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Abstract: Machine learning and artificial intelligence are growing in popularity thanks to their ability
to produce models that exhibit unprecedented performance in domains that include computer vision,
natural language processing and code generation. However, such models tend to be very large and
complex and impossible to understand using traditional analysis or human scrutiny. Conversely,
Symbolic Regression methods attempt to produce models that are relatively small and (potentially)
human-readable. In this domain, Genetic Programming (GP) has proven to be a powerful search
strategy that achieves state-of-the-art performance. This paper presents a new GP-based feature
transformation method called M5GP, which is hybridized with multiple linear regression to produce
linear models, implemented to exploit parallel processing on graphical processing units for efficient
computation. M5GP is the most recent variant from a family of feature transformation methods
(M2GP, M3GP and M4GP) that have proven to be powerful tools for both classification and regression
tasks applied to tabular data. The proposed method was evaluated on SRBench v2.0, the current
standard benchmarking suite for Symbolic Regression. Results show that M5GP achieves performance
that is competitive with the state-of-the-art, achieving a top-three rank on the most difficult subset
of black-box problems. Moreover, it achieves the lowest computation time when compared to other
GP-based methods that have similar accuracy scores.

Keywords: Genetic Programming; M3GP; M4GP; graphical processing units; regression

1. Introduction

Genetic Programming (GP), first conceptualized over 30 years ago [1], was proposed
as a general purpose problem solving paradigm, applicable to a wide variety of domains,
from program synthesis to circuit design [2]. However, the most widely studied problem
in GP has been Symbolic Regression (SR), a type of machine learning problem where the
goal is to predict a real-valued output while also generating a symbolic and (potentially)
human-readable model [1,3,4]. Indeed, a large variety of GP-based methods has been
proposed for SR that have extended the originally proposed tree-based GP, incorporating
specialized search techniques and sophisticated implementations [3,4]. While no broadly
used taxonomy exists, there are some obvious ways in which to categorize GP-based SR
methods and some of the aspects that could be taken into account are the following:

• Representation: the way in which solutions are represented (trees, graphs, arrays
or stacks);

• Objectives: the number of objectives (single- or multi-objective), or the type of objec-
tives used (error, correlation or novelty);
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• Search process: how the method searches for or constructs a feasible model, including
how the population is managed (for example, the use of single or multiple populations)
or the type of search operators used (syntactic operators, semantic operators or hybrid
techniques with local search methods);

• Search space: this is related to the set of feasible models that the technique can produce;
i.e., the structure or the type of model than can be generated by the search process.

From a practical point of view, although not necessarily from the perspective of the
search technique itself, the final aspect may be the most important [5]. While different
types of models exist, there are at least two general groups of GP-based SR methods that
could be identified: (1) unconstrained SR methods and (2) constrained SR methods. An
unconstrained method can produce any type of model that is feasible given the primitive
elements used to construct it. For a GP approach, feasibility would depend on the primitive
elements used by the method and the size limit imposed by the search process (even if the
size limit is merely based on the available system memory). For instance, this group of
methods includes standard GP [1], stack-based GP [6], or memetic variants [7]. Conversely,
constrained methods utilize additional rules that constrain what type of models can be
produced, rules that go beyond what is included in the terminal and function sets. These
rules could be imposed, for instance, during the genotype to phenotype mapping of a
candidate solution [8], directly in the solution representation [9], or as part of the search
operators used [10].

In particular, in recent years, there has been significant interest in using GP to generate
models that are linear in parameters [11], hereafter referred to as linear models for simplicity.
These models are of the form

y = w0 + w1x1 + w2x2 + · · ·+ wnxn (1)

where y is the output variable (target), x1, x2, · · ·, xn are the input variables (features), w1,
w2, · · ·, wn are the model parameters (weights), w0 is the bias term and xi, wi, y ∈ R. Notice
that, while these models are linear from the perspective of the parameters of the model, the
individual terms can be nonlinear, such that a linear model can be posed as

y = w0 + w1K1(x) + w2K2(x) + · · ·+ wnKd(x) (2)

where x = (x1, x2, · · ·, xn), Ki : Rn → R are linear or nonlinear transformations of the input
features, also known as basis functions, and i = 1, · · ·, d with d not necessarily equal to
n. For instance, these functions can be polynomial expansions, radial basis functions, or
wavelets, to name a few common variants.

One of the benefits of using linear models is that they are amenable to well-known
statistical analysis and tuning [12]. Another benefit can be obtained when the transfor-
mation functions are relatively simple and symbolic in nature, potentially making model
understanding and interpretation much more feasible [5,13]. Even with linear models,
intepretability is often not possible when using kernel methods, for instance, when the
number of parameters in those models grows with the number of observations, or ensemble
methods that require a very large number of weak models. Moreover, similar issues arise
with nonlinear black-box models, such as the Multilayer Perceptron (MLP). Therefore, the
discovery of relatively simple transformation functions is desirable in many modeling tasks.
Moreover, estimating model parameters can be carried out in a relatively simple and robust
manner for these models, using matrix decomposition or gradient-based methods, that
can facilitate model simplification with regularized techniques [14]. Conversely, parame-
ter estimation in GP-based SR with traditional search operators is highly inefficient [15].
A final comment is that while most constrained SR methods focus on generating linear
models, other types of constraints may be possible, such as focusing the search on ordinary
differential Equations [16], dynamical system models [17], or time series models [18].

It may seem reasonable to assume that constrained methods will be at a disadvantage
compared to unconstrained methods for some SR tasks. Simply put, if the underlying
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“ground-truth” model of a given dataset is not a linear model, then these approaches can
only produce approximate solutions. However, this may not necessarily be a shortcoming.
In some cases, a linear approximation of a signal may be preferable, even if a complex
nonlinear model exists that more accurately describes the behavior of the signal. A linear
model may be much simpler and easier to understand, and may still approximate the
output with sufficient accuracy. Moreover, a linear model can, in theory, approximate any
function with the appropriate basis functions [19].

For GP-based SR, however, both constrained and unconstrained approaches share
an additional practical issue, their inherent and non-trivial computational cost [3,4]. In
general, state-of-the-art SR methods that are based on GP search for both the structure of
the model and tune model parameters. This increases the required computational cost
and total runtime of the learning process. Therefore, new methods must account for this
fact and design and implement the search accordingly. Most state-of-the-art GP-based
methods are relatively slow, even highly efficient implementations cannot compare with
traditional machine learning techniques [3,4]. This is particularly an issue for GP-based SR
methods that generate linear models, since both syntactic and numerical optimization is
required to estimate the model structure and parameters [4,9]. Indeed, probably the most
efficient GP-based SR method, the Fast Function Extraction (FFX) algorithm, eliminated
the evolutionary loop to reduce runtimes [3,4,20]. This allows FFX to be competitive with
off-the-shelf modeling techniques based on efficiency [20]. Another recent example is PySR,
which uses a multipopulation evolutionary search and improves search efficiency using a
distributed approach [21].

The present work addresses the SR problem by proposing a new feature transformation
method to build linear models, based on the previously proposed M2GP, M3GP and M4GP
methods [9,22,23]. This new method is called M5GP, and it was designed to exploit parallel
processing on a Graphical Processing Unit (GPU) by executing the main evolutionary pro-
cesses on the GPU, including population initialization, evaluation, selection, variation and
survival. Moreover, parameter estimation for each linear model is also performed using
GPU processing. It is important to highlight, moreover, the fact that GPU-processing is not
necessarily unique in machine learning systems, except for the subset of methods focused
on SR-methods. This is particularly the case for those that employ a feature transforma-
tion approach, or those that are currently considered to represent the state-of-the-art [4].
M5GP combines the general workflow of M3GP [9] to produce models that perform feature
transformation and then combine the transformed features to build linear models [24].
However, the proposal employs the solution representation of M4GP [23], along with a
variation of the mutation operator for stack-based representations proposed in [25], which
simplifies the encoding and search for multidimensional transformations of the input fea-
ture space. The proposed method also employs the GPU-based processing used in [26] for
increased efficiency in the evolutionary process and parameter estimation of the resulting
linear models methods with cuML [27]. M5GP is evaluated using the recently proposed
benchmarking suite for SR called SRBench v2.0 [4]. This allows for direct comparisons with
GP-based and non-GP methods that are considered to be the current state-of-the-art for SR.
Comparisons are done based on accuracy, complexity (model size) and processing time,
using an extensive set of black-box (with unknown ground-truth models) and white-box
(with known ground-truth models) SR problems. Results show that M5GP, combined with
standard multiple linear regression, can produce state-of-the-art results in SR. Moreover,
given that the core element of M5GP is the feature transformation process, it can be hy-
bridized with other regression methods, extended to other tasks (such as classification),
and applied to new problems using a standard scikit-learn interface [28], downloadable
as an open-source tool, at https://github.com/armandocardenasf/m5gp (accessed on
31 January 2024). The remainder of this paper proceeds as follows. Section 2 presents
background and related works, focusing on constrained SR methods. Section 3 presents the
proposed M5GP, including representation, evaluation, search operators, hyperparameters,
fitness computation and parallel implementation. Section 4 presents the experiments, main
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results and a discussion, largely based on the SRBench v2.0 benchmarking suite. Finally, a
summary and conclusions are given in Section 5.

2. Background

This section describes the methods on which M5GP is based, focusing on the main
contributions introduced by each and highlighting their strengths and weaknesses. A brief
overview of other constrained GP-based SR methods is also presented, methods that share
some of the same design elements as M5GP.

In general, M2GP [22], M3GP [9,24], M4GP [23] and M5GP can be referred to as
wrapper approaches for automatic feature transformation, which may also be referred to
as feature construction, feature engineering, or the constructive induction of features [11].
This task is closely related to the problem of feature selection, where the goal is to select
which features to use in order to train a predictive model [29]. While feature selection
limits itself to choosing a subset of features, feature transformation can both select the best
features to use and also generate new ones. The goal is to transform the feature space
of a problem, such that the new representation allows for a more efficient and effective
learning process to take place. Indeed, several state-of-the-art methods combine a feature
transformation process with another modeling technique to implement a constrained SR
method [20,30].

Feature transformation methods can be grouped into two general classes, filter or
wrapper approaches. A filter method performs feature transformation without considering
the effect on any particular learning algorithm, using general criteria to transform the
feature space, for instance, by discarding highly correlated features or generating a new
feature space based on the directions of maximum variance in the data. Conversely, wrapper
methods perform the transformation using a feedback loop, in which the performance of a
learning stage is used to guide the feature transformation process, as shown in Figure 1.
A wrapper method is basically posing a search problem in which the goal is to find the
best feature transformation that maximizes the performance (or minimizes the loss) of
a particular learning method. In the case of feature selection, genetic algorithms, for
instance, are popular techniques [31]. Meanwhile, GP has been used to develop both
wrapper-based [9,22] and filter-based approaches [32].

Figure 1. Wrapper-based processing for feature transformation with GP.

Moreover, GP can be said to perform both tasks concurrently. In most cases, the termi-
nal set of a GP method includes all the original features of a problem, but the final model
produced often does not use all of the features, implicitly performing feature selection [33].
Moreover, in standard GP, each individual in the population normally produces as output
a single value for each sample in a dataset. GP individuals are effectively mapping the
n-dimensional feature space onto a single new feature. This output can be interpreted as
the model prediction or as a new decision space on which a higher level model can be used
to obtain the final prediction [34,35].

The methods that are reviewed next extend this basic idea, by evolving models that can
produce more than one output for each sample in a dataset. They generate transformation
models T of the form T(x) : Rn → Rd. This multidimensional output can be interpreted as
a transformation of the original feature space. When used as a wrapper approach, it can
search for the best feature transformation for a particular problem and learning method.
The transformation model is in effect a collection T = {Ki(x) : Rn → R} of d symbolic
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transformations Ki, each one producing a new feature dimension. A possible justification
for such approaches has been recently published in [36], which suggests that GP-based
search is better served by generating a large collection of shallow models instead of a single
model that is both large and deep.

2.1. M2GP: Multidimensional Multiclass Genetic Programming

M2GP evolves transformations using a tree representation in which the root of the
tree acts as a dummy node, such that it only serves as a container for the output of d
subtrees rooted at the node [22]. In this way, each individual is better understood as a
collection of d standard GP trees [1]. Each of these subtrees can also be referred to as the new
feature dimensions for the evolved transformations. In the case of M2GP, d is set as a static
hyperparameter of the algorithm. The search operators used by M2GP are standard subtree
crossover and mutation. M2GP was conceived as a classification method, paired with
the Mahalanobis distance classifier. Results showed that M2GP compared favorably with
standard machine learning techniques, such as Random Forest (RF), Random Subspaces
(RS) and MLP.

However, M2GP presents several limitations. First, the size of the transformed feature
space d is set as a hyperparameter, and it is reasonable to assume that in most cases it
is not easy to define this parameter optimally. Second, M2GP relies on standard subtree
search operators, which do not take into account the multidimensional nature of the
individual transformations. Third, it was only evaluated and applied to classification
tasks without considering the application of the method to SR tasks. Finally, like most GP
methods, M2GP is a relatively slow method, limiting its usefulness for machine learning
practitioners that require efficient prototyping. This issue is made more glaring since it was
implemented sequentially in Matlab, not exploiting the fact that evolutionary algorithms
are intrinsically parallel.

2.2. M3GP: M2GP with Multidimensional Populations

M3GP was developed to address several of the issues of M2GP [9]. It uses the same
solution representation but incorporates several search operators that are specifically de-
signed to exploit the multidimensional nature of the evolved transformation. Specifically,
M3GP includes a mutation operator that can add a new subtree to the root node and
another that can randomly delete a complete subtree from the root node. These operators
effectively add or remove new feature-space dimensions to the evolved transformations.
For crossover, M3GP adds a crossover operator that focuses on exchanging complete fea-
ture dimensions between two parents. M3GP also adds a local search operator called
pruning, which eliminates feature dimensions from the best individual of the population
until performance degrades. Indeed, due to the type of representation being used, these
types of operators are also used by similar techniques [30]. These operators address the
second issue with M2GP.

Another difference with M2GP is that all the individuals in the initial population begin
with uni-dimensional transformations, with d = 1. Mutation is the mechanism by which
new feature dimensions are added, without an a priori limit, addressing the first issue
with M2GP. On classification problems, M3GP outperformed M2GP and performed as
well as RF and better than RS. Moreover, M3GP has been combined with other learning
algorithms, not just the Mahalanobis distance [37]. That work showed that M3GP can
improve the performance of a wide variety of classifiers, including naive Bayes, Support
Vector Machines, RF and XGBoost [38].

Unlike M2GP, M3GP has also been applied to regression tasks [24], in combination
with multiple linear regression. For simplicity, multiple linear regression is referred to as
linear regression hereafter. On both synthetic and real-world datasets, M3GP achieved
very high accuracy, outperforming other GP-based methods. In particular, in comparison
with FFX [20], M3GP produced similar performance but was able to generate much more
compact—and potentially interpretable—models. On both regression and classification,
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M3GP showed an ability to dynamically and effectively adapt the number of dimensions
for the evolved feature-space transformations [24,37]. The strong performance of M3GP on
classification and regression has lead to work in other domains, such as extending M3GP
for the analysis of complex signals [39–41].

There are, however, at least two important issues with M3GP, which also affect M2GP.
First, by relying on a tree-based representation for the evolved transformations, it inherits all
of the difficulties that stem from using this representation to evolve a solution, particularly
since other representations have been shown to be more amenable to evolutionary search [6].
By relying on a tree representation, for instance, a special root node had to be defined, with
special considerations regarding its interpretation and manipulation during the search.
Second, the two most popular implementations of the algorithm, one in Matlab (https:
//github.com/LuisMuDe/M3GP_Regression) and the other in Python (https://github.
com/jespb/Python-M3GP), usually have very long runtimes, not unlike some of the most
efficient GP-based approaches to SR [3,4]. This is partially due to the fact that M3GP
is a wrapper method that has to train an additional machine learning model at every
fitness evaluation. Another reason is that none of the previous implementations exploit
the massively parallel capabilities of modern GPUs; although it should be noted that the
Python implementation does include multiprocessor computations.

2.3. M4GP: Incorporating a Stack-Based Representation

The latest variant of M2GP is aptly named M4GP, introducing several notable im-
provements [23]. First, M4GP changes the program representation using a linear genome
and stack-based interpretation of the models. The genome is a linear sequence of primitive
elements (functions and terminals), which are interpreted sequentially using an auxiliary
stack. When the interpreter reaches a terminal gene, it pushes it onto the stack, and when
a function gene is processed, the necessary operands are popped (pulled) from the stack,
and the results is pushed back to the stack. When an operation cannot be performed, it is
simply skipped and the stack is returned to its previous state. For instance, when the stack
does not contain sufficient values for a particular function to be executed.

Such a representation is not new or unique. For instance, a similar representation
is used for efficient GPU-based implementations of GP that have used a postfix reverse
polish notation for GP trees [42] or a Linear GP representation [43]. Such representations
are more amenable to parallel processing on a GPU but require special search operators
and initialization techniques in order to guarantee well formed expressions. M4GP, based
on PushGP [6], need not account for this issue, with individual models often leaving the
stack with more than a single value after the entire genome has been evaluated.

Taking the top element in the stack as the output seems reasonable for a standard GP
approach, but the entire stack could be used to obtain a multidimensional output for free.
Since the representation does not force the programs to be a single complete expression, and
since programs will produce stacks of different sizes, M4GP achieves the same functionality
as M3GP with a much simpler algorithm.

The initial population is initialized recursively, generating programs of different sizes
and feature dimensions, unlike M3GP, which starts with unidimensional populations. Three
different selection schemes were evaluated, namely the standard tournament selection,
lexicase selection [44] and age-fitness Pareto [45]. The search operators used by M4GP are
equivalent to those used in M3GP, assuming that such operators may have an intrinsic
value for the search process. In general, M4GP outperforms M3GP on a wide variety
of classification tasks, and is very competitive with other machine learning techniques,
including Adaboost, SVM and XGBoost. It is also able to outperform more powerful
classifiers based on Auto Machine Learning (AutoML) [46]. Finally, M4GP is the first
variant to include parallelism during the search, using an island model that processed
subpopulations on different CPU cores of the host machine, with improved runtimes.

M4GP was a notable improvement over M3GP, but several promising lines of research
are still unexplored. First, M4GP, like M2GP, was only applied to classification tasks,
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SR problems were not considered. Second, like all GP-based methods, runtime is still
an issue for the method, even with the implemented island model. Moreover, while
such an approach did help reduce runtimes it added additional hyperparameters to the
algorithm. Finally, the search operators used were inherited, in a sense, from the tree-based
representation of M3GP, instead of using search operators specifically designed for the
representation used.

2.4. Related Work

While the previous subsections focused on the methods that are most closely related
to M5GP, this subsection briefly outlines some of the most relevant state-of-the-art SR
methods that are also based on GP. The recently proposed SRBench benchmark suite [3,4],
presents the most comprehensive, systematic and reproducible evaluation process for SR
algorithms. While SR is the most widely studied problem in GP, assessing and comparing
SR methods was mostly done in an ad hoc manner before SRBench [47,48]. Moreover, it
provides open-source and easy-to-use implementations of the state-of-the-art methods,
considering both GP and non-GP methods.

Among them, several unconstrained methods achieve the highest overall performance.
For instance, Operon, which produces the most accurate and relatively compact models,
implemented in a highly efficient manner [7]. In fact, while Operon runs on a CPU, its
multithreaded implementation allows it to be more efficient than some FPGA- and GPU-
based implementations [49].

Another unconstrained method that achieves high accuracy is Semantic Backprop-
agation GP (SGP) [50]. Implemented using a tree-based representation, SGP recursively
determines the best subtree to insert into a program tree, selecting from a library of available
trees. The output of any particular tree or subtree is referred to as the semantics of the tree,
so SBP searches for the best possible match between the available semantic vectors and
the optimal semantic vector at any particular node of a tree. While this method achieves
very high performance, it suffers from very long runtimes and produces larger models than
other GP-based approaches.

Constrained SR methods that produce linear models include Geometric Semantic
Genetic Programming (GSGP) [10], Kaizen Programming [51], Multiple Regression GP [8],
Interaction-Transformation Evolutionary Algorithm (ITEA) [52], FFX [20] and Feature
Engineering Automation Tool (FEAT) [30], with MRP, ITEA and FEAT all included in
SRBench. FFX, for instance, does not use an evolutionary loop and instead generates a
very large initial population (set) of basis functions and combines all of them into a final
model, pruning the model with regularized regression. Kaizen Programming also builds
a single model using the entire population, and substitutes the traditional evolutionary
process with another metaheuristic. GSGP builds a linear model in a step-wise manner,
with each mutation or crossover event adding a new term to each parent program. MRGP
generates a model by linearly combining a GP individual with a subset of the subtrees it
contains. ITEA imposes restrictions on the form of the basis functions that are included
in the model, biasing the search with the expectation that simpler and more interpretable
models are produced.

Among these, FEAT achieves the best performance and shares several similarities
with M3GP and M4GP. It models the evolved transformations using a network structure
and uses a syntax tree representation. Search operators are similar to those of M4GP but
include a feedback loop to determine the best place to apply the mutation operator. Similar
to M4GP, it uses lexicase selection and a Pareto criterion during survival to promote the
production of smaller models.

From the SRBench results, three observations can be highlighted. First, among all
methods, GP-based approaches achieve the best performance, with Operon, SBP and FEAT
producing the most accurate models. Second, in terms of size, standard machine learning
ensemble methods produce very large models, as does FFX. GP-based methods in general
tend to produce relatively small models. The main issue with GP-based methods is runtime,
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with only FFX achieving competitive performance in this respect compared to non-GP
techniques, which is made possible by its lack of an evolutionary loop. Moreover, all of the
methods are implemented for execution on CPUs. None of the GP-based methods exploit
the massively parallel GPU platforms that have become the norm in large-scale machine
learning tasks.

3. GPU-Based Parallel Implementation of M5GP

This section presents the core elements of M5GP, which as previously discussed,
contains elements of both M3GP and M4GP, while utilizing some of the design choices used
in the recently published CUDA-based GSGP-CUDA [26]. M5GP was developed using
Python v3.9.12, using GPU processing with Numba kernels [53] and cuML [27] kernels for
parameter estimation. To summarize, the main design elements of M5GP are as follows:

• The main evolutionary loop is controlled using Python code executed on the CPU but
each of the main evolutionary processes are executed on the GPU, including popula-
tion initialization, program evaluation done by an interpreter, selection and mutation;

• Individuals are encoded using a linear representation, basically initialized as a list of
randomly ordered primitives (terminals and functions). The individuals are consid-
ered to be transformation functions of the input feature space of a problem;

• Individuals are interpreted using a stack. Since most individuals will encode a set of
sub-expressions, they tend to produce stacks of different sizes, the transformed feature
space of the training data;

• The mutation operator used by M5GP is based on the Uniform Mutation by Addition
and Deletion operator (UMAD) [25] and selection is performed using tournaments.
The former was chosen because it has been shown to produce strong results with
stack-based GP, while the latter was chosen instead of more advanced methods (such
as lexicase selection [44] used by M4GP) for simplicity and efficiency purposes;

• All of the evolutionary processes in M5GP are implemented as GPU kernels using
Numba, except for parameter estimation which is carried out using linear regression
with cuML;

• Linear models are constructed using the output stacks of each individual using cuML,
and the Root Mean Squared Error (RMSE) of the model is returned as fitness;

• M5GP returns the best feature transformation model and the corresponding linear
model fitted using the cuML library;

• For ease of use, M5GP implements the scikit-learn API, allowing it to be evaluated on
SRBench [4].

3.1. Individual Representation, Interpretation and Parallel Processing

Individuals in M5GP, each one encoding a feature transformation, are encoded as
fixed-length linear sequences of primitive elements, following [26]. Terminals include each
of the original problem features (model inputs) x1, x2, · · ·, xn, as well as random constants
in the range [a, b]. The function set contains: +,−, ∗, AQ, sin, cos, log, exp, abs, NOOP. The
NOOP operator is included to allow individuals to encode fewer functional operations
than their maximum length, and also to allow the transformations to shrink or grow during
the search process, a common feature of most GP-based systems. A specific probability is
assigned for the generation of each function (gene function probability), terminal (gene
variable probability), constant (gene constant probability), or NOOP operator (gene NOOP
probability); the values used are shown in Table 3.

The log operator is protected, acting as a NOOP when the input is a negative value.
Instead of the protected division, the analytic quotient operator is used, which is defined

as AQ(a, b) =
a√

1 + b2
[54]. The analytic quotient removes discontinuities or singularities

from the evolved expressions, which often arise when the protected or unprotected division
are used to evolve regression models. It also has been shown to improve performance on
regression tasks [54].



Math. Comput. Appl. 2024, 29, 25 9 of 23

Figure 2 shows a small population of individuals, each one randomly generated on a
single processing thread using a Numba kernel. For the random generation of the genes
of each individual, different probability values are assigned to include functions, features,
or constants. In the experiments, a probability of 0.5 was assigned for functions, 0.39 for
variables, 0.1 for constants and 0.01 for NOOP operators. In general, this produces large
individuals that can then be pruned by the mutation operator.

Figure 2. A set of individuals generated randomly in M5GP, each one on a single GPU thread using a
Numba kernel.

After initialization, each individual is evaluated on each training sample (fitness case)
in the training dataset. M5GP uses the same interpreter reported in [26]. Starting from the
first gene or element in an individual, if it is a terminal element (feature or constant), it is
pushed onto an output x′. If it is an operator from the function set of arity a, then a pull
(also known as pop) operations are performed on the stack and the pulled values are used
as inputs to the operator, and the output is then pushed onto the output stack. Only for
the best individual at each generation, for efficiency purposes, is the subexpression that
generates each element in the output stack also pushed onto an expression stack. This
process is depicted in Figure 3 for the top individual in Figure 2. The entire process is based
on [23].

Figure 3. Interpreter and stack-based processing in M5GP based on [23] of the first individual in
Figure 2. The variable values used in the example are: X1 = 2, X2 = 7, X3 = 1, X4 = 3 and X5 = 4.

After interpreting an individual i on training sample j, the result is an output stack
x′j

i = (x′ij,1, x′ij,2, · · ·x′ij,d) of size d ≤ l with l the size of the individuals in the population, but
most of the time, d is much smaller than l. The output stack can also be interpreted as the
semantics of the individual evaluated on a single fitness case, which is often considered
as a scalar value [10], but in M5GP (as well as M4GP) it is an array. This also defines the
size of the new feature space for the problem. Therefore, after evaluating an individual
transformation model on the entire training set with m samples, and considering each x′ij as
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row vectors, this produces an output that is referred to as the semantic matrix of individual
i, defined as

Sim×s =


x′i1
x′i2
...

x′im

 . (3)

The semantic matrix contains the new feature space representation of the training data.
The entire process is executed on the GPU using Numba kernels, as depicted in Figure 4.

The development of a GPU-based implementation of any algorithm can be successful
if it is able to maximize the usage rate of the resources on the GPU card. The interpreter
kernel processes individuals on independent GPU threads, with the grid size and block
size computed based on the GPU characteristics. The total amount of shared memory is
determined and reserved based on the size of the dataset and the size of the individuals
and the population to store the individual genotypes as well as the semantic matrices
produced by the interpreter. The memory required to store the population is proportional
to pop × l, where pop is the population size and l is the length of the individuals. The
memory allocated to the semantic matrices of the entire population is proportional to
pop × l × m, where m is the number of samples or fitness cases in the training set. If the
amount of memory required by the population, the semantic matrix and the training data
exceeds 85% of the available memory on GPU, then the population and data are processed
in batches, to allow for additional processes required.

The semantic matrices returned by the Numba kernel are stored in an array, and need
to be divided and reshaped into a cuPy matrix [55] for each individual before they are
passed to the cuML functions. The current implementation performs this conversion on
the CPU before passing the transformed dataset to cuML. The cuML regression functions
return the linear model for each M5GP individual but do not return the training error or
other statistics. Inference on the training data has to be performed and the error computed
to assign fitness.

Figure 4. Parallel processing of the training data to generate the semantic matrix of each individual
transformation model.
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3.2. Fitness Evaluation Using CUDA-Based Machine Learning

Using the semantic matrix of each individual, a linear regression model is fitted
such that the final model is given by a linear combination of the d expressions in the
corresponding expression stack, as defined in Equation (2). Using the expression stack and
the d + 1 model coefficients, w0, w1, · · ·wd, the final regression model for each individual
can be reconstructed.

To fit the regression models, cuML was used, and this suite of machine learning
libraries was specifically implemented in CUDA. It was developed as part of the RAPIDS
project https://rapids.ai/ (accessed on 31 January 2024). The library offers a wide range of
common machine learning algorithms that run efficiently on GPU cards and can potentially
scale to multinode and multi-GPU processing with Dask https://www.dask.org/ (accessed
on 31 January 2024). The fitness value for each individual is defined by the RMSE of the
cuML model evaluated on the training data, as done previously with M3GP using linear
regression models [24]. For experimental purposes, several linear regression methods
included in cuML were evaluated with M5GP, such as regularized regression approaches
and mini-batch approaches. However, as will be shown in the experimental section, the
best results were obtained using Singular Value Decomposition (SVD) decomposition with
Jacobi iterations.

In principle, using a single GPU, as was the case in our experimental setup, it is
possible to launch several cuML process in parallel using different CPU computing threads.
However, the initial experimental tests showed a decrease in efficiency. Therefore, fitness
evaluation is executed sequentially at the population level, but the parameter estimation
process is executed using parallel computing on the GPU.

3.3. Search Operators

M5GP uses tournament selection, which is also implemented as a Numba kernel.
However, the main novelty in M5GP, particularly when compared to similar approaches [4],
is the use of a mutation operator based on UMAD [25]. For parent selection, the size of the
tournament was set as a proportion of the total size of the population.

The logic of the UMAD operator is straightforward, it adds new genes, before or after
existing genes, and then it randomly deletes genes from the resulting individual. The
UMAD operator attempts to decouple the location where new genes are added from the
location where older genes are removed, unlike most mutation operators that perform
some form of gene replacement. Since M5GP uses a fixed length representation, it would be
cumbersome to include an addition operation instead of a replacement operation. However,
including an additional deletion-only operation can be quite useful to promote smaller
models. The replacement operation of each gene uses the same probabilities for functions
and terminals that were used in the initialization process, given in Table 3.

In this sense, M5GP performs a uniform mutation by replacement and deletion of each
gene in an individual, where deleting a gene means replacing it with a NOOP terminal. Each
gene is deleted with probability deletionRate and replaced with probability replacementRate.
After several informal tests, best performance was achieved with a replacementRate of 0.1
and a deletionRate of 0.01. Mutation is applied to all selected individuals, and when a gene
is replaced, it is chosen using the same probabilities used during population initialization.
These values were validated based on the results reported for UMAD [25], which uses
an addition rate instead of a replacement rate, but best performance was observed with
similar values.

4. Experiments

SRBench v2.0 [4], which has been released as an open-source tool (https://github.
com/cavalab/srbench) (accessed on 31 January 2024), is used to evaluate M5GP. SRBench
v2.0 contains two groups of problems, 122 black-box regression problems from the PMLB
v1. https://epistasislab.github.io/pmlb/ (accessed on 31 January 2024) repository [56],
consisting of 46 real-world problems from diverse domains and 76 synthetic problems. It

https://rapids.ai/
https://www.dask.org/
https://github.com/cavalab/srbench
https://github.com/cavalab/srbench
https://epistasislab.github.io/pmlb/
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also includes 130 datasets with known model forms that can be used as a ground truth to
compare the models produced by an SR method. For these problems, various datasets are
generated by adding different levels of noise to the data. Dataset size varies from 47 to
1 million instances, and from 2 to 124 problem features. Datasets are split using 75/25%
training/testing splits, and for black-box regression problems, each algorithm is tuned
using hyperparameter optimization.

The methods in SRBench are compared using three main criteria. For the black-box
problems, accuracy is evaluated using the coefficient of determination R2. Complexity of
the models is evaluated indirectly using the size of the symbolic expressions, defined by
the number of functions and terminal elements contained in the models. Execution time is
used to evaluate the computational efficiency of the methods.

SRBench includes both SR methods and state-of-the-art machine learning methods
that do not produce symbolic models. The latter group includes nine methods, including
XGBoost (XGB) [38], AdaBoost [57], Light Gradient Boosting Machine (LGBM) and RF [58].
In the former group, SRBench includes 14 relatively recent methods, with 8 of the methods
published in 2019 or 2020. It includes both evolutionary and non-evolutionary approaches.
Some notable examples include Operon [7], GOMEA [59] and DSR [60]. Operon achieves
the best performance among all methods, while GOMEA shows the best compromise
between accuracy and model size. Conversely, DSR tends to produce very compact models,
but with lower accuracy. While some of the GP-based methods, like Operon and GPlearn
(https://gplearn.readthedocs.io/en/stable/index.html) (accessed on 31 January 2024), do
allow for multithreaded processing, none of them were developed to exploit modern GPUs,
the current standard of massively parallel devices. Moreover, while GP-based systems that
run on GPUs are not new [26,42,43], they mostly implement basic GP-based algorithms
that do not perform as well as the current state-of-the-art.

4.1. Experimental Setup

This section describes how SRBench was used to evaluate different configurations of
M5GP, and compare it with the methods provided in the benchmark suite.

In all, 12 configurations of M5GP were evaluated; these are summarized in Table 1.
M5GP-1 uses hyperparameter tuning, as done for all the methods in SRBench [4], to
determine the best configuration from among those considered in Table 2. In particular,
the tuning process is done using 5-fold halving grid search cross-validation [4]. As stated
before, parameter estimation for the linear models is performed using cuML [27], and in
all cases, default settings were used. In some cases, these hyperparameter configurations
might not produce the best results, but tuning the hyperparameters of the cuML methods
is left as future work. Moreover, current implementations in cuML do not compute the
regularization path of the coefficients to determine the optimal α hyperparameter of the
regularized techniques. M5GP-1 to M5GP-8 use linear regression, with LR denoting
parameter estimation with SVD decomposition using Jacobi iterations and correction for
the global mean of the output. LR-n is similar to LR but with normalized data and LR-m
uses minibatch processing; normalization is accomplished by dividing by the column-wise
standard deviation. All methods are from the cuML library. For LR, the intercept is fitted,
correcting for the global mean of the output. Least Absolute Shrinkage and Selection
Operator (LASSO) regression uses α = 1 for the L1 term; the solver is coordinate descent
with 1000 iterations with cyclic parameter updates and correction for the global mean of
the output. Elastic Net (EN) regression corrects for the global mean of the output, α = 1, L1
ratio of 0.5, coordinate descent solver, with 1000 maximum iterations and random selection,
and a tolerance of 0.001. For LR-m, α = 0.0001, adaptive learning rate, using correction for
the global mean of the output and a batch size of 1024.

https://gplearn.readthedocs.io/en/stable/index.html
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Table 1. Different M5GP configurations used for experimental evaluations.

Identifier Regression Tuning Population Genes Fitness

M5GP-1 LR Yes 256 128 RMSE
M5GP-2 LR No 256 128 RMSE
M5GP-3 LR-n No 256 128 RMSE
M5GP-4 LR No 256 256 RMSE
M5GP-5 LR No 256 512 RMSE
M5GP-6 LR No 512 256 RMSE
M5GP-7 LR No 256 128 R2

M5GP-8 LR-m No 256 128 RMSE
M5GP-9 LASSO No 256 128 RMSE
M5GP-10 LASSO No 512 256 RMSE
M5GP-11 EN No 256 128 RMSE
M5GP-12 EN No 512 256 RMSE

Table 2. Hyperparameters considered in the tuning of configuration M5GP-1; each row is one
configuration.

Generations Population Genes Tournament Size

30 128 128 0.25
30 128 128 0.15
30 256 128 0.1
30 256 256 0.1
50 128 128 0.25
50 128 128 0.15

M5GP-2 to M5GP-12 use fixed hyperparameter values, since previous works have
shown that GP-based methods tend to be highly robust to hyperparameter settings [61,62].
Special cases include M5GP-3, which uses normalized data, M5GP-7, which uses R2 for
fitness and, as mentioned above, M5GP-8, which uses minibatch processing. All other
variants use different amounts of search intensity, controlled by the number of genes (size
of the individuals) and the population size. M5GP-9 to M5GP-12 use regularized regression,
with M5GP-9 and M5GP-10 using LASSO regression and the rest using EN regression.

The shared hyperparameters used by most M5GP-1 variants are summarized in
Table 3, with a brief description of their role. In the case of M5GP-1, the tuning process
considered specific hyperparameter combinations, which are listed in Table 3. SRBench
uses six hyperparameter configurations during tuning [4].

For the experiments, M5GP was executed on a desktop computer with an Intel(R)
Xeon(R) CPU E5-2603 v4 @ 1.70GHz (Intel, Santa Clara, CA, USA) and 16 GB of RAM, an
NVIDIA Quadro P4000 GPU with 1792 CUDA cores and a base frequency of 1506 MHz,
which also has a boost frequency of 1480 MHz, and 8 GB of GDDR5 memory with a 256-bit
memory interface with a bandwidth of 243 GB/s. Conversely, the results reported by
SRBench were obtained using a heterogeneous cluster computing environment composed
of hosts with 24–28 cores with Intel(R) Xeon(R) E5−2690 v4 @ 2.60GHz processors and
250 GB of RAM [4].

Table 3. Shared hyperparameter values across all M5GP configurations from Table 1.

Hyperparameter Value Description

Generations 30 Iterations in the evolutionary loop

Function set +,−, ∗, AQ, sin, cos
log, exp, abs Applied at the gene level

Terminal set constants and features Constants are in the range of [−999, 999]

Replacement rate 0.1 Applied at the gene level
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Table 3. Cont.

Hyperparameter Value Description

Delete rate 0.01 Applied at the gene level

Tournament size 0.15 Percentage of the population that will be
included in the tournament

Gene function
probability 0.50 Probability to choose a function during

mutation or population initialization

Gene feature probability 0.39 Probability to choose a feature during
mutation or population initialization

Gene constant
probability 0.1 Probability to choose a constant during

mutation or population initialization

Gene NOOP probability 0.01 Probability to choose a NOOP during
mutation or population initialization

4.2. SRBench Results

This section presents the results obtained through SRBench, with comparisons be-
tween the different M5GP configurations and those obtained by the other methods included
in the benchmark suite. Results are presented for both types of problems included in SR-
Bench, black-box problems and ground-truth problems. Regarding computation time, the
following must be considered. M5GP is the only method that uses GPU-based processing.
While it is natural to expect that a GPU-based implementation will require less wall-clock
time than a CPU implementation, this is not necessarily the case. Indeed, recent works have
shown that CPU-based GP systems, such as Operon, for instance, can outperform GPU and
FPGA implementations of [49,63]. Concerning model size, for the black-box problems, the
methods in SRBench have not been configured to perform symbolic simplification of the
models before computing model size.

Figure 5 presents the results from all the M5GP configurations summarized in Table 1.
The methods in SRBench are evaluated based on: (a) R2 test set performance, (b) model
size (operators and operands in the model), and (c) total runtime during training. The plots
show the median of the median performance across all problems (the median performance
over all runs is computed, and the median of those values, over all problems, is shown in
the plots), and bars indicate 95% confidence intervals. For each figure, the methods are
ordered from the highest to the lowest rank, which is based on each performance measure.
Table 4 presents the median scores shown graphically in Figure 5.

Table 4. Median performance by all M5GP configurations evaluated on SRBench.

Identifier R2 Model Size Training Time (s)

M5GP-1 0.880 261.75 166.77
M5GP-2 0.822 234 150.89
M5GP-3 0.834 210.5 155.66
M5GP-4 0.840 444 231.81
M5GP-5 0.815 831 374.51
M5GP-6 0.584 1600 631.66
M5GP-7 0.713 234.5 132.32
M5GP-8 0.570 205 106.28
M5GP-9 0.544 203.5 119.18
M5GP-10 0.706 54.5 397.40
M5GP-11 0.325 19.5 141.09
M5GP-12 0.627 365 222.92
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Figure 5. SRBench performance on the black-box regression problems for all M5GP variants in
Table 1: (a) R2 test set performance, (b) model size (functions and terminals in the model), and
(c) total runtime during training. (*) Represents the method returns a symbolic model.

From the results in Figure 5, the following can be stated. First, the top six methods in
terms of R2 all use LR, with regularized approaches (LASSO and EN) performing worse.
This was unexpected, given previous results with regularized approaches used in FFX and
MRGP, for instance [8,20], but may be due too poor hyperparameterization of the methods,
since these tests use default values. Most variants have stable performance across the
problem set, with only M5GP-6 showing large confidence intervals. It is of note that this
configuration also uses LR, but with large individuals and a large population. The best
performance was achieved using hyperparameter tuning (M5GP-1), but the difference with
the best static hyperparameter setting (M5GP-4) is small, suggesting that if the available
training time or computational resources are restricted, good performance can be achieved
with a default configuration. Normalization does not seem to have a large impact on
performance, as M5GP-2 and M5GP-3 are quite similar. Similarly, increasing the number
of genes, the size of the individuals, has only marginal performance gains, with M5GP-2,
M5GP-3 and M5GP-4 all achieving similar performance. In fact, increasing the size too
much decreases performance, as seen by the drop-off in R2 for M5GP-5.

The worst performance is exhibited by configurations M5GP-6 to M5GP-12. This
selection includes all regularized regression variants (with LASSO or EN), the mini-batch
variant (M5GP-8) and the variant that uses R2 as fitness measure. Moreover, M5GP-6 uses
the largest populations and individuals. This suggests that basic linear regression, without
regularization, and relatively small populations and individuals achieve the best results.

In terms of model size, the effect of regularized regression is notable, with regularized
variants producing the most compact models. There does seem to be a trade-off between
achieving high accuracy (R2) and producing compact solutions. However, apart from
the extreme part of the plot, at the top and bottom of Figure 5b, about half of the M5GP
configurations generate very similar models in terms of size, including some of the best-
performing variants, such as M5GP-1, M5GP-3 and M5GP-2. M5GP-4, which is the best-
performing variant that does not use hyperparameter optimization, does generate larger
models since it uses larger individuals with 256 genes.

In terms of runtime, the most efficient variant was, as expected, M5GP-8, which uses
mini-batch processing. Apart from that, it is clear that the most important factor affecting
runtime is the number of genes, with runtime increasing in three different groups, with
variants that use 128, followed by those using 256 and finally, the largest runtimes appear
on the variants using 512 genes. Another factor is population size, the three slowest variants
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use populations of 512 individuals, which was expected since evaluating individuals is one
of the most computationally expensive operations.

Figure 6 compares M5GP-1, M5GP-2, M5GP-3 and M5GP-4 with all other methods
in SRBench. It is important to note that M5GP-1 is the only one that uses hyperparameter
optimization, which is also the case for all other methods from SRBench included in the
comparison. The good performance of the latter three methods is encouraging, since
it shows that competitive performance can be achieved without costly hyperparameter
optimization. M5GP-1 is similar in performance compared with FEAT, achieving the fourth
rank in terms of R2, while outperforming state-of-the-art methods like EPLEX, XGB and
GP-GOMEA, to name a few.

In terms of model size, M5GP variants are in the middle of the pack, all very similar,
producing more compact models than SBP-GP but larger models than methods such as
ITEA, FEAT and Operon. In terms of training time, it is clear that exploiting parallel
processing in GPUs allows M5GP to be very competitive, outperforming all other GP-based
approaches and achieving similar runtimes to those of FFX and XGB.
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Figure 6. SRBench performance of M5GP compared to other methods, considering configuration
M5GP-1, M5GP-2, M5GP-3 and M5GP-4: (a) R2 test set performance, (b) model size (terms and
operators in the model), and (c) total runtime during training. (*) Represents the method returns a
symbolic model.

Figure 7 presents a more detailed analysis of the results in Figure 6, but only con-
sidering M5GP-1. These plots show the matrix of p-values from the pairwise Wilcoxon
signed-rank test, corrected for multiple comparisons using the Bonferroni method and
considering a significance of α = 0.05. The null hypothesis of the Wilcoxon signed-rank
test is that two groups share the same median. The results from Figures 6 and 7 are comple-
mentary, since the latter allows us to discern which of the differences seen in the former are
statistically significant.

Based on the statistical analysis, M5GP-1 shows equivalent performance, in terms of
accuracy, to FEAT, along with other methods ranked below both, which include EPLEX, GP-
GOMEA, LGBM, XGB and RF. It is clear that all of these methods have similar performance,
in a second tier below Operon and SBP-GP. However, it is important to note that both
Operon and SBGP-GP exhibit longer runtimes than M5GP.



Math. Comput. Appl. 2024, 29, 25 17 of 23

(a) (b)

Figure 7. Wilcoxon signed-rank test comparisons from SRBench considering M5GP-1. (a) R2.
(b) Model size.

Figure 8 presents the results for M5GP-1 in more detail, differentiating between
what are referred to as the Friedman synthetic benchmarks, a special subset of problems
that differ in degree of noise, variable interactions, variable importance and degree of
nonlinearity [4]. These results show that M5GP-1 performs quite well on this subset
of problems, that has been shown to be an important differentiator between the top-
performing methods [4]. M5GP-1 slightly outperforms FEAT and notably outperforms
XGB and most other methods, except for Operon and SBP-GP.
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Figure 8. Performance of M5GP on the black-box problems, showing improved performance on the
Friedman subset of problems.

SRBench also includes two subsets of ground-truth SR problems, 130 in total. For these
problems, the benchmark includes a known model, the symbolic ground-truth model. The
two sets are the Feynman Symbolic Regression Database (https://space.mit.edu/home/
tegmark/aifeynman.html) (accessed on 31 January 2024) and the ODE-Strogatz reposi-
tory (https://github.com/lacava/ode-strogatz) (accessed on 31 January 2024). For these
datasets, besides accuracy, SRBench uses the solution rate, i.e., the percentage of problems
for which the ground-truth model was found, or a symbolic equivalent that differs from the
true model by a constant or scalar factor. Moreover, for these problems, the methods are
evaluated considering different levels of white Gaussian noise in the data, added as a frac-
tion of the signal root mean square value, with noise levels of [0, 0.001, 0.01, 0.1]. Figure 9
presents the results of M5GP-1 on the ground-truth problems, showing the accuracy using
R2 and the solution rate. The results In terms of accuracy, shown in Figure 9a, shows that

https://space.mit.edu/home/tegmark/aifeynman.html
https://space.mit.edu/home/tegmark/aifeynman.html
https://github.com/lacava/ode-strogatz
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M5GP-1 performs very well, particularly on the Strogatz datasets, outperforming all other
methods on clean data and very low noise levels (0 and 0.001). It is also very competitive
with moderate noise levels (0.01), outperforming all methods except Operon. However,
like all the other methods, it performs poorly with high noise levels (0.1). On the Feynman
problems, the performance of M5GP-1 is very competitive, achieving the fifth-best results.

In terms of solution rate, as seen in Figure 9b, performance is very poor. However, this
is expected, since by construction, like other constrained SR methods, M5GP is searching
for a linear-in-parameter model that best approximates the behavior of the data. All similar
approaches (MRGP, FFX and FEAT) show the same expected results. Indeed, even an
unconstrained approach like Operon performs poorly based on this metric.
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Figure 9. SRBench performance of M5GP on the ground-truth problems: (a) accuracy based on
R2 and (b) solution rate given in percentage. Results are shown for both datasets used, Feynman
and Strogatz.

4.3. Computational Cost

Figure 10 summarizes the runtime performance of the best-performing methods and
those that are explicitly focused on producing human-readable models. The plots consider
the number of training samples, the total number of problem features and a combination of
both quantities. The performance of M5GP-1 is similar to that of XGB, clearly outperforming
all other methods. What is important is that both factors, the number of training samples
(Nsamples) and the number of features (N f eatures), have little impact on runtime. Similarly,
considering Npoints = Nsamples × N f eatures as a measure of the total size of the learning
problems, it is clear that M5GP-1 outperforms all other methods except for XGB.

To further evaluate the efficiency of the M5GP implementation, a speed evalua-
tion was performed similarly to the work presented in [7]. GP operations per second
(GPops/second) are measured during a full evolutionary run on a problem with 1000 fitness
cases and 25 features. The algorithm was executed for 30 generations using a population of
256 individuals and an individual size of 128 genes. With this configuration, M5GP reaches
1.49 × 108 GPops/second, on average. It is important to mention, however, that the GPops
was not used to measur the effort required by the parameter estimation process done by
cuML, an integral part of the M5GP modelling process, making direct comparisons with
previous works less straightforward [42,43]. Nonetheless, it is important to mention that
state-the-art GPU-based implementations of GP, such as those in [42,43], have been shown
to reach very high GPops. However, these methods implement a standard GP-based search,
similar to the one used by GPlearn, making it reasonable to assume that their performance
on SRBench, based on accuracy, would also be similar to that method.
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Figure 10. Training time relative to: (a) the number of samples (Nsamples) used during training (b),
the number of features (N f eatures); and (c) the total size of the problem (Npoints = Nsamples ×
N f eatures).

5. Conclusions and Future Work

This paper presents M5GP, a GPU-based feature transformation method that is com-
bined with multiple linear regression to perform constrained SR. The method is based on
the previously proposed M2GP, M3GP and M4GP family of feature transformation methods.
It utilizes an efficient GPU-based implementation in Python using Numba, using GP search
as the feature transformation method and hybridizing with cuML for parameter estimation
of a linear model. Results show that the proposed method can achieve state-of-the-art SR
results with highly competitive performance relative to other contemporary approaches.
Since it employs a powerful machine learning library, cuML, it can potentially be expanded
and hybridized with a variety of other approaches, even if our current results show that
best performance is achieved using standard LR for parameter estimation. The proposed
GPU-based implementation has been shown to be efficient, particularly relative to other
GP methods for SR. It even outperformed Operon, the most efficient CPU-based approach.
This is a notable result, since Operon is the most accurate method in SRBench and has been
shown to be more efficient than previous GPU-based implementations of GP [49]. Indeed,
performance on the SRBench benchmark suite shows that runtimes are largely robust to the
size of the learning problem. This is an important takeaway from this work: GP-based SR
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methods need to be designed and implemented with the goal of exploiting the computing
advantages provided by modern GPUs.

Future work will focus on combining M5GP with other machine learning algorithms,
for dimensionality reduction and/or for classification tasks, the original application do-
main of M2GP and M3GP. Furthermore, other selection strategies and variation operators
can be tested, along with an expanded function set. Moreover, a goal is to integrate a
fitness measure that explicitly takes into account the possible interpretability of the evolved
solutions. However, care should be taken, as increased sophistication adds also layers
of complexity that may limit the usefulness of the approach in a real-world setting. Hy-
perparameter tuning of M5GP should also be expanded, to configure the cuML methods
used to estimate the parameters of the linear models, particularly for the regularized re-
gression methods that did not perform well in these tests. Comparisons with methods not
currently included in SRBench should also be performed, using different problems and per-
formance criteria, considering, for example, previous iterations of the M5GP approach [9,23]
or more recent methods based on different formulations of the SR problem [64–66]. Finally,
the main bottleneck of the current implementation is the reliance on cuML, which does not
allow for an efficient estimation process for multiple models concurrently, and, therefore,
population evaluation is sequential, even though it is independent for each individual
and could be done using either a parallel or distributed computation. Therefore, future
work will employ alternative approaches and tools to perform parameter estimation of
the M5GP models. Nonetheless, for now, it is clear that M5GP should be considered as
a state-of-the-art approach for the difficult learning problem of automatically generating
symbolic models for a set of training data.

Author Contributions: Conceptualization, L.T. and L.C.F.; methodology, L.T. and D.E.H.; software,
L.C.F. and J.M.M.C.; validation, L.C.F. and D.E.H.; formal analysis, L.T. and L.C.F.; investigation,
L.C.F. and L.T.; resources, L.T. and D.E.H.; data curation, L.C.F. and J.M.M.C.; writing—original draft
preparation, L.T. and L.C.F.; writing—review and editing, D.E.H. and J.M.M.C.; visualization, L.C.F.;
supervision, L.T. and D.E.H.; project administration, L.T. and D.E.H.; funding acquisition, L.T. and
D.E.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by CONAHCYT (Mexico) project CF-2023-I-724, TecNM (Mexico)
projects 16788.23-P and 17756.23-P, and the last author was supported by CONAHCYT (Mexico)
doctoral scholarship with CVU number 771416.

Data Availability Statement: Source code for M5GP can be downloaded at https://github.com/
armandocardenasf/m5gp (accessed on 31 January 2024). The link also includes the results of the
experiments conducted in SRBench with M5GP.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Koza, J.R. Genetic Programming; Complex Adaptive Systems, Bradford Books: Cambridge, MA, USA, 1992.
2. Koza, J.R. Human-competitive results produced by genetic programming. Genet. Program. Evolvable Mach. 2010, 11, 251–284.

[CrossRef]
3. Orzechowski, P.; La Cava, W.; Moore, J.H. Where Are We Now? A Large Benchmark Study of Recent Symbolic Regression

Methods. In Proceedings of the GECCO ’18: Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15–19 July 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 1183–1190.

4. La Cava, W.; Orzechowski, P.; Burlacu, B.; de Franca, F.; Virgolin, M.; Jin, Y.; Kommenda, M.; Moore, J. Contemporary Symbolic
Regression Methods and Their Relative Performance. arXiv 2021, arXiv:2107.14351.

5. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef] [PubMed]

6. Spector, L.; Robinson, A. Genetic Programming and Autoconstructive Evolution with the Push Programming Language. Genet.
Program. Evolvable Mach. 2002, 3, 7–40. [CrossRef]

7. Burlacu, B.; Kronberger, G.; Kommenda, M. Operon C++: An Efficient Genetic Programming Framework for Symbolic Regression.
In Proceedings of the GECCO ’20: 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12
July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1562–1570.

https://github.com/armandocardenasf/m5gp
https://github.com/armandocardenasf/m5gp
http://doi.org/10.1007/s10710-010-9112-3
http://dx.doi.org/10.1038/s42256-019-0048-x
http://www.ncbi.nlm.nih.gov/pubmed/35603010
http://dx.doi.org/10.1023/A:1014538503543


Math. Comput. Appl. 2024, 29, 25 21 of 23

8. Arnaldo, I.; Krawiec, K.; O’Reilly, U.M. Multiple Regression Genetic Programming. In Proceedings of the GECCO ’14: 2014
Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 879–886.

9. Muñoz, L.; Silva, S.; Trujillo, L. M3GP—Multiclass Classification with GP. In Lecture Notes in Computer Science; Springer
International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 78–91.

10. Moraglio, A.; Krawiec, K.; Johnson, C.G. Geometric Semantic Genetic Programming. In Proceedings of the PPSN’12: 12th
International Conference on Parallel Problem Solving from Nature—Volume Part I, Taormina, Italy, 1–5 September 2012; pp. 21–31.

11. Muñoz, L.; Trujillo, L.; Silva, S. Transfer learning in constructive induction with Genetic Programming. Genet. Program. Evolvable
Mach. 2019, 21, 529–569. [CrossRef]

12. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 6th ed.; Wiley Series in Probability and
Statistics; John Wiley & Sons: Nashville, TN, USA, 2021.

13. Rudin, C. Do Simpler Models Exist and How Can We Find Them? In Proceedings of the KDD ’19: 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1–2.

14. Tian, Y.; Zhang, Y. A comprehensive survey on regularization strategies in machine learning. Inf. Fusion 2022, 80, 146–166.
[CrossRef]

15. Trujillo, L.; Z-Flores, E.; Juárez-Smith, P.S.; Legrand, P.; Silva, S.; Castelli, M.; Vanneschi, L.; Schütze, O.; Muñoz, L. Local
Search is Underused in Genetic Programming. In Genetic and Evolutionary Computation; Springer International Publishing:
Berlin/Heidelberg, Germany, 2018; pp. 119–137.

16. Iba, H. Inference of differential equation models by genetic programming. Inf. Sci. 2008, 178, 4453–4468. [CrossRef]
17. Pan, I.; Das, S. When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming. Chaos Solitons Fractals

2015, 76, 141–155. [CrossRef]
18. Falco, I.; Cioppa, A.; Tarantino, E. A Genetic Programming System for Time Series Prediction and Its Application to El Niño

Forecast. In Advances in Soft Computing; Springer-Verlag: Berlin/Heidelberg, Germany, 1999; pp. 151–162.
19. Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists, 6th ed.; Academic Press: San Diego, CA, USA, 2005.
20. McConaghy, T. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology. In Genetic and Evolutionary Computation;

Springer: New York, NY, USA, 2011; pp. 235–260.
21. Cranmer, M. Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. arXiv 2023, arXiv:2305.01582.

http://arxiv.org/abs/2305.01582.
22. Ingalalli, V.; Silva, S.; Castelli, M.; Vanneschi, L. A Multi-dimensional Genetic Programming Approach for Multi-class Classifica-

tion Problems. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 48–60.
23. Cava, W.L.; Silva, S.; Danai, K.; Spector, L.; Vanneschi, L.; Moore, J.H. Multidimensional genetic programming for multiclass

classification. Swarm Evol. Comput. 2019, 44, 260–272. [CrossRef]
24. Muñoz, L.; Trujillo, L.; Silva, S.; Castelli, M.; Vanneschi, L. Evolving multidimensional transformations for symbolic regression

with M3GP. Memetic Comput. 2018, 11, 111–126. [CrossRef]
25. Helmuth, T.; McPhee, N.F.; Spector, L. Program Synthesis Using Uniform Mutation by Addition and Deletion. In Proceedings of

the GECCO ’18: Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15–19 July 2018; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 1127–1134.

26. Trujillo, L.; Muñoz Contreras, J.M.; Hernandez, D.E.; Castelli, M.; Tapia, J.J. GSGP-CUDA—A CUDA framework for Geometric
Semantic Genetic Programming. SoftwareX 2022, 18, 101085. [CrossRef]

27. Raschka, S.; Patterson, J.; Nolet, C. Machine learning in Python: Main developments and technology trends in data science,
machine learning, and artificial intelligence. Information 2020, 11, 193

28. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;
et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238.

29. Chandrashekar, G.; Sahin, F. A Survey on Feature Selection Methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
30. Cava, W.L.; Singh, T.R.; Taggart, J.; Suri, S.; Moore, J.H. Learning Concise Representations for Regression by Evolving Networks

of Trees. arXiv 2019, arXiv:1807.00981.
31. Altarabichi, M.G.; Nowaczyk, S.; Pashami, S.; Mashhadi, P.S. Fast Genetic Algorithm for feature selection—A qualitative

approximation approach. Expert Syst. Appl. 2023, 211, 118528. [CrossRef]
32. Liao, L.; Pindur, A.K.; Iba, H. Genetic Programming with Random Binary Decomposition for Multi-Class Classification Problems.

In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July 2021; IEEE: New
York, NY, USA, 2021.

33. Viegas, F.; Rocha, L.; Gonçalves, M.; Mourão, F.; Sá, G.; Salles, T.; Andrade, G.; Sandin, I. A Genetic Programming approach for
feature selection in highly dimensional skewed data. Neurocomputing 2018, 273, 554–569. [CrossRef]

34. Espejo, P.; Ventura, S.; Herrera, F. A Survey on the Application of Genetic Programming to Classification. IEEE Trans. Syst. Man
Cybern. C Appl. Rev. 2010, 40, 121–144. [CrossRef]

35. Z-Flores, E.; Trujillo, L.; Schütze, O.; Legrand, P. A Local Search Approach to Genetic Programming for Binary Classification. In
Proceedings of the GECCO ’15: 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July
2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1151–1158.

http://dx.doi.org/10.1007/s10710-019-09368-y
http://dx.doi.org/10.1016/j.inffus.2021.11.005
http://dx.doi.org/10.1016/j.ins.2008.07.029
http://dx.doi.org/10.1016/j.chaos.2015.03.017
http://arxiv.org/abs/2305.01582
http://dx.doi.org/10.1016/j.swevo.2018.03.015
http://dx.doi.org/10.1007/s12293-018-0274-5
http://dx.doi.org/10.1016/j.softx.2022.101085
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1016/j.eswa.2022.118528
http://dx.doi.org/10.1016/j.neucom.2017.08.050
http://dx.doi.org/10.1109/TSMCC.2009.2033566


Math. Comput. Appl. 2024, 29, 25 22 of 23

36. Langdon, W.B. Failed Disruption Propagation in Integer Genetic Programming. In Proceedings of the GECCO ’22: Genetic and
Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022; Association for Computing Machinery:
New York, NY, USA, 2022; pp. 574–577.

37. Batista, J.E.; Silva, S. Comparative study of classifier performance using automatic feature construction by M3GP. In Proceedings
of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italiy, 18–23 July 2022; IEEE: New York, NY, USA, 2022.

38. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 785–794.

39. Batista, J.E.; Cabral, A.I.R.; Vasconcelos, M.J.P.; Vanneschi, L.; Silva, S. Improving Land Cover Classification Using Genetic
Programming for Feature Construction. Remote Sens. 2021, 13, 1623. [CrossRef]

40. Yang, Y.; Wang, X.; Zhao, X.; Huang, M.; Zhu, Q. M3GPSpectra: A novel approach integrating variable selection/construction
and MLR modeling for quantitative spectral analysis. Anal. Chim. Acta 2021, 1160, 338453. [CrossRef] [PubMed]

41. Zhou, Z.; Yang, Y.; Zhang, G.; Xu, L.; Wang, M. EBM3GP: A novel evolutionary bi-objective genetic programming for dimension-
ality reduction in classification of hyperspectral data. Infrared Phys. Technol. 2023, 129, 104577. [CrossRef]

42. Langdon, W.B. Graphics processing units and genetic programming: An overview. Soft Comput. 2011, 15, 1657–1669. [CrossRef]
43. Chitty, D.M. Faster GPU-based genetic programming using a two-dimensional stack. Soft Comput. 2016, 21, 3859–3878. [CrossRef]
44. Spector, L. Assessment of Problem Modality by Differential Performance of Lexicase Selection in Genetic Programming: A

Preliminary Report. In Proceedings of the GECCO ’12: 14th Annual Conference Companion on Genetic and Evolutionary
Computation, Philadelphia, PA, USA, 7– 11 July 2012; Association for Computing Machinery: New York, NY, USA, 2012;
pp. 401–408.

45. Schmidt, M.D.; Lipson, H. Age-Fitness Pareto Optimization. In Proceedings of the GECCO ’10: 12th Annual Conference on
Genetic and Evolutionary Computation, Cancun, Mexico, 8–12 July 2020; Association for Computing Machinery: New York, NY,
USA, 2010; pp. 543–544.

46. Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data
Science. In Proceedings of the GECCO ’16: Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24
July 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 485–492.

47. McDermott, J.; White, D.R.; Luke, S.; Manzoni, L.; Castelli, M.; Vanneschi, L.; Jaskowski, W.; Krawiec, K.; Harper, R.; De Jong, K.;
et al. Genetic Programming Needs Better Benchmarks. In Proceedings of the GECCO ’12: 14th Annual Conference on Genetic
and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; Association for Computing Machinery: New York, NY,
USA, 2012; pp. 791–798.

48. McDermott, J.; Kronberger, G.; Orzechowski, P.; Vanneschi, L.; Manzoni, L.; Kalkreuth, R.; Castelli, M. Genetic Programming
Benchmarks: Looking Back and Looking Forward. SIGEVOlution 2022, 15, 1–19. [CrossRef]

49. Crary, C.; Piard, W.; Stitt, G.; Bean, C.; Hicks, B. Using FPGA Devices to Accelerate Tree-Based Genetic Programming: A
Preliminary Exploration with Recent Technologies. In Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland,
2023; pp. 182–197.

50. Virgolin, M.; Alderliesten, T.; Bosman, P.A.N. Linear Scaling with and within Semantic Backpropagation-Based Genetic
Programming for Symbolic Regression. In Proceedings of the GECCO ’19: Genetic and Evolutionary Computation Conference,
Prague, Czech Republic, 13–17 July 2019; Association for Computing Machinery: New York, NY, USA; pp. 1084–1092.

51. Melo, V.V.D. Kaizen programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
Vancouver, BC, Canada, 12–16 July 2014; ACM: New York, NY, USA, 2014.

52. de Franca, F.O.; Aldeia, G.S.I. Interaction–Transformation Evolutionary Algorithm for Symbolic Regression. Evol. Comput. 2021,
29, 367–390. [CrossRef] [PubMed]

53. Lam, S.K.; Pitrou, A.; Seibert, S. Numba: A llvm-based python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, Austin, TX, USA, 15 November 2015; pp. 1–6.

54. Ni, J.; Drieberg, R.H.; Rockett, P.I. The Use of an Analytic Quotient Operator in Genetic Programming. IEEE Trans. Evol. Comput.
2012, 17, 146–152. [CrossRef]

55. Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017.

56. Olson, R.S.; La Cava, W.; Orzechowski, P.; Urbanowicz, R.J.; Moore, J.H. PMLB: A large benchmark suite for machine learning
evaluation and comparison. BioData Min. 2017, 10, 36. [CrossRef]

57. Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52.
58. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–15 August 1995; IEEE: New York, NY, USA, 1995; Volume 1, pp. 278–282.
59. Virgolin, M.; Alderliesten, T.; Witteveen, C.; Bosman, P.A.N. Scalable Genetic Programming by Gene-Pool Optimal Mixing and

Input-Space Entropy-Based Building-Block Learning. In Proceedings of the GECCO ’17: Genetic and Evolutionary Computation
Conference, Berlin, Germany, 15–19 July 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1041–1048.

http://dx.doi.org/10.3390/rs13091623
http://dx.doi.org/10.1016/j.aca.2021.338453
http://www.ncbi.nlm.nih.gov/pubmed/33894955
http://dx.doi.org/10.1016/j.infrared.2023.104577
http://dx.doi.org/10.1007/s00500-011-0695-2
http://dx.doi.org/10.1007/s00500-016-2034-0
http://dx.doi.org/10.1145/3578482.3578483
http://dx.doi.org/10.1162/evco_a_00285
http://www.ncbi.nlm.nih.gov/pubmed/33306435
http://dx.doi.org/10.1109/TEVC.2012.2195319
http://dx.doi.org/10.1186/s13040-017-0154-4


Math. Comput. Appl. 2024, 29, 25 23 of 23

60. Petersen, B.K.; Landajuela, M.; Mundhenk, T.N.; Santiago, C.P.; Kim, S.K.; Kim, J.T. Deep symbolic regression: Recovering
mathematical expressions from data via risk-seeking policy gradients. In Proceedings of the International Conference on Learning
Representations, Virtual Only Conference, 3–7 May 2021.

61. Sipper, M.; Fu, W.; Ahuja, K.; Moore, J.H. Investigating the parameter space of evolutionary algorithms. BioData Min. 2018, 11, 2.
[CrossRef]

62. Trujillo, L.; Álvarez González, E.; Galván, E.; Tapia, J.J.; Ponsich, A. On the Analysis of Hyper-Parameter Space for a Genetic
Programming System with Iterated F-Race. Soft Comput. 2020, 24, 14757–14770. [CrossRef]

63. Brookhouse, J.; Otero, F.E.; Kampouridis, M. Working with OpenCL to Speed up a Genetic Programming Financial Forecasting
Algorithm: Initial Results. In Proceedings of the GECCO Comp’14: Companion Publication of the 2014 Annual Conference
on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; Association for Computing Machinery:
New York, NY, USA, 2014; pp. 1117–1124.

64. Kamienny, P.-A.; d’Ascoli, S.; Lample, G.; Charton, F. End-to-end Symbolic Regression with Transformers. In Advances in Neural
Information Processing Systems; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; Curran Associates, Inc.:
New York, NY, USA, 2022; Volume 35, pp. 10269–10281.

65. Zhang, R.; Lensen, A.; Sun, Y. Speeding up Genetic Programming Based Symbolic Regression Using GPUs. In Proceedings of the
PRICAI 2022: Trends in Artificial Intelligence, Shanghai, China, 10–13 November 2022; Khanna, S., Cao, J., Bai, Q., Xu, G., Eds.;
Springer Nature: Cham, Switzerland, 2022; pp. 519–533.

66. Holt, S.; Qian, Z.; van der Schaar, M. Deep Generative Symbolic Regression. In Proceedings of the The Eleventh International
Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13040-018-0164-x
http://dx.doi.org/10.1007/s00500-020-04829-4

	Introduction
	Background
	M2GP: Multidimensional Multiclass Genetic Programming
	M3GP: M2GP with Multidimensional Populations
	M4GP: Incorporating a Stack-Based Representation
	Related Work

	GPU-Based Parallel Implementation of M5GP
	Individual Representation, Interpretation and Parallel Processing
	Fitness Evaluation Using CUDA-Based Machine Learning
	Search Operators

	Experiments
	Experimental Setup
	SRBench Results
	Computational Cost

	Conclusions and Future Work
	References

