
Citation: Shamsizadeh, M.; Zahedi,

M.M.; Abolpour, K.; De la Sen, M.

Recognizable Languages of k-Forcing

Automata. Math. Comput. Appl. 2024,

29, 32. https://doi.org/10.3390/

mca29030032

Received: 11 March 2024

Revised: 21 April 2024

Accepted: 22 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Article

Recognizable Languages of k-Forcing Automata
Marzieh Shamsizadeh 1 , Mohammad Mehdi Zahedi 2, Khadijeh Abolpour 3 and Manuel De la Sen 4,*

1 Department of Mathematics, Behbahan Khatam Alanbia University of Technology,
Behbahan 47189-63616, Iran; shamsizadeh.m@bkatu.ac.ir

2 Department of Mathematics, Graduate University of Advanced Technology, Kerman 76311-33131, Iran;
zahedi_mm@kgut.ac.ir

3 Department of Mathematics, Islamic Azad University, Shiraz Branch, Shiraz 71987-74731, Iran;
kh.abolpour@iau.ac.ir

4 Institute of Research and Development of Processes, Department of Electricity and Electronics,
Faculty of Science and Technology, University of the Basque Country (UPV/EHU),
48940 Leioa, Bizkaia, Spain

* Correspondence: manuel.delasen@ehu.eus

Abstract: In this study, we show that automata theory is also a suitable tool for analyzing a more
complex type of the k-forcing process. First, the definition of k-forcing automata is presented
according to the definition of k-forcing for graphs. Moreover, we study and discuss the language
of k-forcing automata for particular graphs. Also, for some graphs with different k-forcing sets, we
study the languages of their k-forcing automata. In addition, for some given recognizable languages,
we study the structure of graphs. After that, we show that k-forcing automata arising from isomorph
graphs are also isomorph. Also, we present the style of words that can be recognized with k-forcing
automata. Moreover, we introduce the structure of graphs the k-forcing automata arising from which
recognize some particular languages. To clarify the notions and the results obtained in this study,
some examples are submitted as well.

Keywords: graph; zero forcing set; k-forcing; automata; network

MSC: 03D05; 68Q45; 68Q70; 18A10

1. Introduction

Graph theory was introduced by Leonhard Euler in 1736 to solve the Königsberg
bridge problem. Since then, this theory has been used to describe many fundamental issues
or phenomena in operations research, chemistry, computer science, and social science.
Numerous groups of authors have introduced and studied various graph generation
models from different perspectives [1–5]. Additionally, it has been used in communication
roads of cities, city maps, etc. The notion of a zero forcing set of a simple graph was
introduced in [6] to bound the minimum rank for numerous families of graphs. Zero
forcing parameters were further studied and applied to the minimum rank problem in [7,8].

On the other hand, different types of automata demonstrate rich and exciting prop-
erties that could be applied to modeling and simulating different types of epidemics,
and we refer to [2,9–13] for details. In addition, there has been limited research on the
application of automata theory to analyze disease propagation. So, here, we bring an
interdisciplinary approach, including graph theory and automata theory, to analyze a type
of the k-forcing process.

Today, studying the behavior of infectious diseases in different societies has the highest
research priority to prevent and control them. It seems that some branches of mathematics,
including automata theory, can help us to do this research. It has already been shown
that the behavior of a kind of zero forcing process can be analyzed by forcing automata.
Past research has shown that a simple type of the zero forcing process could be analyzed

Math. Comput. Appl. 2024, 29, 32. https://doi.org/10.3390/mca29030032 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca29030032
https://doi.org/10.3390/mca29030032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-9336-289X
https://orcid.org/0000-0001-9320-9433
https://doi.org/10.3390/mca29030032
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca29030032?type=check_update&version=1

Math. Comput. Appl. 2024, 29, 32 2 of 15

by deterministic finite-state automata. The k-forcing process is the generalization of the
zero forcing process. In this paper, we show that it is also possible to analyze and model
the k-forcing process by finite-state automata. First, we define the k-forcing automaton
according to the propagation steps and the conditions under which the k-forcing process
is transmitted. Then, we demonstrate that the language of k-forcing automaton enables
us to compare different k-forcing processes within a given network or across different
networks. Recently, Golmohamadian, Zahedi and Soltankhah introduced a model of graph
automata [10]. Further, the L-graph notion based on the residuated lattice was introduced,
and its applications were presented and discussed [14]. Moreover, the L-fuzzy automaton
known as the L-graph automaton [14] was introduced.

The structure of the paper is as follows. In Section 3, we introduce the definitions and
some properties of the graph, zero forcing set, and automata. In Section 4, the definition
of k-forcing automata is presented according to the definition of k-forcing for graphs.
After that, the k-forcing grammar is defined. In Section 5, first, languages of k-forcing
automata for some graphs are discussed. Further, for a given graph G1, a new graph is
presented, say G2, such that k-forcing automata of G1 and l-forcing automata of G2 have
the same language. Also, for some graphs with various k-zero forcing sets, we study the
languages of their k-forcing automata. Moreover, we show that if two graphs G and H are
isomorphic, then there are two k-forcing sets Zk(G) and Zk(H) such that their k-forcing
automata are isomorphic. In Section 6, the style of words that can be recognized with
k-forcing automata is studied. Moreover, we introduce the structure of graphs from which
the k-forcing automata arise, producing particular languages.

2. Notation

We need the following items to better understand the next sections [15]:

1. A = (Q, A, φ, I, T) is an automata, where Q is a states set, A is an alphabet set,
φ : Q × A → Q is a transition function, I ⊆ Q is an initial states set, and T ⊆ Q is a
final states set.

2. The cardinality of Q is denoted by |Q|.
3. Let V be a nonempty set. Then V∗ is the free monoid over V with the empty word, λ,

as the identity of V∗. Moreover, let V+ = V∗ ∖ {λ}.
4. G = (V, E) is a graph, where V is the set of vertices and E is the set of edges.
5. A simple graph is a graph with no loops or multiple edges.
6. A complete graph is a simple graph such that each pair of distinct vertices is adjacent.
7. Graph G is connected if every pair of vertices belongs to a path.
8. The degree of a vertex is the number of edges with that vertex as an end-point.
9. We say that two vertices a and b of a graph G are adjacent if there is an edge ab

joining them.
10. The initial color of each vertex in graph G is black (colored) or white (non-colored).

The union of colored and non-colored vertices is equal to the set of vertices of the
graph G.

3. Preliminaries

A zero forcing process is an instance of an irreversible propagation process on graphs
or networks. The zero forcing process is defined as follows for simple, finite, and undirected
graphs. The initial color of each vertex in graph G is black or white (in this paper, the black
vertex is an infected member, and the white vertex is a healthy member). Let uv be an edge
in graph G. When we say that u forces v, denoted by u → v, we mean that the edge uv is
an enforcing one, that is, if u is a vertex that is black and u has a single white neighbor, like
v, then we alter the color of v to black; this law is called the law of color change (or the
conditions in which the disease is transmitted).

The initial coloring of G involves a set of vertices being black and all other vertices
being white; repeating the color-change rule until no more changes are possible leads to the
derived set of all black vertices. If the derived set for a given initial subset of black vertices

Math. Comput. Appl. 2024, 29, 32 3 of 15

is the entire vertex set of the graph, a zero forcing set is the name given to the initial black
vertices. The zero forcing process is a process that changes the color of all white vertices to
black vertices [6,16].

It should be noted that the smallest zero forcing set for the graph is the size of the
graph’s zero forcing number. |Z(G)| is used to denote the zero forcing number in a graph G.

Definition 1 ([17]). Let G = (V, E) be a graph. A zero forcing finite automata (Z-F-finite
automata) is a five-tuple machine denoted by A = (Q, A, φ, I, T), where

1. Q = V is the finite set of states,
2. A = { f , n} is the set of alphabet,
3. φ : Q × A → P(Q) is the transition function, where if vertex u forces vertex v in G, then we

define φ(u, f) = v in A and, if uv ∈ E and u and v do not force each other, then φ(u, n) = v
and φ(v, n) = u,

4. I = Z(G) is the set of initial states,
5. T is the set of final states, which u ∈ T if and only if u does not force any vertex.

Naturally, φ can be extended to φ∗ : Q × A∗ → P(Q).

Definition 2 ([18]). Let k ≥ 1 be an integer and let G be a graph containing either colored or
non-colored vertices, and let S ⊆ V be the set of all initially colored vertices. The k-coloring rule
is defined by the following: if v is a colored vertex with k or fewer uncolored neighbors, then we
change the color of the non-colored neighbors of v. If all vertices are colored by repeatedly applying
the k-coloring rule, then it is said that S is a k-forcing set. The k-forcing number, |Zk(G)|, is the
cardinality of a minimum k-forcing set of G.

A k-forcing process is a generalization of the zero forcing process and is an example of
an irreversible propagation process on graphs or networks. The following example helps
us to better understand why the k-forcing process is an epidemic.

Example 1. Let G be the graph in Figure 1 and Z = {v1, v7} and k = 2. The shapes in Figure 1
show that how the 2-forcing process happens in the graph G and how the color of all white vertices
change to black. Figure 1 also shows that Z is a 2-forcing set.

Figure 1. The steps of 2-forcing process of Z = {v1, v7} of Example 1.

Math. Comput. Appl. 2024, 29, 32 4 of 15

Definition 3 ([15]). A graph G is a bipartite graph if its vertex set can be divided into two disjoint
sets A and B, where each edge of G joins the vertices a and b.

Definition 4 ([15]). Let G and H be two simple graphs. A homomorphism from G to H is a
surjection f : VG → VH where ab ∈ EG if and only if f (a) f (b) ∈ EH . f is called an isomorphism
if and only if f is a homomorphism that is one–one.

Definition 5 ([17]). Let A1 = (Q1, A, φ, I1, T1) and A2 = (Q2, A, φ, I2, T2) be two automata.
A homomorphism from A1 onto A2 is a surjection g : Q1 → Q2, where, for every p, p′ ∈ Q1, and
a ∈ A, the following conditions hold:

• p ∈ I1 if and only if g(p) ∈ I2,
• φ(p, a) = p′ if φ(g(p), a) = g(p′),
• p ∈ T1 implies that g(p) ∈ T2.

g is called an isomorphism if and only if g is a homomorphism that is one–one and p ∈ T1 if and
only if g(p) ∈ T2.

Definition 6 ([19]). A formal grammar is a quadruple Γ = (S, A, π, σ), where S is a finite symbols
set called the vocabulary of Γ, A is a nonempty subset of S called the terminal alphabet of Γ, π is a
finite subset of (S − A)+ × S∗, and σ ∈ S − A. The elements (α, β) of π are called the productions
of Γ and we write α → β whenever (α, β) ∈ π.

4. k-Forcing Automata

In this section, first, we define k-forcing automata by using Definition 2. In the
following, we present a k-forcing grammar as well.

Definition 7. Let G = (V, E) be a graph and Zk(G) be a k-forcing set of it. A k-forcing automata
(k-F-Automata) is a five-tuple machine A(Zk(G)) = (Q, A, φ, I, T), where

1. Q = V is the set of states of A(Zk(G)),
2. A = { f , n} is the alphabet set,
3. φ : Q × A → P(Q) is a transition function, where, if vertex q forces vertex q′ in graph G,

then we define q′ ∈ φ(q, f) in A(Zk(G)) and, if qq′ ∈ E and q and q′ do not force each other,
then we consider q′ ∈ φ(q, n) and q ∈ φ(q′, n) in A(Zk(G)),

4. I = Zk(G) ⊆ V is the initial states set,
5. T is the final states set, in which q ∈ T if and only if q does not force each vertex.

Example 2. Consider graph G as in Figure 2. Let k = 2 and Z2
1(G) = {q1}. Clearly, q1 forces

q2 and q5, after that q2 forces q3 and q4, and, at the same time, q5 forces q4. Now, all vertices are
colored. Then q3 and q4 do not force each other. Therefore, we have A(Z2

1(G)), as in Figure 3. Now,
we consider Z2

2(G) = {q3}. We have A(Z2
2(G)), as in Figure 4. We notice that {q2} and {q4} are

not 2-forcing sets, also {q3} is not a zero forcing set for graph G.

Figure 2. The graph G of Example 2.

Math. Comput. Appl. 2024, 29, 32 5 of 15

Figure 3. 2-F-automata A(Z2
1(G)) of Example 2.

Figure 4. 2-F-automata A(Z2
2(G)) of Example 2.

It should be noted that k-forcing automata is a generalization of Z-F-automata, see [17].

Definition 8. Let A(Zk(G)) = (Q, A, φ, I, T) be a k-forcing automata. The language of A(Zk(G))
is defined to be the set L(A(Zk(G))) = {w ∈ A∗|φ(i, w) ∈ T, ∃i ∈ I}, where 1 ≤ k ≤ |Q| − 1.

Example 3. Consider graph G, as in Figure 2. By considering Z2
1(G) = {q1}, clearly,

L(A(Z2
1(G))) = f 2n∗. Now, we consider Z2

2(G) = {q3}. Obviously, L(A(Z2
2(G))) = f n∗ f n∗.

Example 4. Consider graph G, as in Figure 5, and 2-forcing set Z2(G) = {q1, q2, q3}. Then, we
have A(Z2(G)), as in Figure 6. Clearly, L(A(Z2

2(G))) = n∗ f n∗. Now, let Z3(G) = {q1, q2}
be a 3-forcing set for graph G. Then, we have A(Z3(G)), as in Figure 7, also, the language of
this automata is equal n∗ f n∗. By considering Z4(G) = {q1}, we have A(Z4(G)), as in Figure 8.
Obviously, L(A(Z4(G))) = f n∗. Moreover, in [17], we can see L(A(Z1(G))) = n∗ f .

If the forcing set S ⊆ V of black (infected) vertices is fixed, the resulting automata do
not need to be unique (as just mentioned): it depends on the order in which vertices from
outside the current set S are colored in black. For the same graph G = (V, E) and the same
k-forcing set S ⊆ V, the k-forcing automata and language are unique. So, the language
only depends on the given graph G and the given forcing set S of its vertices.

Figure 5. Graph G of Example 4.

Math. Comput. Appl. 2024, 29, 32 6 of 15

Figure 6. 2-F-automata A(Z2(G)) of Example 4.

Figure 7. 3-F-automata A(Z3(G)) of Example 4.

Figure 8. 4-F-automata A(Z4(G)) of Example 4.

By utilizing Definition 7, we can present k-forcing grammar for a given graph G = (V, E)
and k-forcing set Zk(G), 1 ≤ k ≤ n − 1, |G| = n. A k-forcing grammar (k-F grammar) is a
quadruple ΓZk(G) = (S, A, π, σ), where

1. S = V ∪ { f , n} ∪ {σ} is the symbols set.
2. { f , n} is the alphabet set.
3. Every production rule is of the following form:

(I) q′ → f q′′, whenever q′ forces q′′ in graph G.
(II) q′ → nq′′, whenever q′ does not force q′′ and q′q′′ ∈ E.
(III) q′ → 1, if q′ does not force any vertex.
(IV) σ → q, whenever q ∈ Zk(G).

Example 5. Consider graph G, as in Figure 5. By considering the 2-forcing set Z2(G) = {q1, q2, q3},
we have 2-forcing grammar ΓZ2(G) as follows:

σ → q1, σ → q2, σ → q3, q1 → nq2,

q2 → nq1, q2 → nq3, q3 → nq2, q1 → f q5

q1 → f q4, q1 → nq3, q3 → nq1, q2 → f q5

q2 → f q4, q3 → f q4, q3 → f q5, q4 → nq5,

q5 → nq4, q4 → 1, q5 → 1.

It is clear that k-forcing grammar is a regular grammar.

Math. Comput. Appl. 2024, 29, 32 7 of 15

Note 1. For every complete graph, it is obvious that every state in its k-forcing automata is neither
the initial state nor the final state.

Note 2. Let G be a complete graph and |G| = n. Then, for every k-forcing set Zk(G), we have
|Zk(G)| = n − k, where 1 ≤ k ≤ n − 1.

5. Recognizable Languages

In this section, first, we discuss recognizable languages and study the features of
some graphs that can be recognized by these languages. For some kinds of recognizable
languages, we present some graphs as well. Moreover, we present a general language and
show that languages of k-forcing automata follow this pattern. To clarify the concepts some
examples are also given.

Definition 9. Let L ⊆ A∗. We say that L is a recognizable language if there exists a graph G, such
that L(A(Zk(G))) = L, for some k-forcing set Zk(G).

Theorem 1. Let L = f m, m ≥ 2. Then there exists a graph G such that L(A(Z2(G))) = f m,
for every 2-forcing set Z2(G). Moreover, G is a 2-regular graph in which |G| = 2km and every
component of it is a 2-regular graph, such that L(A(Z2(G′))) = f m, for every component G′ of G
and k ∈ N.

Proof. By using Theorem 12, it is evident that for a 2-regular connected graph G such that
|G| = 2m, we have L(A(Z2(G))) = f m, for every 2-forcing set Z2(G). Let G be a path, so,
by considering Z2(G) = {p} and Z2(G) = {p′}, such that d(p) = 2 and d(p′) = 1, where
p, p′ belong to the set of vertices of G, we do not have the same language f m. On the other
hand, if there exists a vertex in G such that its degree is more than two, by choosing every
Z2(G), at least one of the edges of that vertex creates n∗, which is a contradiction. So, G is a
2-regular graph. We suppose graph G has several components. If at least two components
of G have different numbers of vertices, then we have L(A(Z2(G))) = f m ∪ f m′

, where
f m and f m′

are the languages of these components, which is a contradiction too. Hence,
the claim holds.

Theorem 2. Let L = f m. Then there is not any graph with less than m vertices in which the
language of k-forcing automata of it be L, for every k-forcing set Zk(G).

Proof. Let G be a graph and Zk(G) be a k-forcing set of G. Since L = f m, then there are m
forces in graph G. By considering Definition 2, the claim is clear.

Theorem 3. Let L = f mn∗, m ≥ 2. Then there is a graph G such that L(A(Z2(G))) = f mn∗,
for every 2-forcing Z2(G). Also, G is a 2-regular graph such that |G| = k(2m + 1), graph G has k
components, and every component G′ of G is a 2-regular graph in which L(A(Z2(G′))) = f mn∗,
where k ≥ 1.

Proof. According to Theorem 12, the first part of the claim is clear. Graph G cannot be as a
path, since, for every 2-forcing Z2(G), k-forcing automata of the graph cannot create n∗.
On the other hand, since L = f mn∗, we have |Z(G)| = 1, by considering the hypothesis,
we have to have m forces at first and these forced vertices must not be adjacent since they
create f m′

n∗ f m′′
and it is a contradiction. After that, for creating n∗, we have to have at

least two final states and these states must be adjacent. So, the graph G is 2-regular. Now,
we have two cases: The first one, graph G is connected, so G is a 2-regular connected graph
and |G| = 2m + 1. In the last case, G is not connected. Then G has k components such that
L(A(Z2(G′))) = f mn∗, for every component graph G′ of G and |G′| = 2m + 1. Therefore,
|G| = k(2m + 1) = 2km + k. Hence, the claim holds.

Math. Comput. Appl. 2024, 29, 32 8 of 15

Corollary 1. Let L = f mn∗. Then there is a graph G such that |G| = m + 2 and L(A(Zk(G))) =
f mn∗, for some k-forcing set Zk(G), k ≥ 2. Also, there does not exist any graph, say H, with fewer
vertices in which L(A(Zk(H))) = f mn∗.

Corollary 2. Let L = n∗ f mn∗. Then there does not exist any graph G such that L(A(Zl(G))) =
n∗ f mn∗, where Zl is an l-forcing set of G and |G| ≤ m + 1.

Corollary 3. Let L = n∗ f mn∗. The smallest graph G such that L(A(Z1(G))) = n∗ f mn∗ has
m + 2 vertices, where Z1(G) is a zero forcing set for graph G.

Theorem 4. Let L = f mn∗ f m′
. Then for every graph G in which L(A(Zk(G))) = L, graph G has

at least two vertices of degree at least two, where Zk(G) is a k-forcing set for graph G and k ≥ 2.

Proof. Let G be a graph. For creating f m, we have to have m force; for creating n∗, we have
to have at least two adjacent vertices that do not force each other. Since these vertices are
forced by other vertices and also have to force other vertices, the degree of these vertices is
at least three. Hence, the claim holds.

Corollary 4. Let L = f mn∗ f m′
. Then the smallest graph G such that L(A(Zk(G))) = L has at

least m + m′ + 2 vertices, where Zk(G) is a k-forcing set for the graph and k ≥ 2.

Theorem 5. Let L1 = n∗ f l and L2 = f ln∗. There is no graph G such that L(A(Zm−1(G))) = L1
or L(A(Z1(G))) = L2, where |G| = m.

Proof. Let L1 = n∗ f l . Clearly, for every graph G, |Zm−1(G)| = 1, where |G| = m. Since we
have only one member in Zm−1(G), it is not possible to create n∗. For the rest of the claim,
see [17].

Theorem 6. For every graph G such that L(A(Z1(G))) = n∗ f m, graph G has at least three
vertices with at least two degrees.

Proof. Let L = n∗ f m. For creating n∗, we must have |Z1(G)| ≥ 2; it means that at least two
initial states of A(Z1(G)) are adjacent. Then the degree of vertices in Z1(G) is at least two.
For creating f m, we have to have at least m other vertices. We have two cases:

(a) The initial vertices have the same adjacent vertices, then the claim holds.
(b) The initial vertices do not have the same adjacent vertices; to create f m, all vertices

in Z1(G) have similar paths and, finally, all these paths are common in a vertex;
otherwise, the graph is a path and it is a contradiction.

Hence, the claim holds.

Example 6. Let L = n∗ f 2. By using the proof of Theorem 6, we have the graph G, as in Figure 9.
By considering Z1(G) = {p1, p2}, the language of 1-forcing automata of it is n∗ f 2. Also, we can
consider graph G, as in Figure 10. With regard to choosing Z1(G) = {p1, p2, p3}, the language of
1-forcing automata of it is n∗ f 2.

Corollary 5. Let L = n∗ f m. Then there exists a graph G such that |G| = m+ 2 and L(A(Z1(G)))
= n∗ f m, for the some forcing set Z1(G). Also, there is no graph H with fewer states that
L(Z1(H)) = n∗ f m.

Theorem 7. Let L be a recognizable language and G be the corresponding graph. Then for
k = 2, ..., |G| − 2, we have L = n∗ f ln∗(n∗ f l′n∗)∗, for some integers l, l′.

Math. Comput. Appl. 2024, 29, 32 9 of 15

Proof. Let G be a graph such that L(A(Zk(G))) = L, for some k-forcing set Zk(G). With-
out loss of generality, let k = 2 and w = a1a2...an ∈ L. Then φ(i, w) ∈ T, for some i ∈ Z2(G).
So, we have a path defined as follows:

i
a1−→ q1

a2−→ q2 → ... an−→ qn ∈ T,

There are two cases for two vertices i and q1. In the first case, i forces q1, so we have
φ(i, f) = q1. Therefore, a1 = f . In the last case, i does not force q1, then φ(i, n) = q1 and
φ(q1, n) = i, so it creates n∗. We proceed in the same way for the rest of the path. Hence,
the claim is clear.

Figure 9. Graph G of Example 6.

Figure 10. Graph G of Example 6.

6. Languages of k-Forcing Automata

In the first part of this section, we study the language of k-forcing automata for several
graphs such as complete graphs, bipartite graphs, and regular graphs. After that, for a
given graph G1, we present a new graph, say G2, such that k-forcing automata of G1 and
l-forcing automata of G2 have the same language and k and l are not necessarily the same.
Also, we present some examples to clarify these new notions. In [17], Shamsizadeh et al.
show that if G is a complete graph where |G| ≥ 3, then for every m − 1-forcing set
Zm−1(G), L(A(Zm−1)) = n∗ f . Now, by considering the k-forcing set Zk(G), we can extend
the language.

Theorem 8. Let G be a complete graph such that |G| = m. Then for each k-forcing set Zk(G),
where 2 ≤ k ≤ m − 2, we have L(A(Zk(G))) = n∗ f n∗, and L(A(Zm−1)) = f n∗.

Proof. The language L(A(Zk(G))) = n∗ f n∗ consists of three parts, n∗, f , and n∗. Let G be
a complete graph and Zk(G), 2 ≤ k ≤ m − 2 be a k-forcing set of G. Since |Zk(G)| ≥ 2, its
k-F-automata has at least two adjacent initial states and they create n∗ (first part of n∗ f n∗).
On the other hand, every state belonging to Zk(G) forces the rest of the states and it creates
f (second part of n∗ f n∗). Also, by utilizing Note 1, at least two states of A(Zk(G)) are final.
Then they create n∗ because they are adjacent. Therefore, L(A(Zk(G))) = n∗ f n∗.

Math. Comput. Appl. 2024, 29, 32 10 of 15

Now, let Zm−1(G) be an (m − 1)-forcing set for G. Then |Zm−1(G)| = 1. So, we have
one initial state; it forces the other vertices and it creates f . Since the final states are adjacent,
then they create n∗. Therefore, L(A(Zm−1(G))) = f n∗. Hence, the claim holds.

It should be noted that for a given complete graph G in which |G| = m, we have
L(A(Z1(G))) = n∗ f , see [17].

Example 7. Consider the complete bipartite graph G as in Figure 11. By choosing 2-forcing
Z2(G) = {p3}, we have A(Z2(G)) as in Figure 12. It is evident that L(A(Z2(G))) = f 2.

Figure 11. The G of Example 7.

Figure 12. The A(Z2(G)) of Example 7.

Theorem 9. Let G be a complete X-Y bipartite graph and k, |X|, |Y| ≥ 2. If we choose the initial
states of any part of the graph, then the other states of this part are the final states. Also, if we choose
the initial states of both parts, then the other states of the graph are final.

Proof. Let G be an X-Y complete bipartite graph and Zk(G) be a k-forcing set for G. We
know that |Zk(G)| = |X|+ |Y| − 2k. Two cases arise: in the first one, the members of Zk(G)
belong to one part. Then, without loss of generality, let the members of Zk(G) belong
to part X of the bipartite graph. Since the graph is complete, then they have to force all
vertices of part Y. We notice that since |X|, |Y| ≥ 2, then |Zk(G)| < |X| and |Zk(G)| < |Y|.
Then, clearly, Zk(G) is a proper subset of X, so the rest of the vertices in X will be forced by
all vertices of part Y. Therefore, the initial and final states belong to the same part. In the
last case, Zk(G) belongs to both parts X and Y. Since graph G is complete and the vertices
of part X are not adjacent, then the black vertices of part X force the white vertices of part
Y and vice versa. So, the claim holds because the vertices that get black right now do not
force any vertices.

Theorem 10. Let G be a complete X-Y bipartite graph and |X|, |Y| ≥ 2. If k ≥ |X|, then we
can choose a k-forcing Zk(G) such that Zk(G) ⊂ Y, also |Zk(G)| = max{|Y| − k, 1}. Similarity
if k ≥ |Y|, then we can choose a k-forcing set Zk(G) in which Zk(G) ⊂ X and |Zk(G)| =
max{|X| − k, 1}.

Proof. Let G be a complete bipartite graph and k ≥ |X|. Then every black vertex can force
at most k vertices. So, every black vertex of part Y can force all vertices of part X. Since
vertices of part Y cannot force each other, then the white vertices of part Y become black
if and only if the number of these vertices is at most k. So, the number of white vertices
of part Y is equal to k; on the other hand, if |Y| = k, since Zk(G) ̸= ∅, then we choose one
vertex in Y which belongs to Zk(G). If k ≥ |Y|, we can select |Y| − k members of Y as the
members of Zk(G).

Math. Comput. Appl. 2024, 29, 32 11 of 15

Example 8. Consider graph G, as in Figure 13. For k = 2, we can choose Z2(G) = {p3, p5}.

Figure 13. Graph G of Example 8.

In Example 8, we have seen that the Theorems 9 and 10 do not hold for incomplete the
bipartite graph.

Theorem 11. Let G be a complete X-Y bipartite graph and |X|, |Y| ≥ 2.

1. For every k ≥ min{|X|, |Y|}, L(A(Zk(G))) = f 2.
2. For every 0 < k < min{|X|, |Y|}, we have L(A(Zk(G))) = n∗ f n∗, where Zk(G) is a

k-forcing set for G.

Proof. 1. Without loss in generality, we suppose that k ≥ |X|. By Theorem 10, there exists
a k-forcing set Zk(G) ⊂ Y. By utilizing Theorems 9 and 10, the final states of A(Zk(G))
belong to part Y too. We divide f 2 into two parts, f and f . Since the members of Zk(G)
force all vertices of part X, this process creates f (we have achieved the first part of f 2). On
the other hand, Zk(Y) ⊂ Y, so all states of part X force the white states of part Y and this
process creates f , too. Therefore, we obtain f 2. Hence, L(A(Zk(G))) = f 2.

2. Now, we divide n∗ f n∗ into three parts, n∗, f , and n∗. Let Zk(G) be a k-forcing set
for graph G. Then |Zk(G)| = |X|+ |Y| − 2k, where |X| − k members of Zk(G) belong to
part X and |Y| − k members of Zk(G) belong to part Y. These vertices are adjacent, so they
create n∗, the first part of n∗ f n∗. Also, the black vertices of part X force all white vertices of
part Y and vice versa. So, this action creates f . Moreover, since we do not have any white
vertices at all, and by Theorem 9, these vertices are final states in A(Zk(G)). In addition,
final states are adjacent and they create n∗. Hence, L(A(Zk(G))) = n∗ f n∗.

Lemma 1. Let G be a cycle. Then |Z2(G)| = . . . = |Zk(G)| = 1, and L(A(Z2(G))) =
L(A(Zk(G))), where 3 ≤ k ≤ |G| − 1.

Proof. Since G is a cycle, then the degree vertices are 2. So, by considering the definition of
the k-forcing rule, |Z2(G)| = . . . = |Zk(G)| = 1 and every vertex can be chosen as a zero
forcing set for G. Clearly, L(A(Z2(G))) = L(A(Zk(G))).

Theorem 12. Let G be a cycle

1. Let |G| = 2m, m is an integer number. Then there is a 2-forcing Z2(G) such that
L(A(Z2(G))) = f m.

2. Let |G| = 2m + 1. Then for every 2-forcing Z2(G), L(A(Z2(G))) = f mn∗.

Proof. 1. Since G is a 2-regular connected graph, then |Z2(G)| = 1. So, the member of
Z2(G) (initial state) forces its adjacent vertices and also these new black vertices force
the other adjacent vertices, and so on. Since |G| = 2m, |Z2(G)| = 2 and the initial state
forces two vertices, then we have one final state that is forced by its adjacent vertices.
Clearly, there does not exist an edge in G such that the vertices of it do not force each other.
Then A(Z2(G)) does not create n∗. It is evident that L(A(Z2(G))) = f m = L(A(Zk(G))),
for every 3 ≤ k ≤ |G| − 1.

2. Since G is a 2-regular connected graph and |G| = 2m+ 1, then |Z2(G)| = 1, for every
2-forcing set Z2(G) for graph G. The first section of this proof is just like the proof of the
first part of Theorem 12, so we turn our attention to the final states; since |G| = 2m + 1 and

Math. Comput. Appl. 2024, 29, 32 12 of 15

|Z2(G)| = 1, then we have two final states in which they are adjacent and they create n∗.
Obviously, L(A(Z2(G))) = f mn∗.

Example 9. Let graph G be as in Figure 14. By considering Z2(G) = {q1}, we have A(Z2(G)),
as in Figure 15. So, we can see that L(A(Z2(G))) = f 2n∗.

Figure 14. Graph G of Example 9.

Figure 15. 2-F-automata A(Z2(G)) of Example 9.

Theorem 13. Let G1 be a graph and Zl(G1) be an l-forcing set of it. Then, for any integer k ≥ l,
there exists graph G2 such that L(A(Zl(G1))) = L(A(Zk(G2))), where Zk(G2) is a k-forcing set
of G2.

Proof. Let G1 be a graph and Zl(G1) be an l-forcing set of G1. If k = l, then by choosing
G2 = G1, the claim is clear. Let k > l. By considering G1 and Zl(G1), we make G2 as follows:

1. Consider |Zk(G2)| = |Zl(G1)|.
2. The vertices in Zl(G1) are adjacent if and only if the vertices in Zk(G2) are adjacent.
3. If p ∈ Zl(G1) forces at most l vertices in G1, then we consider k vertices in G2 in which

q ∈ Zk(G2) forces them. Actually, all vertices that are forced by p in G1 are consistent
with k vertices that are forced by q in G2.

4. If the new black vertex in graph G1 forces other vertices, then we consider k vertices
in G2, such that the new black vertex in G2 forces them, and these k vertices in G2 are
matched with vertices in G1 that became black in the same step. It should be noted
that to use the same vertices in a step, the degree of these vertices has to be more than
k (if d(p) < k, we can choose another Zl(G2) which defines another language, where
d(p) is the degree of vertex v).
It should be noted that, in every step, we consider vertices in G2 which are consistent
with some of the vertices in G1.

5. In every step, if vertices p, q in G1 are adjacent and do not force each other, then the
vertices in G2 that are consistent with p in the same step have to be adjacent with
vertices consistent with q, but they do not have to force each other.

By considering the construction of G2, it is evident that L(A(Zl(G1))) = L(A(Zk

(G2))).

Example 10. Consider graph G as in Figure 14. By considering Z1(G) = {q1, q5}, we have
A(Z1(G)), as in Figure 16. Clearly, L(A(Z1(G))) = n∗ f 2. We consider graph G1 as in Fig-
ure 17. By considering Z2(G1) = {p1, p2}, we have A(Z2(G2)) as in Figure 18. Obviously,
L(A(Z2(G1))) = n∗ f 2. Now, we consider G2, as in Figure 19. By choosing Z3(G2) = {u1, u2},
we have A(Z3(G2)), as in Figure 20. It is clear that L(A(Z3(G2))) = n∗ f 2 too.

Math. Comput. Appl. 2024, 29, 32 13 of 15

Theorem 14. Let G and H be two graphs and g be an isomorphism from G onto H. If Zk(G)
is a k-forcing set of G, then g(Zk(G)) = {g(u)|u ∈ Zk(G)} is a k-forcing set of H, where
1 ≤ k ≤ n − 1.

Proof. Let G be a graph and Zk(G) be a k-forcing set of it. We show that g(Zk(G)) =
{g(u)|u ∈ Zk(G)} is a k-forcing set of H. Let u ∈ Zk(G), and u forces v1, v2, . . . , vl ,
where l ≤ k. Since uv1, uv2, . . . , uvl ∈ E(G), and G and H are isomorphic, then g(u)w1,
g(u)w2, . . . , g(u)wl ∈ E(H), where g(v1) = w1, g(v2) = w2, . . . , g(vl) = wl . By utiliz-
ing Definition 5, all vertices w1, w2, . . . , wl , l ≤ k are adjacent to g(u). So, g(u) forces
w1, w2, . . . , wl , where g(u) ∈ g(Zk(G)). We continue in this manner. Now, we turn our
attention to the final states; let u′ does not force any vertices. It means that u′ is an alone
vertex or all adjacent vertices of u′ are black. By utilizing Definition 5, g(u′) is an alone
vertex or all adjacent vertices of g(u′) are black. Hence, u does not force any vertices if and
only if g(u) does not force anything.

Figure 16. 1-forcing automata A(Z1(G)) of Example 10.

Figure 17. Graph G1 of Example 10.

Figure 18. 2-forcing automata A(Z2(G1)) of Example 10.

Math. Comput. Appl. 2024, 29, 32 14 of 15

Figure 19. Graph G2 of Example 10.

Figure 20. 3-forcing automata A(Z3(G2)) of Example 10.

Theorem 15. Let G and H be isomorphic. Then there exist two k-forcing sets Zk(G) and Zk(H)
such that A(Zk(G)) and A(Zk(H)) are isomorphic.

Proof. According to the proof of Theorem 14, the proof is clear.

7. Conclusions

In this paper, we first presented the definition of k-forcing automata and k-forcing
grammar. We proved that the language of k-forcing automata demonstrated special styles.
Moreover, for some graphs with different k-zero forcing sets, we studied the languages of
their k-forcing automata. Also, for some given recognizable languages, we examined the
structure of graphs in which their k-forcing automata were recognizable in these languages.

In future research, we plan to find some algorithms that can calculate k-forcing au-
tomata for a given graph.

Author Contributions: Conceptualization, M.S. and M.M.Z.; methodology, M.S. and M.M.Z.; formal
analysis, M.S. and M.D.l.S.; investigation, M.S. and M.M.Z.; resources, K.A.; data curation, K.A.;
writing—original draft preparation, M.S.; writing—review and editing, M.S., M.M.Z. and M.D.l.S.;
visualization, M.M.Z.; supervision, M.M.Z.; project administration, M.S.; funding acquisition, M.D.l.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Basque Government grant number IT1555-22 and
funded by MICIU/AEI/10.13039/501100011033 and ERDF/E through Grants PID2021-123543OB-
C21 and PID2021-123543OB-C22.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The author Manuel De la Sen would like to thank the Basque Government for
funding his research.

Conflicts of Interest: The authors declare no conflicts of interest.

Math. Comput. Appl. 2024, 29, 32 15 of 15

References
1. Cox, C.; Martin, R.R. Counting paths, cycles, and blow-ups in planar graphs. J. Graph Theory 2022, 101, 521–558. [CrossRef]
2. Lakshmanan, K.; Tessicini, F.; Gil, A.J.; Auricchio, F. A fault prognosis strategy for an external gear pump using machine learning

algorithms and synthetic data generation methods. Appl. Math. Model. 2023, 123, 348–372. [CrossRef]
3. Lin, H.; Yu, G.; Zhou, B. On the irregularity of uniform hypergraphs. Linear Algebra Its Appl. 2023, 678, 107–124. [CrossRef]
4. Ngurah, A.A.G.; Rinovia, S. On the super edge-magic deficiency of join product and chain graphs. Electron. J. Graph Theory Appl.

2019, 7, 157–167. [CrossRef]
5. Zhai, M.; Lin, H. A strengthening of the spectral chromatic critical edge theorem: Books and theta graphs. J. Graph Theory 2023,

102, 502–520. [CrossRef]
6. AIM Minimum Rank-Special Graphs Work Group. Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 2008,

428, 1628–1648. [CrossRef]
7. Davila, R.R.; Kalinowski, T.; Stephen, S. A lower bound on the zero forcing number. Discret. Appl. Math. 2018, 250, 363–367.

[CrossRef]
8. Ferrero, D.; Hogben, L.; Kenter, F.H.J.; Young, M. The relationship between k-forcing and k-power domination. Discret. Math. 2018,

341, 1789–1797. [CrossRef]
9. Arino, J.; Watmough, J. Current trends in mathematical epidemiology. Bull. Math. Biol. 2019, 81, 4311–4312. [CrossRef] [PubMed]
10. Golmohamadian, M.; Zahedi, M.M.; Soltankhah, N. Some algebraic hyperstructures related to zero forcing sets and forcing

digraphs. J. Algebra Appl. 2019, 18, 1950192. [CrossRef]
11. Li, W.D.; Guo, X.H. Using cellular automata to study the effect of competition for epidemic diseases. Procedia Environ. Sci. 2012, 13,

1010–1018. [CrossRef]
12. Murari, B.; Zhao, S.; Zhang, Y.; Yang, J. Graphene origami-enabled auxetic metamaterial tapered beams in fluid: Nonlinear

vibration and postbuckling analyses via physics-embedded machine learning model. Appl. Math. Model. 2023, 122, 598–613.
[CrossRef]

13. Shamsizadeh, M.; Zahedi, M.M. On reduced fuzzy multiset finite automata. Soft Comput. 2022, 26, 13381–13390. [CrossRef]
14. Sarbizhan, E.R.; Zahedi, M.M.; Shamsizadeh, M. L-graph automata and some applications. Comput. J. 2022, 66, 1698–1716.

[CrossRef]
15. West, D.B. Introduction to Graph Theory; Prentice Hall: Hoboken, NJ, USA, 2001; Volume 2.
16. Golmohamadian, M.; Zahedi, M.M. The language of epidemic. Bull. Iran. Math. Soc. 2022, 48, 2105–2123. [CrossRef]
17. Shamsizadeh, M.; Zahedi, M.M.; Golmohamadian, M.; Abolpour, K. Zero-forcing finite automata. Int. J. Ind. Math. 2021, 13,

477–488.
18. Davila, R.R. Bounding the Forcing Number of a Graph. Ph.D. Dissertation, Rice University, Houston, TX, USA, 2015.
19. Howie, J.M. Automata and Languages; Clarendon Press: Oxford, UK, 1991.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/jgt.22838
http://dx.doi.org/10.1016/j.apm.2023.07.001
http://dx.doi.org/10.1016/j.laa.2023.08.018
http://dx.doi.org/10.5614/ejgta.2019.7.1.12
http://dx.doi.org/10.1002/jgt.22883
http://dx.doi.org/10.1016/j.laa.2007.10.009
http://dx.doi.org/10.1016/j.dam.2018.04.015
http://dx.doi.org/10.1016/j.disc.2017.10.031
http://dx.doi.org/10.1007/s11538-019-00672-3
http://www.ncbi.nlm.nih.gov/pubmed/31724112
http://dx.doi.org/10.1142/S0219498819501925
http://dx.doi.org/10.1016/j.proenv.2012.01.094
http://dx.doi.org/10.1016/j.apm.2023.06.023
http://dx.doi.org/10.1007/s00500-022-07549-z
http://dx.doi.org/10.1093/comjnl/bxac035
http://dx.doi.org/10.1007/s41980-021-00612-9

	Introduction
	Notation
	Preliminaries
	k-Forcing Automata
	Recognizable Languages
	Languages of k-Forcing Automata
	Conclusions
	References

