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Abstract: Theobroma cacao L. seeds, commonly known as cocoa beans, are the foundation for cocoa
and chocolate production. Following harvest, these beans undergo a multi-step processing chain
including fermentation, drying, roasting, and grinding. This process yields cocoa solids, cocoa butter,
and cocoa powder—all fundamental ingredients in the food and beverage industry. Beyond its
sensory appeal (flavor, aroma, and texture), cocoa has garnered significant interest for its potential
health benefits attributed to a rich profile of bioactive compounds. Cocoa is a well-documented
source of polyphenolics, specifically flavanols, alongside methylxanthines, phytosterols, and dietary
fibers. These constituents have been associated with a diverse range of bioactivities, including
antioxidant, anti-carcinogenic, anti-diabetic, anti-inflammatory, anti-obesity, and anti-allergenic
properties, potentially contributing to overall health maintenance. Efficient extraction techniques
are crucial for maximizing the recovery of these valuable bioactive components from cocoa plant
material. Modern methods are continuously being explored to optimize this process. This review
focuses on the established health benefits associated with the bioactive compounds present in cocoa.
Additionally, it will explore and discuss contemporary approaches for the extraction of these bioactive
compounds from this plant source.

Keywords: cocoa; health benefits; polyphenolic and methylxanthine compounds; extraction

1. Introduction

Theobroma cacao L. trees, native to tropical regions of Central and South America, are
cultivated for their seeds, known as cocoa beans. These beans thrive within a narrow
equatorial band, often referred to as the “cocoa belt” [1]. The beans are encased within
pods containing a sweet, mucilaginous pulp [2]. Following harvest, the beans undergo
fermentation, drying, roasting, and subsequent processing into various cocoa products like
cocoa powder and cocoa butter. Cocoa powder originates from grinding roasted cocoa
beans, while cocoa butter is the extracted fat component. Both hold significant value in
the food industry, with cocoa powder finding applications in baking, confectionery, and
beverages, while cocoa butter is a key ingredient in chocolate production and cosmetics.

Cocoa boasts a long history of human consumption, with evidence tracing its use
back to the Maya civilization in Central America (400 AD) as a ceremonial and potentially
pleasurable food source. Notably, the Maya referred to their hot water cocoa beverage as
the “Food of the Gods” [3]. As shown in Table 1, from a compositional standpoint, cocoa is
a rich source of fiber (40–26%), lipids (24–10%), proteins (20–15%), carbohydrates (15%),
and micronutrients (<2%) encompassing minerals (P, Ca, K, Na, Mg, Zn, and Cu) and
vitamins (A, B, E) [4]. Additionally, cocoa is recognized for its abundance of polyphenols,
particularly flavanols, which have been linked to a variety of health benefits [5]. These
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bioactive components in cocoa have been associated with antioxidant, anti-carcinogenic,
anti-diabetic, anti-inflammatory, anti-obesity, and anti-allergenic properties, potentially
contributing to overall health. Several studies suggest that cocoa consumption may offer
health advantages, including a reduced risk of chronic diseases like cardiovascular ailments,
metabolic disorders, and cancer [5–7]. Furthermore, research indicates positive effects on
the nervous system, visual function, and skin [8–10].

Table 1. The nutritional content of cocoa in percentage per 100 g [11].

Macronutrients per 100 g Percentage

Protein 15–20%
Carbohydrates ~15%

Lipids 10–25%
Fiber 25–40%

Micronutrients per 100 g Per 100 g

Vitamin A (Retinol) <0.2 mg
Vitamin E (Tocopherol) 2.5 mg
Vitamin B1 (Thiamine) 0.3 mg
Vitamin B1 (Riboflavin) 0.4 mg

Vitamin B3 (Niacin) 0.7 mg
Sodium (Na) 0.03 g

Potassium (K) 4.3 g
Calcium (Ca) 151 mg

Phosphorus (P) 700 mg
Iron (Fe) 26 mg

Magnesium (mg) 555 mg
Copper (Cu) 5 mg

2. Bioactives in Cocoa

Bioactive compounds are naturally occurring molecules in plants and foods that
demonstrate health benefits when consumed at appropriate levels. These compounds can
influence physiological functions beyond basic nutrition and may contribute to chronic
disease risk reduction or overall well-being through antioxidant and anti-inflammatory
properties [12]. Ongoing research continues to identify novel bioactive molecules and their
potential health impacts, fueling interest in functional foods, nutraceuticals, and dietary
supplements designed to deliver concentrated forms of these compounds.

Unprocessed cocoa beans are a rich source of polyphenols (12–18% dry weight), en-
compassing major groups like flavanols, anthocyanidins, and proanthocyanidins [13–15].
Naturally occurring polyphenols have been extensively studied for their health benefits,
including combating free radicals detrimental to human health and food systems [16].
These compounds are linked to various functionalities in functional foods, including car-
diovascular protection, anti-tumor activity, anti-inflammatory properties, and benefits
for neurodegeneration, bacterial control, and dental health [17]. Cocoa products are also
abundant in methylxanthines such as caffeine, theobromine, and theophylline. While
these compounds offer health benefits, they can negatively impact taste by introducing
astringency and bitterness. Additionally, they can influence the stability and digestibility of
products high in these components [17–19]. Consequently, subsequent treatments like fer-
mentation, drying, and roasting are crucial for achieving the unique sensory characteristics
of cocoa products (Figure 1).

The synthesis of bioactive compounds during cocoa post-harvest processing is influ-
enced by factors such as reducing sugars, peptides, and amino acids [19]. Additionally,
genotype, bean maturity, geographical origin, and processing methods (fermentation and
drying) play a role [20]. Yeasts and lactic acid bacteria initiate fermentation by degrad-
ing pulp sugars primarily into ethanol. This exothermic process elevates cocoa mass
temperature and oxygen tension, leading to acetic acid production from ethanol [21,22].
Fermentation reduces pH and increases titratable acidity, triggering embryo death and
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cell wall rupture through the action of ethanol and acetic acid. Furthermore, fermentation
decreases bitterness and astringency by reducing phenolic content due to phenol oxidase
activity [23,24]. However, inadequate fermentation processes can be detrimental, leading
to decreased phenolic content and antioxidant activity in cocoa beans [18,25].
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Figure 1. Processing of cocoa beans.

2.1. Polyphenols

Cocoa polyphenols as phytocompounds or phytochemicals, are widespread across
the plant kingdom, serving as a defense mechanism against herbivores, pathogens, and
ultraviolet radiation. Cocoa stands out for its abundance of polyphenolic compounds,
particularly flavanols (also known as flavan-3-ols)—a specific subclass of flavonoids [26]
(Figure 2).
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As mentioned, cocoa polyphenols, classified as secondary metabolites, contribute
to the characteristic bitterness and astringency of cocoa beans and chocolate [27]. These
diverse compounds encompass over 8000 identified phenolic structures [28]. The core
flavonoid structure features 15 carbon atoms with two aromatic rings (A and B) linked
by a three-carbon bridge (C). Variations in hydroxylation patterns and the chromane ring
(C) classify flavonoids into subgroups like anthocyanins, flavan-3-ols (flavanols), flavones,
flavanones, and flavonols [29].
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Unfermented, dried cocoa beans contain roughly 13.5% phenolics. These include
monomeric flavanols like (−)-epicatechin and (+)-catechin, along with procyanidins (dimeric,
particularly B2 and B1) and oligomeric/polymeric forms [30]. While present in lower quanti-
ties, cocoa also boasts other polyphenols such as flavones (luteolin and apigenin), flavanones
(naringenin), flavonols (quercetin, isoquercitrin, and hyperoside), phenolic acids, and antho-
cyanins [10,31]. Procyanidins are the primary contributors to cocoa’s antioxidant activity [32].
However, high flavanol content, particularly, is responsible for the characteristic bitterness,
significantly influencing chocolate’s organoleptic properties and palatability [33].

Cocoa polyphenol content exhibits significant variability. Several factors influence this,
including cocoa subspecies, geographical origin, cultivation practices (soil type, altitude,
and sun exposure), and bean maturity [34,35]. During development, polyphenols gradually
accumulate in storage cells, leading to increased levels with maturity [36]. For instance,
catechin content can rise from 6.39 ± 0.02 g/100 g dry matter in stage 1 (purple-red
pods) to 8.04 ± 0.24 g/100 g dry matter in stage 4 (orange pods) [37]. Manufacturing
and processing significantly impact the final quality and quantity of polyphenols retained
in cocoa products [8]. Defatted cocoa seeds experience a substantial decrease in total
soluble polyphenols (from 20% to 6%) after drying [38]. Fermentation can be even more
impactful, leading to a 70% reduction in overall phenolic content and a 90% decrease in
(−)-epicatechin content [39]. Acidic conditions, heat, and enzymatic activity are believed
to be the primary factors contributing to the decline in polyphenols and methylxanthines
during processing.

Upon ingestion, the human body recognizes polyphenols as foreign compounds
(xenobiotics). Their absorption is primarily influenced by structural complexity rather than
concentration. Generally, polyphenols exhibit low bioaccessibility and bioavailability, with
most remaining unabsorbed in their natural state [40]. Several factors govern the fate of
ingested polyphenols: (i) individual variability (genetic differences in metabolic enzymes,
efflux pumps, and transporters can influence individual polyphenol metabolism); (ii) gut
microbiota interactions (bidirectional interactions with gut bacteria play a role, potentially
leading to synergistic or antagonistic effects with other dietary components); and (iii) overall
metabolism (these mechanisms modulate the rate of absorption, distribution, metabolism,
and excretion of polyphenols [41]). For optimal absorption, polyphenols require extensive
modification through hydrolysis, conjugation, and microbial degradation into secondary
metabolites with enhanced bioactivity and bioavailability [42].

The metabolic journey of cocoa polyphenols commences in the oral cavity. Here,
flavonoid glucosides are converted into aglycones, further transformed into absorbable
bioactive compounds by the oral epithelium. Reaching the stomach, oligomeric polyphe-
nols are broken down into their monomeric units [43]. Small intestine absorption is the
primary route for cocoa polyphenol metabolites. Monomers rapidly reach the liver, where
phase II enzymes conjugate them into sulfates, glucuronides, and methylated metabolites.
Additionally, enterohepatic recirculation may occur through the excretion of some flavanols
via bile. Oligomeric procyanidins demonstrate poor gastrointestinal absorption and are
primarily metabolized by gut microbiota alongside monomeric flavanols within the large
intestine. Estimates suggest only 5–10% of polyphenols are absorbed in the small intestine,
with the remaining 90–95% reaching the colon [39]. Here, colonic microbial fermentation
transforms them into secondary metabolites with various physiological consequences influ-
encing gut ecology and human health [44,45]. This microbial biotransformation appears
to be the most efficient pathway for generating small, bioavailable secondary metabolites
capable of entering circulation, reaching target organs, and exerting their bioactivities [41].

A study by Llerena et al. [46] investigated the bioactive compound profile and antioxidant
activity in cocoa residues (mucilage and bean shells) of two varieties: Nacional x Trinitario
(Fine Aroma) and CCN-51. The Nacional × Trinitario mucilage exhibited the highest
concentrations of procyanidin B1, B2, C1, epicatechin, and catechin, with procyanidin B2
(3.52 mg/100 mL) and catechin (3.54 mg/100 mL) being the most abundant. When comparing
epicatechin and catechin content between mucilage and bean shells, the bean shells displayed
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higher levels, particularly epicatechin. Interestingly, no significant differences were observed
in total polyphenol concentration between the two mucilage samples. However, significant
differences (p < 0.05) were found for epicatechin and catechin content in the bean shells,
highlighting the influence of variety on these specific compounds. Consistent with previous
research by Martinez et al. [47] and Okiyama et al. [48], flavan-3-ols (catechin, epicatechin, and
procyanidins) were the dominant phenolic compounds identified, contributing to the bitter
taste observed in cocoa derivatives and residues. Notably, unlike cocoa mucilage, cocoa bean
shells possess a distinct phenolic profile compared to cocoa beans themselves [46]. Febrianto
and Zhu’s 2022 study [49] examined the chemical composition (methylxanthines, polyphenols,
key odorant volatiles, and minerals) of 22 cocoa samples from various Indonesian regions.
Significant variations were observed in flavan-3-ol monomer composition between under-
fermented and fermented samples, with the exception of those from Sulawesi. Partially
fermented beans displayed lower flavan-3-ol content compared to unfermented ones, likely
due to degradation during fermentation. Conversely, under-fermented samples exhibited
higher phenolic acid content compared to fermented beans [50]. The authors suggest that
factors like genetics, growing environment, and plant defense mechanisms influence phenolic
acid profiles.

2.2. Methylxanthin

Theobromine (3,7-dimethyxanthine) and caffeine (1,3,7-trimethylxanthine) are the
predominant purine alkaloids in cocoa seeds, with theophylline (1,3-dimethylxanthine)
present in trace amounts [51] (Figure 3). These secondary metabolites contribute to the
astringency and bitterness characteristic of cocoa and its derivatives. Similar to polyphenol
content, cocoa methylxanthine content exhibits variation based on the genetic background,
geographic origin, and maturity stage of the beans [5]. Studies have reported a significant
increase (up to 74.2%) in theobromine and caffeine content between immature and mature
cocoa beans [5]. Theobromine, the primary alkaloid responsible for the mild stimulant
effects of cocoa, possesses high bioavailability and diverse biological activities. Recent
research has explored the potential of theobromine to elevate serum HDL cholesterol
levels through dietary intervention with cocoa products [52]. Additionally, theobromine
demonstrates stimulatory effects on heart muscle, promotes the relaxation of bronchial
smooth muscle in the lungs, and may play a role in intracellular signaling pathways [53].
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Studies indicate that cocoa mucilage and bean shells harbor higher concentrations of
methylxanthines, particularly theobromine. This observation held true for both Nacional and
Nacional × Trinitario cocoa varieties. Theobromine content peaked at 2.66 mg/100 mL in
the mucilage of Nacional × Trinitario beans, with significant differences observed between
theobromine and caffeine levels [46]. Theobromine and caffeine content varies depending on
the fermentation process, with under-fermented beans generally exhibiting higher levels of
both alkaloids compared to fermented beans [50]. Fermentation triggers bio-detheobromination,
leading to a decrease in theobromine content. Among fermented samples, those from Sulawesi
displayed the highest theobromine concentration, while Balinese beans had the lowest. Interest-
ingly, Sulawesi beans also had the highest caffeine content, with Mamuju-3 samples reaching
levels (3.07 g/kg dry weight) comparable to under-fermented beans and fermented Jember-Edel
beans (3.33 g/kg dry weight). This suggests a potential role for caffeine overexpression as a
plant defense mechanism against pathogens [50], with further studies showing that pathogen
attack can induce an eight-fold increase in caffeine content in cacao stems [54]. Environmental
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factors like water availability, seasonal variations, temperature fluctuations, and light inten-
sity significantly impact the methylxanthine profile of plants, including cocoa. The observed
variability in methylxanthine content likely stems from a combination of geographical and
environmental factors at the origins of the bean samples, along with inherent genetic differences
in the cocoa plants themselves [55].

2.3. Phytosterols

Phytosterols, plant-based steroids found in various plant parts (roots, stems, leaves,
fruits, and grains), are crucial components of plant cell membranes [56]. Daily human intake
of phytosterols ranges from 100 to 400 mg, primarily from vegetable oils, grains, nuts, and
vegetables [56–59]. Current research suggests diverse physiological functions associated
with phytosterols, including antioxidant activity, anti-inflammatory and antipyretic effects,
and potential hormonal influence [60–62]. Notably, their most significant function lies in
reducing cholesterol absorption and the concentration of low-density lipoprotein cholesterol
(LDL-C) [60,61]. Due to their structural similarity to cholesterol, phytosterols compete for
intestinal absorption, thereby lowering plasma LDL-C levels. Additional potential benefits
include improved insulin sensitivity, enhanced lipid metabolism, and reduced risk of cancer,
Alzheimer’s disease, and atherosclerosis-related cardiovascular diseases (CVDs) [62–66].
These positive health impacts have driven the widespread use of phytosterols in functional
foods. Cocoa beans represent a good source of phytosterols (200–300 mg/100 g fat), existing
in both free and esterified forms. Beta-sitosterol and stigmasterol are the most prevalent
phytosterols in cocoa beans, accounting for 59% and 22% of total sterols, respectively. Other
phytosterols like campesterol, cycloartenol, 24-methylene cycloartenol, delta-5 avenasterol,
and sitostanol are present in considerably lower quantities [67]. A study by Zarabadipour
et al. investigated the sterol profiles of two cocoa powder brands (Delphi and Bensef). Beta-
sitosterol, stigmasterol, and campesterol were identified as the major sterol components
in both samples, with no significant compositional differences observed. Variations in the
sterol content of cocoa powders could potentially stem from differences in the plant source
or processing and storage conditions [68].

2.4. Dietary Fibers

The concept of dietary fiber has evolved from its simple definition in the 1970s as
“plant cell remnants resistant to human digestion”. Today, the Codex Alimentarius Commis-
sion provides a more comprehensive definition, classifying dietary fibers as carbohydrate
polymers with ten or more monomeric units that resist hydrolysis by human small intestine
enzymes. These fibers can be categorized into three groups: naturally occurring, extracted,
and synthetic [69].

Observational studies reveal a strong association between high dietary fiber intake
and a reduced risk of chronic diseases like cardiovascular disease, stroke, type 2 diabetes,
colorectal cancer, and diverticular disease [70–73]. Notably, meta-analyses of prospective
cohort studies suggest a 15–16% decrease in all-cause mortality among individuals with
high fiber consumption compared to those with lower intake [72,73]. These studies indicate
an adequate daily intake of 25–29 g, with potential benefits exceeding 30 g per day [72].

Dietary fiber from cocoa bean husk has shown potential against various health con-
ditions. Studies have investigated the production of soluble, insoluble, and total dietary
fiber from cocoa bean shells, analyzing their hypoglycemic and cholesterol-lowering ef-
fects. Notably, soluble fiber exhibited the highest glucose adsorption capacity, α-amylase
inhibition activity, and cholesterol/sodium cholate binding capacity [74]. According to a
study by Braojos et al., cocoa shell flour and cocoa shell extract significantly reduce the
accumulation of fat, triglycerides, and cholesterol in HepG2 cells. The authors therefore
suggest that cocoa shells can be used as safe ingredients that have the ability to regulate
lipid metabolism [75]. The high dietary fiber content of cocoa bean husk makes it a valuable
ingredient in food formulations. While chocolate is generally considered low in nutrients
and high in calories, incorporating fiber can enhance its nutritional profile. However, this
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addition may decrease the polyphenol content [76]. Barišić et al. successfully added cocoa
shell (as a fiber source) to dark and milk chocolate, achieving increased dietary fiber content
without significantly impacting polyphenols. The resulting chocolate quality was compara-
ble to commercially available products [77]. Rojo-Poveda et al. utilized cocoa bean shells
to create high-fiber functional biscuits exhibiting α-glucosidase inhibitory activity [78].
Studies have also shown that incorporating cocoa hulls into cakes increases dietary fiber
content, phenolic content, and antioxidant activity [79]. Research has explored the influence
of cocoa husk dietary fiber on the physicochemical and sensory properties of emulsion-type
pork sausages at varying cocoa powder concentrations (0.25–2%). The findings indicate
that cocoa powder enhances emulsion stability, improves flavor acceptability and over-
all product acceptance, and significantly inhibits lipid peroxidation during refrigerated
storage [80].

3. Health Benefits of Bioactives from Cocoa

Cocoa consumption has been linked to potential benefits in preventing chronic dis-
eases. These protective effects are attributed to various bioactive compounds within cocoa,
particularly its rich phenolic content. Cocoa phenolics possess potent antioxidant prop-
erties, enabling them to neutralize free radicals in the body. Uncontrolled free radicals
contribute to oxidative stress, which is associated with cellular damage and the develop-
ment of chronic diseases and aging processes [81]. By mitigating oxidative stress, cocoa
may offer protection against these conditions.

Certain cocoa compounds are being investigated for their ability to regulate the cell
cycle, a crucial process for cell growth, division, and death. Additionally, cocoa may
possess anti-cancer properties through its ability to induce apoptosis (programmed cell
death) in cancer cells, thus hindering tumor development [82]. Studies also suggest that
cocoa flavonoids may inhibit angiogenesis, the formation of new blood vessels necessary
for tumor growth and spread. By limiting the blood supply to tumors, these flavonoids
may impede their growth [83].

Flavonoids, such as catechins and epicatechins, have been extensively studied for
their anti-inflammatory effects. Inflammation is a natural immune response triggered by
harmful stimuli. Acute inflammation is typically short-lived and serves a protective pur-
pose. Chronic inflammation, however, persists for extended periods and is associated with
various diseases. Bioactive compounds in cocoa are believed to modulate the body’s inflam-
matory response and reduce excessive inflammation. Certain cocoa flavonoids, including
catechins and procyanidins, may possess antimicrobial properties. These flavonoids have
demonstrated inhibitory effects against various bacteria and viruses, potentially contribut-
ing to cocoa’s overall antimicrobial activity [11]. Studies also suggest some level of antimi-
crobial activity in theobromine, particularly against certain oral bacteria associated with
dental caries and periodontal disease [17]. However, theobromine’s antimicrobial activity
is generally considered weaker compared to conventional medicinal antimicrobials [11].

3.1. Effects on Cardiovascular Diseases

Numerous studies in recent decades have explored the potential link between cocoa
products and reduced CVD prevalence. Ren et al. investigated dose-dependent relation-
ships between chocolate consumption and CVD incidence. Their findings suggest a weekly
intake of 45 g of chocolate may be optimal for reducing CVD risk, with higher intakes
potentially negated by adverse effects associated with high sugar content [84]. Similarly,
Jafarnejad et al. demonstrated the positive impact of cocoa and its derivatives on reducing
pulse wave velocity (PWV) and augmentation index (AIx) in both short- and long-term
studies [85].

Oxidative stress and chronic inflammation are implicated in various cardiovascular
conditions including atherosclerosis, hypertension, and myocardial infarction. Cocoa
bioactives may offer protection against these conditions due to their antioxidant and
anti-inflammatory properties. Cocoa flavanols have been shown to improve endothelial
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function, crucial for maintaining healthy blood vessels. Endothelial dysfunction is an early
marker in the development of CVD. Flavanols promote the production of nitric oxide, a
molecule that relaxes blood vessels and improves blood flow, potentially reducing the risk
of hypertension and atherosclerosis. A review by Sun et al. compiled data on improved
endothelial function observed after sustained cocoa flavanol intake (over 2 weeks). Notably,
they reported optimal effects on fibromuscular dysplasia with specific flavanol intakes:
total flavanols (710 mg), (−)-epicatechin (95 mg), and (+)-catechin (25 mg) [86]. Studies
suggest that even a modest reduction in systolic blood pressure (5 mmHg) can significantly
decrease CVD risk over time (20% over 5 years) [87]. The flavanol-mediated improvement
in endothelial function and enhanced nitric oxide availability are believed to contribute
to blood pressure reduction. While the evidence regarding improvements in circulating
lipid profile (cholesterol, triglycerides, HDL, and LDL) with cocoa consumption remains
inconclusive, cocoa bioactives have been shown to inhibit platelet aggregation and reduce
blood clot formation. By preventing excessive clotting, cocoa flavanols may help reduce
the risk of thrombotic events.

Despite evidence supporting the cardiovascular benefits of cocoa bioactives, further
research, including large-scale clinical trials, is needed to fully understand the mechanisms
of action and establish optimal cocoa intake levels and consumption patterns for maximiz-
ing cardiovascular health benefits. It is important to remember that the potential benefits
of cocoa consumption should be considered within the context of an overall healthy diet
and lifestyle.

3.2. Effects on Cognitive Functions

Growing evidence suggests a link between cardiovascular changes, oxidative stress,
and neuroinflammation in the development of cognitive decline [88]. Cognitive processes
encompass mental activities involved in acquiring, processing, storing, and retrieving
information. Studies like Lamport et al. demonstrate improvements in verbal episodic
memory in healthy young adults following dark chocolate consumption (70% cocoa) [89].
Notably, the exact flavanol content was unknown but estimated to be around 80–90 mg,
suggesting potential benefits even with lower flavanol intake compared to other studies.

Two main mechanisms are proposed for the potential cognitive benefits of cocoa:
(i) direct interaction (flavanoids may directly interact with signaling pathways promoting
neuronal function and brain connectivity [90]) and (ii) improved blood flow (cocoa may
improve cerebral blood flow, potentially influencing memory processing [91]). A third
emerging mechanism involves the gut–brain axis, where gut microbiota may influence the
bioavailability of cocoa’s polyphenols [92].

It has been shown that flavanols found in cocoa are associated with greater cerebral
blood volume and that the neuroprotective effect of bioactives in cocoa is a result of having
antioxidant and anti-inflammatory properties that potentially reduce the risk of cognitive
decline and neurodegenerative diseases like Alzheimer’s disease. Furthermore, cocoa
contains theobromine and phenylethylamine, which can have mood-enhancing effects.
Improvements in mood can indirectly benefit cognitive function by reducing stress and
anxiety, while caffeine content in cocoa can increase alertness and improve focus, leading
to enhanced cognitive performance in tasks that require sustained attention.

Although studies suggest that habitual consumption of flavonoid-rich foods increases
levels of neurotrophic nerve growth factor in plasma, enhances cognitive function and
performance, and thereby reduces the risk of cognitive decline and supports cognitive
health both in young and older adults, the effects may vary depending on factors such as
individual differences in metabolism and overall diet and lifestyle.

3.3. Effects on Gut and Gut Microbiota

Due to its abundance of fibers, cocoa has a positive effect on bowel movements.
Sarrià et al. confirmed that fact in their two-stage, randomized, crossover, single-blind
intervention in which volunteers (healthy adults aged 18–55) received two servings of
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fiber-enriched cocoa (2.26 and 6.60 g/day of non-starch polysaccharides) for four weeks.
Besides the more frequent daily bowel movements, the shorter time intervals between
bowel movements and less feelings of constipation were also noted [93]. Furthermore,
Fox et al. found no effects of ingesting 100 g of dark (72% cocoa, 250 mg flavanols) or
white (0% cocoa) chocolate for 5 days on upper gastrointestinal function, but it was found
that dark chocolate intake tends to slow colonic transit and increase stool consistency.
The following was explained by the fact that at high levels, cocoa methylxanthines can
accelerate colonic transit, whereas the low content found in dark chocolate may not trigger
this response [94]. A potential mechanism leading to slower colonic transit is the inhibition
of chloride channels induced by cocoa flavanols and reducing the water transport across
the colonic epithelium [5].

Intestinal mucosa acts as a permeable barrier and regulates the intestinal immune
system facing dietary pathogens or microbiota [95]. Oxysterol, derived from dietary
cholesterol, is one of these pathogens, causing dysfunction and epithelium permeability
and damaging intestinal mucosa by inducing inflammation and reactive oxygen species
(ROS) overproduction [5]. The use of cocoa bean shell (CBS) was shown to upregulate
nuclear erythroid 2 p45-related factor 2 (Nrf2) expression, which is a crucial transcription
factor protecting cell response against redox stressors [96]. The use of CBS can also prevent
the decrease of tight junction protein levels, which are involved in mucosa permeability [95].
Kramer et al. showed that procyanidin B2 from cocoa reduces the levels of the enzyme
tissue transglutaminase-2 (TG2), the leading marker in diagnosing celiac disease (CD), and
also reduces the proinflammatory cytokines IL-15, IL-1, IL-6, and IL-8 [97].

The gut microbiota refers to the community of microorganisms, including bacteria,
viruses, fungi, and other microbes, that reside in the digestive tract of animals, including
humans. The total number of intestinal bacteria exceeds ten times the number of eukaryotic
cells in the body, and due to their important metabolic activity, the intestinal microbiota
is often referred to as a “virtual” and “essential” organ that modulates the host’s health
phenotype with its secondary genome. This complex ecosystem plays a crucial role in
various aspects of human health, including digestion, metabolism, immune function, and
even mood regulation. Healthy gut microbiota is characterized by a diverse range of
microbial species, meaning that greater diversity is generally associated with better health
outcomes as well as that the balance of different microbial species in the gut is essential
for maintaining health. Disruptions in this balance, known as dysbiosis, are often defined
as a qualitative and quantitative change in microbiota, its metabolic activity, and local
distribution. Dysbiosis has been linked to various health issues, including inflammatory
bowel diseases (IBDs), obesity, diabetes, and autoimmune disorders. Diet is one of the
most significant factors influencing gut microbiota composition. A diet rich in fiber, fruits,
vegetables, and fermented foods supports a diverse and healthy gut microbiota. On the
other hand, a diet high in processed foods, sugars, and saturated fats can negatively impact
gut microbial diversity.

Recent studies suggest that unmodified dietary polyphenols from cocoa may in-
fluence gut microbiota through prebiotic effects and selective targeting of pathogenic
bacteria [98,99]. Specific species, including Escherichia coli, Bifidobacterium spp., Lactobacillus
spp., Bacteroides spp., and Eubacterium spp., seem to be primarily responsible for metaboliz-
ing cocoa polyphenols [100]. This gut microbial transformation converts these polyphenols
into smaller, more bioavailable compounds compared to the original aglycones produced in
the upper digestive tract [41]. Polyphenol supplementation appears to promote the growth
of beneficial bacteria like Lactobacillus and Bifidobacterium while potentially reducing the
abundance of pathogenic Clostridium species, such as Clostridium perfringens [101].

Theobromine also appears to influence gut microbiota. Martín-Peláez et al. conducted a
two-week animal study where cocoa or theobromine alone led to decreased Escherichia coli
levels compared to a control diet, suggesting a role in reducing Gram-negative bacteria [102].
Interestingly, theobromine alone (not whole cocoa) decreased Bifidobacterium spp., Streptococcus
spp., Clostridium histolyticum, and Clostridium perfringens. These findings suggest potential
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interactions between cocoa components, with polyphenols and fibers possibly counteracting
or enhancing theobromine’s effects [103].

In humans, cocoa polyphenols may promote Bifidobacteria growth by creating a gut
environment favorable for these bacteria. These effects seem to be beneficial in both healthy
and unhealthy guts, potentially improving overall microbiota composition [99]. Consuming
cocoa flavanol-rich foods is associated with increased Lactobacilli and Bifidobacteria in
humans, potentially influencing immunological tolerance. This suggests cocoa flavanols
might act as prebiotics, affecting gut microbiota and potentially modulating the immune
system. Notably, changes in fecal Bifidobacteria and Lactobacilli levels have been linked to
decreased C-reactive protein (CRP) concentrations, a marker of inflammation [39]. Wiese
et al. conducted a clinical trial investigating the prebiotic potential of dark chocolate
(Trinitario cocoa beans) with or without added lycopene in healthy individuals with
moderate obesity. Their results suggest that dark chocolate consumption led to decreased
Bacteroidetes and increased Lactobacillus levels. Additionally, they observed reductions
in liver-associated blood markers of oxidative damage and inflammation. The study
also reported dose-dependent changes in gut microbiota profiles, along with blood, liver
metabolism, skeletal muscle, and skin parameters [104].

3.4. Effects on Diabetes

Diabetes mellitus (diabetes) is a chronic metabolic disorder characterized by sustained
hyperglycemia, with two different types known in medicine: type 1 (T1D) and type 2
(T2D). Several large observational studies suggest that moderate consumption of cocoa and
cocoa products may be associated with a reduced risk of T2D [105–108]. Maskarinec et al.
conducted a large, multi-ethnic cohort study (MEC) and found that individuals with higher
intakes of chocolate products and cocoa flavanols had a lower risk of developing T2D, even
after accounting for sugar intake, diet quality, and other dietary factors [109]. Clinical trials
investigating the effects of cocoa products in diabetic patients are limited. However, some
studies suggest potential benefits for reducing cardiovascular disease (CVD) risk in this
population. Jafarirad et al. demonstrated that daily supplementation with high-cocoa dark
chocolate (84%) for 8 weeks decreased inflammatory markers (hs-CRP, TNF-α, and IL-6)
in diabetic patients. Interestingly, they also observed reductions in fasting blood glucose,
HbA1c, LDL-C, and triglycerides [110]. Conflicting results exist regarding the impact of
cocoa on glycemic control. Dicks et al. found no changes in blood sugar, insulin, lipids,
or blood pressure in patients with T2D and hypertension following regular intake of a
low-dose flavanol-rich cocoa powder for 12 days. This lack of effect may be due to existing
medications targeting similar pathways as cocoa flavanols [111]. Limited research has
explored the postprandial (after-meal) effects of cocoa in diabetic patients. Rynarzewski
et al. observed no significant effects on postprandial glucose, lipids, or blood pressure in
well-controlled diabetic patients consuming a flavanol-rich cocoa powder with a meal [112].
However, Davis et al. reported that a polyphenol-rich cocoa drink consumed with a high-fat
meal may improve postprandial dyslipidemia (abnormal fat levels) and inflammation in
adults with T2D [113].

Overall, these studies suggest that short-term cocoa consumption by diabetic patients
may offer some benefits for glycemic control and, more consistently, for factors associated
with CVD risk. Potential mechanisms likely involve the established positive effects of cocoa
flavanols on vascular function and their ability to influence key proteins involved in insulin
signaling, inflammation, oxidative stress, and gut microbiota [114–116].

3.5. Effects on Obesity

Obesity is a chronic condition characterized by excessive body fat accumulation. It is
typically measured by body mass index (BMI), with a score of 30 or higher indicating obesity.
Obesity is associated with numerous health risks, such as type 2 diabetes, cardiovascular
diseases, dyslipidemia, certain cancers, sleep apnea, osteoarthritis, fatty liver disease, and
reproductive problems.
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The link between cocoa bioactives and obesity prevention remains inconclusive. How-
ever, research suggests that altered gut microbiota (dysbiosis) found in obese individuals
might be a target for improving health. Studies show positive effects of cocoa consump-
tion on cardiovascular markers (blood pressure and flow-mediated dilation) in obese
adults. Additionally, obesity is linked to mental health issues like anxiety and depression.
Ibero-Baraibar et al. conducted a trial where overweight/obese individuals consumed a
calorie-restricted diet with or without a daily cocoa extract dose (1.4 g, 645 mg polyphe-
nols) for 4 weeks [116]. Cocoa consumption led to increased plasma homovanillic acid
levels, which was correlated with reduced depressive symptoms. Preclinical and cellular
studies suggest potential anti-obesity mechanisms associated with cocoa, including lipid
metabolism modulation, reduced adipogenesis, attenuated inflammation and oxidative
stress [117,118], and microbiota reshaping [119].

4. Extraction of Bioactive Compounds from Cocoa

The growing demand for bioactive compounds in various industries, including phar-
maceuticals, food, and chemicals, has intensified the search for eco-friendly extraction tech-
niques. Conventional methods often rely on harsh chemicals or high temperatures, raising
environmental concerns. Novel extraction approaches, referred to as “green technologies”,
offer promising alternatives. These techniques utilize various principles to achieve efficient
extraction while minimizing environmental impact. Some examples include the following:

– Ultrasound-assisted extraction (UAE): utilizes ultrasound waves to disrupt plant cell
walls, enhancing solvent penetration and bioactive compound release;

– Enzyme-assisted extraction (EAE): employs enzymes to selectively break down plant
cell walls, facilitating the release of target compounds;

– Microwave-assisted extraction (MAE): harnesses microwave energy to rapidly heat
solvents, promoting faster extraction and potentially improving yield;

– Pulsed electric field-assisted extraction (PEF): applies short, high-voltage electric
pulses to create temporary pores in plant cell membranes, allowing for improved
solvent access and extraction efficiency;

– Supercritical fluid extraction (SFE): utilizes fluids above their critical point (high
temperature and pressure) to act as both solvent and solute carrier, offering high
selectivity and purity for extracted compounds;

– Liquid extraction under pressure (PLE): employs heated pressurized solvents to enhance
extraction efficiency, often utilizing pressurized static or dynamic extraction processes;

– Ohmic heater-assisted extraction (OHAE): applies an electric current to directly heat the
extraction solution, offering rapid and efficient heating for improved extraction yields.

While these green technologies offer significant advantages, achieving optimal ex-
traction efficiency still requires careful optimization. Key variables influencing extraction
efficiency include particle size, solvent selection, temperature, extraction time, and sample-
to-solvent ratio [120]. Optimizing these parameters forms the foundation for establishing
efficient and environmentally friendly protocols for extracting bioactive compounds from
plant materials.

4.1. Ultrasound-Assisted Extraction (UAE)

Ultrasound-assisted extraction (UAE) is a widely used novel technique for extracting
phytochemicals [121]. It offers several advantages, including reduced time and energy
requirements, low temperatures, and preservation of extract quality. UAE utilizes high-
intensity sound waves to extract bioactive compounds from plant material. The ultrasound
waves disrupt plant tissue through physical forces generated during acoustic cavitation.
This disruption facilitates the release of extractable components into the solvent in a
significantly shorter time by enhancing mass transfer [122]. Optimum extraction with UAE
requires precise control of the frequency, power, duty cycle, temperature, time, solvent
type, and liquid-to-solid ratio.
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As described by Kumar et al. [123], ultrasound-assisted extraction (UAE) is consid-
ered an environmentally friendly technique due to its high productivity with minimal
solvent and time consumption. Additionally, it is suitable for extracting thermally sensitive
molecules. The frequency used in UAE for extracting bioactive compounds typically ranges
between 20 and 120 kHz. Low-frequency, high-intensity ultrasound generates strong shear
and mechanical forces, which are desirable for the extraction process. Conversely, high-
frequency, low-power density ultrasound produces a large number of reactive radicals. The
power delivered during UAE can be expressed as either amplitude percentage (ranging
from 0 to 100%, where 100% represents the equipment’s rated power) or power density
(W/mL), calculated as the power dissipated per unit volume of the extraction medium.
Duty cycle, expressed as a percentage, represents the ratio of pulse duration to the cycle
time of the ultrasonic wave. Pulse duration refers to the time the ultrasonic transducer
remains “on”, while the pulse interval is the duration between pulses. This interval is also
sometimes referred to as cycle time. Increasing the temperature can enhance the UAE yield
due to its dual effect on both the solute and the solvent. A temperature rise increases the
desorption properties and solubility of the solute in the solvent. Conversely, it decreases the
solvent’s viscosity, leading to increased diffusivity of the solvent within the tissue matrix.
Similar to temperature, increasing sonication time initially leads to a rise in yield. However,
further extension of sonication time can result in a decrease in yield, similar to the effect
of increasing power and temperature. The initial increase in sonication time enhances the
cavitation effect of the ultrasound, promoting swelling, hydration, fragmentation, and pore
formation within the plant tissue matrix, facilitating the extraction of the target solutes.
Regarding solvents, various options can be employed for UAE depending on the target
compounds. These include acidified water, ethanol, other alcohols, acetone, and water.
Optimization of the UAE process should encompass the selection of the appropriate sol-
vent, particle size, temperature, time, and solvent-to-solid ratio, as in traditional methods.
However, it should also include optimization of the specific ultrasound parameters (power
and frequency) for optimal results [124,125].

There are several novel studies dealing with the optimization of the UAE process
for cocoa bioactives extraction [76,126,127]. Jafari et al. used UAE to extract bioactives
from cocoa shells, which they encapsulated in maltodextrin. They optimized the UAE
process with regard to temperature (45–65 ◦C), extraction time (30–60 min), and ethanol
concentration (60–100%) [126]. Yusof et al. optimized the UAE extraction process in
regard to ethanol concentration (70–90%), temperature (45–65 ◦C), and irradiation time
(30–60 min). They found that the highest total flavonoid yield obtained was 7.47 mg RE/g
dw at 80% ethanol, 55 ◦C, and 45 min process duration [127].

4.2. Enzyme-Assisted Extraction (EAE)

Enzyme-assisted extraction (EAE) is a method that utilizes enzymes to extract bioac-
tive compounds from natural sources. Enzymes act as biological catalysts, accelerating
chemical reactions without being consumed themselves. In EAE, specific enzymes are
chosen to break down cell walls, disrupt cellular structures, and release the target bioactive
compounds from the source material. The selection of enzymes is based on their ability
to hydrolyze specific chemical bonds present in the cell walls or storage structures of the
source material. Commonly used enzymes include cellulases, pectinases, proteases, lipases,
and carbohydrases, depending on the composition of the source material. Enzymes can be
derived from bacteria, fungi, yeasts, archaea, animal organs, or plant extracts. EAE offers
several advantages: (i) selective extraction: enzymes can be chosen to target specific com-
ponents of the cell wall, enabling the selective extraction of desired bioactive compounds;
(ii) mild extraction conditions: enzymes function under mild temperature and pH condi-
tions, minimizing the degradation of heat-sensitive compounds; (iii) enhanced extraction
efficiency: enzymes facilitate the breakdown of cell walls, increasing the accessibility of
bioactive compounds and improving extraction yields; and (iv) environmentally friendly:
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EAE typically uses water or buffer solutions as extraction solvents, generating less waste
compared to chemical extraction methods.

EAE finds wide application in various industries, including food processing, pharma-
ceuticals, cosmetics, and natural product research, for the extraction of bioactive compounds
from a diverse range of natural sources. Optimizing the choice of enzymes and extrac-
tion conditions allows for achieving maximum extraction efficiency and desired product
characteristics [128].

In cocoa bioactives extraction, enzymes are often used in combination with other
extraction methods to enhance the extraction process. E.g., Huynh et al. explored the poten-
tial of EAE in combination with UAE for extraction of alkaloid and phenolic compounds
from cocoa bean shells. Viscozyme L beta-glucanase from Aspergillus aculeatus was used
as an extraction enzyme, and it was concluded that incubation with 1.5% Viscozyme L at
50 ◦C for 40 to 60 min resulted in the highest amounts of theobromine and catechin in the
extract [129].

4.3. Microwave-Assisted Extraction (MAE)

Microwave-assisted extraction (MAE) is a rapid and efficient technique for extracting
bioactive compounds from natural sources such as plants, herbs, and agricultural products.
In MAE, microwave energy is directly applied to the sample mixture, accelerating the
extraction process by generating heat within the sample matrix. The frequency range of
microwaves typically falls between 300 MHz and 300 GHz. The magnetic and electric fields
in microwaves are perpendicular to each other. The electric field is responsible for heating
by inducing ionic conduction and dipole rotation within the sample [130]. Depending on
their dielectric properties, different components in the sample absorb microwave radiation
to varying degrees. This absorption promotes cell rupture, allowing the solvent to penetrate
more effectively through the plant matrix. For optimal MAE extraction, several factors
need to be considered, including the nature and volume of the solvent, extraction time,
microwave power, operating temperature, and the properties of the starting material [131].

In the study of Mellinas et al., microwave-assisted extraction of cocoa bean shell (CBS),
a main by-product obtained from the cocoa industry, was optimized using response surface
methodology. Effects of pH, time, temperature and solid–liquid ratio on the extraction
yield, total uronic acid content, total phenolic content (TPC), and antioxidant capacity
were evaluated. The optimal MAE conditions were t = 5 min, pH = 12, T = 97 ◦C, and
S/L ratio = 0.04 g/mL. pH had the biggest influence on the CBS extraction, showing that
alkaline MAE extracts (pH 12) were the most enriched in polysaccharides, proteins, and
polyphenols with good antioxidant, foaming, and emulsifying properties [132].

4.4. Pulsed Electric Field-Assisted Extraction (PEF)

Pulsed electric field (PEF)-assisted extraction is an emerging technique that involves
the application of short, high-voltage electrical pulses to the sample matrix, leading to the
disruption of cell membranes and the release of intracellular compounds. PEF represents
a “green” approach for enhancing the mass transfer and recovery of valuable bioactive
compounds [133]. The advantages of PEF include (i) enhanced extraction efficiency: PEF
disrupts cell membranes more efficiently than traditional extraction methods, leading to
higher extraction yields; (ii) selectivity: PEF can be optimized to target specific compounds or
components of the sample matrix, allowing for selective extraction of bioactive compounds;
(iii) reduced processing time: PEF can significantly reduce extraction times compared to
conventional methods, making it a rapid and efficient extraction technique; (iv) minimal
use of solvents: PEF requires less solvent compared to conventional extraction methods,
resulting in reduced solvent consumption and environmental impact; (v) preservation of
bioactivity: PEF operates at relatively low temperatures, minimizing thermal degradation of
heat-sensitive compounds and preserving the bioactivity of extracted compounds. On the
other hand, the primary disadvantage of PEF applications is that the efficacy of the treatment
can be affected by PEF device parameters and external factors (e.g., conductivity, pH, and
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solution concentration) [134]. So far, it has applications in industries such as food processing,
pharmaceuticals, biotechnology, and environmental science.

Barbosa-Pereira et al. evaluated the potential advantages of the combined use of PEF
pretreatment with solid–liquid extraction to enhance the yield of bioactive compounds from
two food by-products, cocoa bean shell (CBS) and coffee silver skin (CS). The parameters
of the PEF pretreatment (electric field intensity, time of treatment, and the number of
cycles), as well as the parameters of the solid–liquid extraction (ethanol concentration
and extraction time), were optimized using the response surface methodology statistical
approach. They compared the optimized methodology with conventional extraction and
found that PEF-assisted extraction had higher (approximately 20%) recovery yields of
polyphenols and methylxanthines than conventional extraction [135]. Carpentieri et al. also
demonstrated that the application of PEF pretreatment of moderate intensity (3–5 kV/cm)
and relatively low energy input (15–40 kJ/kg) before solid–liquid extraction (SLE) with
green solvents (ethanol–water mixture and propylene glycol) can represent an approach to
intensify the extractability of theobromine and caffeine from cocoa bean shells [136].

4.5. Supercritical Fluid Extraction (SFE)

Supercritical fluid extraction (SFE) is an ecologically friendly way to extract bioactives
from sustainable sources, including herbs, spices, and plants. This method uses supercriti-
cal fluids, which enable the extraction of bioactive molecules [137,138]. A supercritical fluid
(SCF) is any substance maintained above its critical pressure and temperature, where it has
a mix of properties between liquid and gas. They are considered to be environmentally safe,
and substances such as water, carbon dioxide, ammonia, ethane, fluoroform, nitrous oxide,
propane, and xenon can be used as supercritical fluids [139,140]. Among them, carbon
dioxide is the one that is used the most frequently because it is inexpensive, ecofriendly,
and has a GRAS label [141]. Furthermore, CO2 is gaseous at normal temperature and
pressure, making extract recovery relatively straightforward and enabling the production
of extracts without the need for a solvent. Temperature, pressure, supercritical CO2 flow,
the presence of a modifier, and extraction time are the main variables that influence SC-CO2
extraction [142,143]. As highlighted by Melloul et al. [144], SFE with CO2 has opened doors
to extracting a wide variety of bioactive compounds from plant sources. These compounds
have found applications in various sectors, including food, pharmaceuticals, and cosmetics.
SFE offers several advantages over traditional extraction methods, such as (i) selectivity:
supercritical fluids can be tuned to selectively extract specific compounds while leaving
undesirable components behind, allowing for high-purity extracts; (ii) mild operating con-
ditions: the extraction process can be conducted at relatively low temperatures, preserving
the integrity of heat-sensitive compounds; (iii) being environmentally friendly: super-
critical fluid extraction typically utilizes non-toxic and environmentally benign solvents,
reducing environmental impact compared to conventional solvent extraction methods; and
(iv) scalability: the process can be easily scaled up from laboratory-scale to industrial-scale
operations, making it suitable for large-scale production.

Pico Hernández et al. determined the influence of main extraction parameters using
supercritical CO2 and ethanol for obtaining polyphenols and carotenoids from cocoa husk.
According to their findings, extraction times higher than 120 min and particle sizes under
1.105 mm did not present significant effects on total polyphenol content (TPC). According
to their result, TPC rises up to 53.84% with increases in pressure and mass concentration of
ethanol, while temperature generates a reduction in TPC near 48.28% [145].

4.6. Pressurized Liquid Extraction (PLE)

Pressurized liquid extraction (PLE), also known as accelerated solvent extraction (ASE)
or pressurized fluid extraction (PFE), emerged in the mid-1990s. This technique aims to
reduce extraction time and solvent usage compared to traditional methods. PLE operates
by utilizing a liquid solvent at elevated temperatures and pressures but always below the
critical point to maintain the solvent in its liquid state [146,147]. These conditions alter the
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solvent’s physical and chemical properties, allowing for deeper penetration into the sample
matrix. This enables increased solubility of target compounds (analytes), reduced solvent
surface tension and viscosity, and enhanced mass transfer rate. These combined effects then
lead to a faster extraction process with high yields and minimal solvent consumption [146].
The typical PLE process involves dispersing the sample with an inert material, placing
the mixture in a pressurized vessel, pumping the solvent and heating the vessel (typically
75–200 ◦C), raising the pressure to around 100 atm, extracting the solvent, potentially
repeating cycles for improved analyte recovery, and using compressed gas to purge the
extract from the vessel [148].

Compared to microwave-assisted extraction (MAE), PLE offers a pre-filtered extract,
eliminating the need for separate solid residue removal. Additionally, PLE allows for
potential in-cell purification, enhancing selectivity. However, PLE generally requires more
labor-intensive cell preparation and comes with a higher instrument cost [146–148].

The advantages of PLE are (i) high extraction efficiency—PLE allows rapid and efficient
extraction of bioactive compounds due to the combined effects of high pressure, elevated
temperature, and solvent penetration; (ii) reduced solvent consumption: PLE typically
requires smaller volumes of solvent compared to traditional extraction methods, resulting
in reduced costs and environmental impact; (iii) automation and reproducibility: PLE
instruments can be automated, allowing for precise control over extraction parameters
and ensuring reproducible results; and (iv) versatility: PLE can be applied to a wide range
of sample types, including solid, semi-solid, and viscous samples, making it suitable for
various applications in fields such as pharmaceuticals, food, environmental analysis, and
natural product research.

In cocoa bioactives extraction research, PLE is mentioned in several studies and often
compared to the conventional extraction methods. E.g., Pagliari et al., developed and
optimized a pressurized hot water extraction process for the recovery of theobromine and
caffeine from cocoa by-products. In comparison to the results obtained using ultrasound-
assisted liquid extraction, under optimized conditions (ethanol 15%, temperature 90 ◦C,
5 cycles, and static time 6 min), the extraction efficiency increased by 156% for theobromine
and 160% for caffeine [149].

5. Future Research Trends

This review explores recent research findings highlighting the bioactives of cocoa,
their extraction techniques, and potential health benefits. Cocoa and cocoa products are
well-established sources of phytochemicals with recognized nutritional and therapeutic
value. Accumulating scientific evidence suggests that cocoa components with antioxidant
and anti-inflammatory properties contribute positively to human health. Despite existing
evidence on the health benefits of cocoa consumption, further research is needed to further
quantify their biological activity and explore their health potential and their bioavailability.
Furthermore, the development of environmentally friendly extraction techniques is a must-
have in a world battling environmental and climate changes. By addressing these research
gaps, scientists can develop a more comprehensive understanding of cocoa’s potential
health benefits and pave the way for future applications.
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59. Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Mirończuk-Chodakowska, I.; Cicha-Mikołajczyk, A.; Drygas, W. Assessment
of Plant Sterols in the Diet of Adult Polish Population with the Use of a Newly Developed Database. Nutrients 2021, 13, 2722.
[CrossRef]

60. Lesma, G.; Luraghi, A.; Bavaro, T.; Bortolozzi, R.; Rainoldi, G.; Roda, G.; Viola, G.; Ubiali, D.; Silvani, A. Phytosterol and
γ-Oryzanol Conjugates: Synthesis and Evaluation of Their Antioxidant, Antiproliferative, and Anticholesterol Activities. J. Nat.
Prod. 2018, 81, 2212–2221. [CrossRef]

61. Vilahur, G.; Ben-Aicha, S.; Diaz-Riera, E.; Badimon, L.; Padró, T. Phytosterols and Inflammation. Curr. Med. Chem. 2019, 26,
6724–6734. [CrossRef]

62. Li, Q.; Xing, B. A Phytosterol-Enriched Spread Improves Lipid Profile and Insulin Resistance of Women with Gestational Diabetes
Mellitus: A Randomized, Placebo-Controlled Double-Blind Clinical Trial. Diabetes Technol. Ther. 2016, 18, 499–504. [CrossRef]

63. Guo, X.X.; Zeng, Z.; Qian, Y.Z.; Qiu, J.; Wang, K.; Wang, Y.; Ji, B.P.; Zhou, F. Wheat Flour, Enriched with γ-Oryzanol, Phytosterol,
and Ferulic Acid, Alleviates Lipid and Glucose Metabolism in High-Fat-Fructose-Fed Rats. Nutrients 2019, 11, 1697. [CrossRef]
[PubMed]

64. Huang, J.; Xu, M.; Fang, Y.J.; Lu, M.S.; Pan, Z.Z.; Huang, W.Q.; Chen, Y.M.; Zhang, C.X. Association between Phytosterol Intake
and Colorectal Cancer Risk: A Case-Control Study. Br. J. Nutr. 2017, 117, 839–850. [CrossRef] [PubMed]

65. Zhang, Z.L.; Luo, Z.H.; Shi, H.W.; Zhang, L.X.; Ma, X.J. Research Advance of Functional Plant Pharmaceutical Cycloartenol about
Pharmacological and Physiological Activity. Zhongguo Zhong Yao Za Zhi 2017, 42, 433–437. [CrossRef] [PubMed]

66. Hansel, B.; Courie, R.; Bayet, Y.; Delestre, F.; Bruckert, E. Phytostérols et Athérosclérose. La Rev. Méd. Interne 2011, 32, 124–129.
[CrossRef] [PubMed]

67. Oracz, J.; Nebesny, E.; Zyzelewicz, D. Effect of Roasting Conditions on the Fat, Tocopherol, and Phytosterol Content and
Antioxidant Capacity of the Lipid Fraction from Cocoa Beans of Different Theobroma cacao L. Cultivars. Eur. J. Lipid Sci. Technol.
2014, 116, 1002–1014. [CrossRef]

68. Zarabadipour, F.; Piravi-Vanak, Z.; Aminifar, M. Evaluation of Sterol Composition in Different Formulations of Cocoa Milk as
Milk Fat Purity Indicator. Food Sci. Technol. 2020, 41, 519–523. [CrossRef]

69. Trowell, H. Definition of Dietary Fiber and Hypotheses That It Is a Protective Factor in Certain Diseases. Am. J. Clin. Nutr. 1976,
29, 417–427. [CrossRef] [PubMed]

70. Wu, Y.; Qian, Y.; Pan, Y.; Li, P.; Yang, J.; Ye, X.; Xu, G. Association between Dietary Fiber Intake and Risk of Coronary Heart
Disease: A Meta-Analysis. Clin. Nutr. 2015, 34, 603–611. [CrossRef] [PubMed]

71. Zhang, Z.; Xu, G.; Liu, D.; Zhu, W.; Fan, X.; Liu, X. Dietary Fiber Consumption and Risk of Stroke. Eur. J. Epidemiol. 2013, 28,
119–130. [CrossRef]

72. Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate Quality and Human Health: A Series of
Systematic Reviews and Meta-Analyses. Lancet 2019, 393, 434–445. [CrossRef] [PubMed]

73. Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I.
Dietary Fiber and Health Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Am. J. Clin. Nutr. 2018, 107,
436–444. [CrossRef]

74. Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J.; Bangoura, M.L.; Lagnika, C. Quantification of Total Polyphenolic Content and
Antimicrobial Activity of Cocoa (Theobroma cacao L.) Bean Shells. Pak. J. Nutr. 2012, 11, 574–579. [CrossRef]

75. Braojos, C.; Benitez, V.; Rebollo-Hernanz, M.; Cañas, S.; Aguilera, Y.; Arribas, S.M.; Martin-Cabrejas, M.A. Evaluation of the
Hypolipidemic Properties of Cocoa Shell after Simulated Digestion Using in Vitro Techniques and a Cell Culture Model of
Non-Alcoholic Fatty Liver Disease. Proceedings 2020, 70, 58. [CrossRef]

76. Belwal, T.; Cravotto, C.; Ramola, S.; Thakur, M.; Chemat, F.; Cravotto, G. Bioactive Compounds from Cocoa Husk: Extraction,
Analysis and Applications in Food Production Chain. Foods 2022, 11, 798. [CrossRef] [PubMed]
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