model. Although the admittance
control strategy can also solve the above problems while achieving whole-stage compliance
rehabilitation training [33], it cannot learn and generalize task trajectories online. Moreover,
achieving the desired trajectory prediction and ideal physical interaction performance
through parameter adjustment is challenging for admittance control. Similarly, to [34],
the position-constrained assist-as-needed control strategy has been proposed to establish
a continuous transition between the human-dominated and robot-dominated modes to
ensure seamless and safe robotic assistance [12]. However, it is challenging to enhance
movement smoothness, which is a valuable performance indicator of stroke recovery [35],
within the human-dominated mode due to the various symptoms of stroke survivors [36],
especially when the dead zone width is set at a considerable value. Although the HRCCS
cannot switch between multiple training modes, it focuses on ensuring interaction and
control performance by introducing the TDA and designing robust position control [20].
Additionally, it can ensure that the desired trajectory of each joint is constrained in a
predetermined safety range, which is beneficial for improving the safety of rehabilitation
training [26,37].

However, this article has several limitations that should be addressed. Firstly, while
the proposed control strategy can be applied in rehabilitation robots for passive, active, and
interactive learning control, it has not yet been tested on LLRRs. Secondly, the proposed
control strategy cannot achieve adaptive switching of multiple control modes, which would
increase the operational complexity for physical therapists. In future research, we will use
artificial neural networks [38,39] and neuromuscular skeletal models [40] to evaluate users’
motion intention, and position errors, interaction forces, and movement smoothness will
be used to evaluate users’ movement performance [12,20]. Similarly, to [41], we will design
and verify the multi-mode adaptive compliance strategy based on motion intention or
movement performance in LLRRs. This will enable smooth switching between the passive
training mode, active training mode, interactive learning training mode, and soft-stop
mode, allowing LLRRs to match the varying motor abilities of patients online.

5. Conclusions

This article proposed an HRCCS for lower limb rehabilitation robots. The HRCCS,
comprising a high-level trajectory planner designed using the TDA, DMPs, and the soft
saturation function, can generate reference trajectories, predict smooth desired trajectories
through pHRI, and learn the desired trajectory. A triple-step controller with NDO and
RBFNN was designed to be the low-level position controller to ensure trajectory tracking
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accuracy and robustness. The proposed strategy was tested through three types of simula-
tion experiments: robustness verification, compliant interaction, and trajectory interactive
learning. The results confirmed the effectiveness of the HRCCS in ensuring trajectory track-
ing accuracy and robustness, as well as its ability to achieve compliant pHRIs and trajectory
interactive learning, and demonstrated the potential of the HRCCS in passive, active, and
interactive learning control for rehabilitation robots and other fields involving pHRI.
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