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Abstract: In several industrial fields, environmental and operational data are acquired with numer-
ous purposes, potentially generating a huge quantity of data containing valuable information for
management actions. This work proposes a methodology for clustering time series based on the
K-medoids algorithm using a convex combination of different time series correlation metrics, the
COMB distance. The multidimensional scaling procedure is used to enhance the visualization of the
clustering results, and a matrix plot display is proposed as an efficient visualization tool to interpret
the COMB distance components. This is a general-purpose methodology that is intended to ease time
series interpretation; however, due to the relevance of the field, this study explores the clustering of
time series judiciously collected from data of a wind farm located on a complex terrain. Using the
COMB distance for wind speed time bands, clustering exposes operational similarities and dissimilar-
ities among neighboring turbines which are influenced by the turbines’ relative positions and terrain
features and regarding the direction of oncoming wind. In a significant number of cases, clustering
does not coincide with the natural geographic grouping of the turbines. A novel representation of the
contributing distances—the COMB distance matrix plot—provides a quick way to compare pairs of
time bands (turbines) regarding various features.

Keywords: time series; wind data; clustering; K-medoids; COMB distance; visual interpretation tools;
wind farm diagnosis

1. Introduction
1.1. Motivation

In the upcoming decades, wind power is expected to play an increasingly important
role in the transition to a low-carbon energy system. Wind power is accessible and cost-
competitive. Global wind electricity generation has been growing, reaching 2388 TWh
in 2023 [1].

There has been ongoing research and development leading to efficiency and cost
improvements in wind turbine technology. Most modern wind turbines are designed
to have a useful life of around 20 to 25 years, with the actual lifetime depending on
maintenance practices and economics. Many of Europe’s onshore wind farms are reaching
the end of their operational life: 14 GW of Europe’s existing wind farms have already
been operational for more than 20 years and 78 GW will have reached that milestone by
2030. Denmark, Spain, and Portugal have the oldest wind fleets when compared to the
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other EU countries in relative terms. In 2022, the average age of their wind turbines was
more than 12 years old [2]. This means that a period of significant wind farm repowering
is approaching.

Wind farm repowering involves replacing old turbines with more powerful and
efficient models that incorporate the latest technology. These newer models feature larger
rotor diameters and hub heights. Consequently, what was previously generated by two,
three, or even four turbines can now be produced by just one. As the relative distance
between turbines, expressed in rotor diameters, must be maintained, the use of larger
diameter rotors results in a distinct (and significantly reduced) number of turbines within
the wind farm. Consequently, the arrangement of turbines over the land area must differ
from the original configuration. This evolution is motivated by the potential to achieve
a much higher power production from a given installation area, sometimes up to three
times more.

Micro-siting is the process of identifying the best locations to place wind turbines
within a wind farm to maximize energy production and reduce operational costs. This
process entails identifying areas with higher wind speeds, which correspond to higher
available power, and reduced turbulence in the wind, which is beneficial in terms of, e.g.,
power output stability and less wear and tear on turbine components.

In the context of wind turbine operation, a wind farm operator possesses data, includ-
ing wind speed and direction recorded by anemometers on the wind turbines’ nacelles.
Turbulence intensity data may also be available depending on the sampling rate. Previous
works [3,4] have proposed a data-driven approach to determine optimal locations for
placing wind turbines within a wind farm. This approach involves leveraging historical
data from a specific generation of wind turbines on the wind farm to enhance the micro-
siting of the subsequent generation. This is particularly relevant as the next generation
of turbines may differ in terms of the number of turbines and their nominal power, as
mentioned earlier.

Valuable insights can be gained by analyzing real data to understand the distributions
of wind speed (related to power output) and turbulence intensity (linked to maintenance
costs) across the wind farm for all incoming wind directions. Toward that goal, the authors
have previously introduced the concept of wind signature [4]. This graphical representation
encompasses the time series of three key variables (wind speed, v; turbulence intensity, TI;
and local wind direction, θ) for each wind turbine over a specified time frame, organized
into so-called time bands. These time bands represent continuous data series meeting
specific criteria and can possibly be gathered for any wind direction. Wind signatures for
all turbines in a wind farm are then mapped, each corresponding to a time band and a
relatively narrow sector of the wind direction reaching the farm. Sequences of these maps
are visually compared to identify changes in flow patterns as wind interacts with the wind
farm, providing insights into the impact of terrain features on the variables of interest.

Therefore, there is an opportunity for an approach, complementary to the wind-
signature proposal, that can provide a comprehensive set of results depicting the aggre-
gated or macroscopic distribution of wind characteristics throughout the wind farm. This
approach aims to identify specific areas within the wind farm characterized by high or
low values of wind speed. These areas would be determined by clustering turbines based
on the similarity of wind time series recorded by their anemometers. The measure of
similarity includes not only wind speed magnitude and fluctuation but also potential time
lags between turbine signals. Grouping turbines in this manner facilitates the identification
of zones within the wind farm with the highest or lowest wind potential.

Nevertheless, the challenge is intricate: each turbine on the wind farm provides a
time series with multiple variables. Consequently, multiple pairs of time series must be
compared, and it is necessary to quantify their similarity or dissimilarity using various
metrics. There are numerous options for selecting these metrics. Clustering is a statistical
method that can be used to analyze data and identify groups of entities or observations
that share similar characteristics and that, in turn, differ from other groups.
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1.2. Clustering Wind Farm Data

Clustering methods aim at discovering a set of homogeneous and well-separated
groups (i.e., clusters) that constitute a partition (possibly a fuzzy or a probabilistic partition)
of a sample of heterogeneous items. Many clustering approaches rely on the definition of
a distance between items, based on their characteristics, e.g., the well-known Euclidean
distance. Clustering methods for time series data have been used in many scientific
fields [5].

In the context of wind farms, Al-Shammari and co-authors [6] compared a few clus-
tering approaches, including K-medoids, for identifying “levels of wake effect patterns”
on a wind farm. This study concluded that K-medoids performed better than the other
two methods: fuzzy C-means and K-means. More recently, Adedeji and co-authors [7]
used the K-means to cluster 44 wind turbines based on wind speed time series to assign
a higher maintenance priority to turbine clusters with more wind availability and higher
wear rate thereof.

1.3. Contribution and Content Overview

This work proposes a new methodology for clustering time bands using the K-medoids
algorithm. Time bands represent uninterrupted time series of variables of interest for the
study. The clustering process uses the COMB distance, which is a convex combination
of four (normalized) distance measures: Euclidean distance, Pearson correlation based
distance, periodogram-based distance, and autocorrelation-based distance. These four
distances enable the comparison of pairs of bands by considering alternative features.

In this study, the proposed methodology is applied to a subset of wind data from a
wind farm situated on a complex terrain, where various wind patterns have been identi-
fied [3]. When comparing wind speed time bands, differences in the Euclidean distance
reveal changes in the intensity of the wind speed; differences in the Pearson based dis-
tance suggest changes in trends; differences in the periodogram-based distance are asso-
ciated with turbulence intensity variations; and differences in the autocorrelation-based
distance are linked to the time lag correlations between turbine signals. A graphical rep-
resentation explicitly illustrating the contribution of each component distance provides
invaluable insights.

This proposed methodology enables the study and assessment of the interactions of
the wind approaching the turbines in a wind farm. Through clustering, we aim to reveal
turbine groups within the wind farm, which can provide insights into the local orographic
effects that impact turbine behavior. This understanding may inform future decisions
regarding turbine placement.

The newly proposed matrix plot facilitates the identification of differences between
wind farm turbines in a concise and informative manner. By associating these differences
with the physical locations of turbine clusters within the wind farm, we anticipate gaining
insights into how terrain features or turbine wakes impact the wind reaching the turbines.
Consequently, understanding this influence can provide insights into their output or the
mechanical loads to which they are exposed. The developed tools enable the diagnosis of
operational features, supporting decision-making in wind farm management.

The rest of this paper is structured as follows: Section 2 presents the methodology,
culminating in a summary illustrated in a flowchart (Figure 2). In Section 3, we delve
into a case study, providing a detailed analysis of the results obtained from applying the
methodology described earlier to a specific case. Section 4 provides final remarks and
suggestions for future research directions.

2. Methodology
2.1. Harvesting Time Bands

The concept of time bands was introduced in a previous study [4] as an uninterrupted
time series of variables of interest for the study—for example, data of wind variables
and turbine operation parameters for all wind turbines under consideration—that comply
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with certain criteria defined to carry out a specific filtering and analysis of the data. The
criteria can be operationalized through a cumulative sequence of filters, e.g., considering a
minimum value of wind speed at a given turbine (or at all turbines), a specific season of
the year, ranges of wind direction, air temperature, turbulence intensity, etc.

Time bands were extracted from the entire time series of data collected at the wind
farm, resulting in multiple bands of varying lengths. The length of a time series is crucial,
as it should be sufficiently long to generate an ample number of time bands and possess
enough duration to facilitate the intended analysis.

2.2. Clustering Time Bands

In this work, the K-medoids algorithm [8] was adopted to cluster time bands regarding
wind speed time series data of a wind farm. In the K-medoids algorithm, the objective is
to minimize (for all clusters) the distance between the time series belonging to a cluster
and the cluster’s medoid, a member of the data set that exhibits the smallest distance to
all the other elements in a cluster. By considering a medoid, we overcome the need to
determine a centroid based on averaging different time series, which can be problematic.
Furthermore, K-medoids can handle multiple distance measures which is pertinent in our
study. For determining the best number of clusters, we considered the Average Silhouette
index [8]. This index varies between −1 (indicating a very poor model) and 1 (indicating
an excellent model). An Average Silhouette greater than 0.7 indicates a strong structure
has been found in the data, a value of this index between 0.5 and 0.7 indicates a reasonable
structure, between 0.25 and 0.5 a week structure, and an index less than 0.25 indicates that
no substantial structure has been found [8].

2.3. A Combined Distance between Time Bands

Selecting a dissimilarity or a distance measure is a critical issue in clustering time series.
We resorted to the COMB distance [9,10]. The COMB distance presents a good trade-off
between performance and computation time when compared to alternative distances [10]
and has been successfully used in other applications. In [9], the authors used the COMB
distance to cluster time series of hourly prices of electricity. The COMB distance has also
been used to identify daily load patterns for short-term load forecasting [11]. The COMB
distance is a convex combination of four (normalized) distance measures: the Euclidean
distance, a Pearson correlation based distance, a periodogram-based distance, and an
autocorrelation-based distance.

Considering two time series xt and yt, (t = 1, . . ., T),

1. The Euclidean distance, dEucl , captures differences in scale,

dEucl =

√√√√ T

∑
t=1

(xt − yt)
2. (1)

2. The Pearson correlation based distance, dPearson, was suggested by [12],

dPearson =

√
1 − rxt ,yt

2
, (2)

with rxt ,yt representing the Pearson correlation between the time series xt and yt. It
emphasizes the differences between trends over time.

3. The periodogram-based distance, dPeriod [13], is the Euclidean distance between the
periodograms of the time series,

dPeriod =

√
∑[T/2]

j=1

(
Px

(
wj

)
− Py

(
wj

))2, (3)
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where Px
(
wj

)
=

(
1
n

)∣∣∣∑T
t=1 xte−itwj

∣∣∣2 and Py
(
wj

)
=

(
1
n

)∣∣∣∑T
t=1 yte−itwj

∣∣∣2 are the peri-
odograms’ for xt and yt, respectively, at frequencies wj = 2π j/T, j = 1, 2, ..., [T/2] in
the range from 0 to π ([T/2] being the largest integer less or equal to T/2). It captures
the differences in the contributions of the various frequencies or cyclical components
to the variability of the series.

4. The autocorrelation-based distance, dAutocorr [14], is the Euclidean distance between
estimated autocorrelation functions,

dAutocorr =
√

∑L
l=1( rl(x t)−rl(y t))

2, (4)

where rl(x t) and rl(y t) represent the estimated autocorrelations of lag l of xt and yt,
respectively. This measure stresses the differences regarding the dependence on past
observations.

When comparing wind speed time bands, differences in the Euclidean distance in-
dicate changes in the intensity of the wind speed. Variations in the way wind speed
approaches turbines over time, such as changes in trends, can be captured by the Pearson
based distance. Additionally, the behavior of the wind speed in the frequency domain (peri-
odogram) and the time domain (autocorrelation) can be assessed using periodogram-based
and autocorrelation-based distances, respectively. It is important to note that the frequency
content of wind speed time bands is linked to its turbulence nature. Thus, higher values
of the periodogram-based distance suggest higher turbulence intensity levels. Also, the
autocorrelation-based distance addresses the time lag correlations between turbine signals.
To encompass all these aspects, the COMB distance is a uniform convex combination of the
four mentioned distances (min–max-normalized).

2.4. Classical Multidimensional Scaling (MDS) Procedure

As a complementary tool for the visualization of the turbine clusters obtained, a classi-
cal multidimensional scaling (MDS) was used [15] (we resorted to the method implemented
in R described in [16]).

The goal of classical MDS is to represent, in a Euclidean space, a matrix of distances
between points. The point coordinates are found in a way that the original distances are
preserved. To be of practical use, only two-dimensional representation is considered. Thus,
classical MDS represents a reduction in data dimensionality, and the proportion of variation
in original distances explained by the representation using only two dimensions is used as
a goodness-of-fit measure (GOF),

GOF =
∑

p
i=1 λi

∑n−1
i=1 |λi|

, (5)

where λi are the eigenvalues of X′X, and Xn×p represents the p coordinates of the n points
to be represented. As in our case we used two dimensions, p = 2 in the numerator, and
we considered the two largest eigenvalues. The GOF varies between 0 and 1 with a higher
value corresponding to a better MDS map [16].

2.5. A Matrix Plot for COMB Distances

The COMB distance between pairs of time series embodies the diverse influence
of each elementary distance—Euclidean, Pearson correlation based, periodogram-based
distance, and autocorrelation-based—on the resulting value. A graphical representation,
explicitly illustrating the contribution of each component distance, proves invaluable across
various contexts. Following a previous work [17], we propose a COMB distance matrix plot.
Each entry of the matrix plot (e.g., the one in Figure 1) contains, for a pair of time bands,
information on the aggregated distance (via the diameter of each gray circle). Overlaid
on the circles is a diagram featuring four orthogonal line segments, each representing
the value of one of the four distances presented in Section 2.3, as follows: the red (north-
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ward segment) corresponds to the Euclidean distance (dEucl), the blue (eastward segment)
corresponds to the Pearson distance (dPearson), orange (southward segment) corresponds
to the periodogram distance (dPeriod), and green (westward segment) corresponds to the
autocorrelation-based distance (dAutocorr).

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 6 of 17 
 

various contexts. Following a previous work [17], we propose a COMB distance matrix 
plot. Each entry of the matrix plot (e.g., the one in Figure 1) contains, for a pair of time 
bands, information on the aggregated distance (via the diameter of each gray circle). Over-
laid on the circles is a diagram featuring four orthogonal line segments, each representing 
the value of one of the four distances presented in Section 2.3, as follows: the red (north-
ward segment) corresponds to the Euclidean distance (𝑑 ), the blue (eastward segment) 
corresponds to the Pearson distance (𝑑 ), orange (southward segment) corresponds 
to the periodogram distance (𝑑 ), and green (westward segment) corresponds to the 
autocorrelation-based distance (𝑑 ). 

These colored line segments form a symmetrical cross “+” if the four distances are 
equal. Any lack of symmetry indicates that the contributions are unbalanced. The repre-
sentation facilitates spotting such a situation and the identification of the component dis-
tance contributing the most to the (normalized) COMB distance.  

 
Figure 1. A COMB distance matrix plot. The diameters of the gray circles represent the COMB dis-
tance values. The length of the colored line segments refers to Euclidean (red), Pearson based (blue), 
periodogram-based (orange), and autocorrelation-based (green) distances. Each matrix element 
compares the two corresponding time bands. The depicted matrix compares four time series. 

The COMB distance matrix plot example in Figure 1 shows the combined distances 
between four time bands. One immediately noticeable aspect is the smaller circle for pair 
(1,2), indicating a stronger similarity. As the radius of these circles increases, greater dis-
similarity is observed. The 4 distances can show identical contributions to the COMB dis-
tance—in the case of pair (1,4)—or show unbalanced contributions—in the case of pair 
(1,3). In the latter case, the Euclidean distance contributes less, while the periodogram dis-
tance contributes more to the final COMB distance. This visualization easily identifies un-
even distance contributions that can provide valuable information, as each measurement 
has its interpretation. Although we developed this COMB matrix plot to study wind 
farms, the proposed graphical tool is not limited to this application. 

2.6. Proposed Methodology in Brief 
The proposed methodology may be summarized by its main procedures, as repre-

sented in the flowchart (Figure 2). 
In the case of time series from wind turbines, the available data are usually acquired 

and managed by a SCADA (Supervisory Control And Data Acquisition) system. The 
SCADA data are raw data that need to be pre-processed, especially concerning data 
cleansing. After pre-processing, the wind data are then used to harvest time bands from 
the available time series of wind speed at angular sectors of interest of the wind direction. 
From the harvested time bands, uninterrupted time series of variables of interest are clus-
tered using the K-Medoids algorithm based on the COMB distance. MDS is used to visu-
alize the clustering results. A matrix plot is proposed as an efficient visualization tool to 
interpret the COMB distances between time bands.  

Figure 1. A COMB distance matrix plot. The diameters of the gray circles represent the COMB
distance values. The length of the colored line segments refers to Euclidean (red), Pearson based (blue),
periodogram-based (orange), and autocorrelation-based (green) distances. Each matrix element
compares the two corresponding time bands. The depicted matrix compares four time series.

These colored line segments form a symmetrical cross “+” if the four distances are
equal. Any lack of symmetry indicates that the contributions are unbalanced. The represen-
tation facilitates spotting such a situation and the identification of the component distance
contributing the most to the (normalized) COMB distance.

The COMB distance matrix plot example in Figure 1 shows the combined distances
between four time bands. One immediately noticeable aspect is the smaller circle for
pair (1,2), indicating a stronger similarity. As the radius of these circles increases, greater
dissimilarity is observed. The 4 distances can show identical contributions to the COMB
distance—in the case of pair (1,4)—or show unbalanced contributions—in the case of pair
(1,3). In the latter case, the Euclidean distance contributes less, while the periodogram
distance contributes more to the final COMB distance. This visualization easily identifies
uneven distance contributions that can provide valuable information, as each measurement
has its interpretation. Although we developed this COMB matrix plot to study wind farms,
the proposed graphical tool is not limited to this application.

2.6. Proposed Methodology in Brief

The proposed methodology may be summarized by its main procedures, as repre-
sented in the flowchart (Figure 2).

In the case of time series from wind turbines, the available data are usually acquired
and managed by a SCADA (Supervisory Control And Data Acquisition) system. The
SCADA data are raw data that need to be pre-processed, especially concerning data
cleansing. After pre-processing, the wind data are then used to harvest time bands from the
available time series of wind speed at angular sectors of interest of the wind direction. From
the harvested time bands, uninterrupted time series of variables of interest are clustered
using the K-Medoids algorithm based on the COMB distance. MDS is used to visualize the
clustering results. A matrix plot is proposed as an efficient visualization tool to interpret
the COMB distances between time bands.

The proposed methodology is here presented and applied for wind datasets, due to
the relevance of this field of application, although this methodology can be applied for time
series of numerous sources.
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3. Data Analysis and Results
3.1. Case Study

The wind farm taken as case study was in northern Portugal, on a plateau that
rises 500 m above the surrounding terrain. Data available for this study originated from
eight turbines (shown in Figure 3) amongst others that comprised the farm. There was
a large separation of 1.45 km between turbines WT4 and WT5, leading to an intuitive
clustering of the turbines into two geographical groups of four turbines each: G1, com-
prising turbines WT1 to WT4, and G2, comprising turbines WT5 to WT8. The average
distance between neighboring turbines was approximately 280 m for group G1, and 290 m
for group G2. Group G1 was at the edge of the plateau, with slopes due north, whereas
group G2 was distant from steep slopes. There was no significant overgrown vegetation or
construction obstacles on site. For group G1, high wind frequencies generally occurred in
the south–southwest (SSW) sector and on a narrow sector centered at east–southeast (ESE),
while very low wind frequencies occurred for the north–east or east directions, depending
on the turbine [3].

The orography, and potentially vegetation growth, influence wind velocity magnitude
and direction at specific turbine locations, depending on the incoming wind direction.
These factors are crucial for power generation, as wind speed and fluctuations (turbulence)
are the most significant features of the wind in this context. This wind farm was selected
due to the identification of various wind patterns, which highlighted the effects of terrain
features for different directions of incoming wind [3].

The data analyzed referred to the entire years of 2009 and 2010, with measurements
taken every 10 min. Thus, the complete dataset contained 105,120 observations. The
variables of interest in this study were wind speed, V, and wind direction, θ, which were
measured by the anemometers installed on the wind turbines.
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3.2. Data Pre-Processing

In diverse industrial applications, it is common to use SCADA systems to acquire and
store data. Thus, SCADA systems manage the automation and synchronization of data
collection and storage. In wind farms, data pertaining to operational and environmental
variables may be collected with different acquisition rates. However, as a common practice
for data related to wind turbines, like wind speed and direction, data are acquired at a
somewhat fast rate (e.g., one data point per second) and then down-sampled to 10 min
intervals between data points by averaging [4].

The data pre-processing or preparation step ensures compatibility among time series of
different variables and wind turbines. In this work, after loading a dataset and defining the
time frame, data vectors were stored in multidimensional arrays. Variables were initialized
as arrays of “nan”, and for each variable, timestamp vectors of different turbines were
compared. If they matched, variable vectors were recorded; otherwise, missing timestamp
entries were identified, and existing data were recorded at registered timestamps, leaving
unmatched entries as “nan”. The dataset was thus synchronized, containing compatible
data entries, and it was saved in a single file. This preparation allowed for general-purpose
treatment, including missing-data imputation techniques before cleansing and filtering.
Another cleansing step was used to ensure that variables had values within their domain,
such as out-of-range wind direction values being wrapped to the interval 0◦ to 360◦. Note
that the reported steps are general-purpose pre-processing steps and may be considered
for different datasets. Regarding wind data, specific filters may be applied to the dataset to
limit the analysis to physically meaningful observations, such as the restrictions related to
the wind turbine operational range, namely, wind and turbine’s rotor speeds within given
ranges. Other filters may be considered for specific applications such as the ones described
to harvest time bands.

3.3. Harvesting Time Bands

Time bands for each turbine must be harvested to constitute the clustering base data.
The time bands are uninterrupted time series of a variable, wind speed in the present study,
referring to a specific wind direction sector. A sector is defined in terms of its mid-sector
direction and angular aperture.

To provide reliable and informative data for clustering in the present study, they were
selected according to the following criteria:

1. Wind speeds had to be above 3.5 m/s (63% of the initial dataset).
2. Wind direction as measured at a reference turbine had to be within the angular

sector that had been predefined for the collection of a given set of time bands.
Amongst the entire set, the reference turbine was the most upwind turbine in the
mid-sector direction.
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The first criterion left out periods of insufficient wind speed magnitude for power
production. The second criterion helped spot more wind power availability within specific
angular sectors. To implement this criterion, we considered 18 non-overlapping wind
direction sectors of 20◦. In Table 1, the 18 sectors are described. For each sector, the four
largest time bands were kept for the analysis. They corresponded to completely distinct
time periods. The length of the 72 selected time bands ranged from 3.3 h (length of 20 times
10 min) to around 34.2 h. The average size of the time bands was 51 (around 8.5 h). Table 1
also lists the reference turbine for each sector.

Table 1. The 18 wind direction sectors and the length of the 4 longest time bands obtained for each
sector.

Sector ID
Sector Clockwise Direction

from North (o)
Most

Upwind Turbine Time-Band Length 1

Start (o) End (o)

1 355 15 5 3 49 47 45 45
2 15 35 25 4 31 27 26 25
3 35 55 45 8 78 65 51 50
4 55 75 65 8 79 51 48 44
5 75 95 85 8 48 37 37 32
6 95 115 105 8 41 40 37 35
7 115 135 125 8 24 23 23 20
8 135 155 145 8 49 45 38 36
9 155 175 165 8 205 98 88 82
10 175 195 185 7 58 50 42 41
11 195 215 205 5 130 93 83 75
12 215 235 225 1 50 48 43 41
13 235 255 245 1 60 43 40 32
14 255 275 265 1 41 38 28 22
15 275 295 285 1 52 37 35 27
16 295 315 305 1 64 54 47 38
17 315 335 325 1 64 60 54 53
18 335 355 345 2 85 49 48 43

1 Longest to shortest.

Figure 4 represents the time bands’ lengths in a circular plot. While in most sectors the
length of time bands stayed around average, sectors 2 and 7 had shorter time bands and
sectors 9 and 11 had longer time bands.
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Figure 4. Time-band length by sector.

3.4. Clustering of Wind Speed Time Bands

In the previous section, 18 sectors were considered, and within each of these, the
4 longest were selected, resulting in a total of 72 time bands. Each time band consisted of
eight time series of wind speed recorded at each of the eight turbines. We then conducted
72 cluster analyses (one for each time band) using the K-Medoids algorithm and the
COMB distance.
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The clustering analysis revealed two to six possible clusters (Table 2). Slightly more
than half of the time bands exhibited two clusters, some of which corresponded to the
geographic groups (highlighted in bold in Table 2). Only two of the analyzed time bands
displayed a turbine distribution incompatible with the geographic division (highlighted
with underline in Table 2).

Table 2. Number of clusters for each of the four longest time bands by sector.

Sector ID Number of Clusters 1

1 5 3 2 2
2 2 2 2 2
3 2 3 2 2
4 3 2 2 3
5 2 4 4 3
6 4 3 4 3
7 6 2 2 2
8 2 2 2 3
9 4 3 5 3

10 3 2 2 3
11 2 2 2 2
12 4 2 5 3
13 2 2 5 3
14 3 4 2 2
15 4 4 2 5
16 2 2 4 4
17 2 3 2 4
18 2 5 3 3

1 Longest to shortest time band.

In terms of clustering quality, the minimum Average Silhouette obtained was 0.4, indi-
cating that a clustering structure was found for all conducted analyses. Approximately 67%
of the clusters exhibited a reasonable clustering structure, with Average Silhouette values
ranging between 0.5 and 0.7. Three results demonstrated a strong clustering structure,
with an Average Silhouette above 0.7. Despite conducting a straightforward analysis of
the relationship between clustering quality and the corresponding time-band lengths, no
association could be identified. This suggests that harvesting shorter time bands does not
necessarily lead to worse results in cluster analyses.

To get an idea of the distribution of range (max–min), Figure 5 illustrates the range of
the number of clusters represented for each sector. Sectors 2 and 11 consistently exhibited
two clusters across all time bands. Sector 7 displayed the most variability in the number
of clusters.
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Some clustering results obtained coincided with the two geography-based (“natural”)
groups of turbines, as depicted in Figure 3 (highlighted in bold in Table 2). Clustering results
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that clearly deviated from the “natural” clustering warranted a more thorough investigation,
potentially leveraging information regarding the components of the COMB distance.

3.5. Classical MDS Representation

The MDS representation of clustering results offered a convenient method for quickly
visualizing the COMB dissimilarities between turbines and the discovered clusters. In this
representation, turbines were represented as points, and the COMB dissimilarities between
them were depicted by the Euclidean distances on the map. Turbines that were closer
together indicated more similar wind speed records according to the COMB metric.

In Figure 6, one can observe a solution comprising two clusters, corresponding to
the two geographical groups depicted in Figure 3. This solution was derived from data
of the second largest time band harvested for sector 11 (195–215◦). The quality of that
solution was assessed by an Average Silhouette index equal to 0.69, and the quality of
the MDS representation was indicated by GOF = 0.82. The clustering results for sector
11 remained consistent across all time bands and aligned with the “natural” groups, as
indicated in Table 2.
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However, certain sectors, such as sector 9, yielded inconsistent clustering results across
different time-band lengths. In Figure 7 (top), we illustrate the inconsistency of results
derived from sector 9 data (second and third largest time bands). The solution depicted
on the top panel has three clusters. It was derived from sector 9 and the second largest
time band (of length 78). In that solution, the (“natural”) cluster including wind turbines
WT5, WT6, WT7, and WT8 was subdivided into two clusters due to dissimilarities captured
by the clustering procedure, indicating a distinct behavior in the wind approach to these
groups. The quality of this clustering was measured by an Average Silhouette equal to 0.73
and the quality of the MDS map was measured by a GOF of 0.89. The MDS map presented
on the bottom panel of Figure 7 refers to sector 9 data (third largest time band). For this
MDS representation, the GOF was 0.88, and the quality of the five-cluster solution was
measured by an Average Silhouette index equal to 0.48.

These clustering results suggested that for this wind direction sector (155–175), there
were interactions between turbines and the terrain that were not consistent with the actual
distribution of wind turbines on the wind farm. From the perspective of detecting an
anomalous situation, the third largest time band of sector 9 was the most interesting to
explore. The corresponding time series plots in Figure 8 (left), as well as the boxplot in
Figure 8 (right) exhibit some dissimilarity in wind speed reaching the turbines. However,
these tools did not reveal the clustering found in the MDS analysis (Figure 7, on the bottom).
In fact, particular wind conditions across the wind farm may yield unexpected clustering
results. However, for a better understanding, it is important to identify where the greatest
dissimilarities are and what is causing them.
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Figure 8. Time series plot (on the left) and boxplots (on the right) referring to time bands harvested
in sector 9 (3rd largest time band).

In general, valuable insights can be gained from the clustering solutions by exploring
which specific COMB distance might be contributing the most to the observed differences
between wind turbines. To facilitate this assessment, we resorted to the proposed COMB
distance matrix plot.

3.6. COMB Distance Matrix Plot between the Wind Farm Turbines

The purpose of this tool is to illustrate both the COMB distance and its components
in a single plot. In Figure 9, the COMB distance matrix plot regarding the third largest
time band of sector 9 is presented. We can verify that the pair (WT7, WT8) is very similar.
Despite greater similarities within turbines in the same geographic group (smaller circles
are mainly observed within the geographic groups), WT4 is also very similar to WT7 and
WT8 (see also at the bottom of Figure 7 that these three turbines are very close). The
largest circles are concentrated at the intersection of turbines in group G1 (WT1–WT4) with
turbines in group 2 (WT5–WT8). Given the specific arrangement and turbine labeling of the
wind farm, this manifests as a square pattern of large circles in the distance matrix. Large
gray circle indicates a higher COMB distance, meaning that the turbines in the pair exhibit
a distinct behavior in at least one of the aspects contributing to the COMB distance.
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Also, the pair (WT1, WT5) displays a balanced distribution in the values of the four
distances, evident in the four colored segments within the gray circle. However, this is not
the case for the pair (WT4, WT6), for example, where the observed dissimilarity is primarily
attributed to the Euclidean and Pearson distances.

As mentioned before, WT4 was very similar to WT7 and WT8, which was unexpected
because WT4 belonged to a different geographical group than the other two turbines. In the
matrix plot of Figure 9, the proximity between WT4 and the other two turbines are mostly
due to the periodogram-based distance suggesting that despite belonging to a different
geographical group, the turbine WT4 did not present great differences regarding turbulence
intensity levels with the other two turbines.

Additionally, it can also be observed that the differences between WT4 and the other
turbines were mostly due to the Pearson based distance, suggesting that the wind speed
trends were in fact what set apart WT4. The time bands for the pair (WT4, WT7) are plotted
in the bottom right panel of Figure 10.

To further explore the interpretation of the COMB distances, Figure 10 presents a more
detailed analysis of some turbine pairs of time band 3 from sector 9. In this time band,
the pair (WT7, WT8) presented the higher level of similarity (Figure 9) This similarity also
appeared mirrored in the time series plot (Figure 10, top left). As the wind turbine speed
varied between the turbine pairs, the distances values increased. However, it was not
always easy to identify in the time series plot or boxplot what was causing this dissimilarity.
For example, the pair (WT5, WT6) experienced the same type of wind but at different
magnitudes. This fact is clearly visible in the time series plot as well as in the red segment
in the distance matrix (Figure 10, top right).

There are certain pairs that exhibited dissimilarities caused by a reason other than
wind speed magnitude. The other two examples in Figure 10 (bottom) show a dissimilar-
ity mainly caused by correlation (blue segment, on the right) and by frequency (orange
segment, on the left).

In the previous example, no dissimilarity caused by the autocorrelation structure was
identified. To complete the analysis of the four distances, time band 3 of sector 12 was used
to illustrate the ACF distance (Figure 11).



Math. Comput. Appl. 2024, 29, 35 14 of 16

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 14 of 17 
 

the case for the pair (WT4, WT6), for example, where the observed dissimilarity is primar-
ily attributed to the Euclidean and Pearson distances.  

As mentioned before, WT4 was very similar to WT7 and WT8, which was unexpected 
because WT4 belonged to a different geographical group than the other two turbines. In 
the matrix plot of Figure 9, the proximity between WT4 and the other two turbines are 
mostly due to the periodogram-based distance suggesting that despite belonging to a dif-
ferent geographical group, the turbine WT4 did not present great differences regarding 
turbulence intensity levels with the other two turbines.  

Additionally, it can also be observed that the differences between WT4 and the other 
turbines were mostly due to the Pearson based distance, suggesting that the wind speed 
trends were in fact what set apart WT4. The time bands for the pair (WT4, WT7) are plotted 
in the bottom right panel of Figure 10. 

To further explore the interpretation of the COMB distances, Figure 10 presents a 
more detailed analysis of some turbine pairs of time band 3 from sector 9. In this time 
band, the pair (WT7, WT8) presented the higher level of similarity (Figure 9) This similar-
ity also appeared mirrored in the time series plot (Figure 10, top left). As the wind turbine 
speed varied between the turbine pairs, the distances values increased. However, it was 
not always easy to identify in the time series plot or boxplot what was causing this dis-
similarity. For example, the pair (WT5, WT6) experienced the same type of wind but at 
different magnitudes. This fact is clearly visible in the time series plot as well as in the red 
segment in the distance matrix (Figure 10, top right).  

There are certain pairs that exhibited dissimilarities caused by a reason other than 
wind speed magnitude. The other two examples in Figure 10 (bottom) show a dissimilar-
ity mainly caused by correlation (blue segment, on the right) and by frequency (orange 
segment, on the left).  

 
Figure 10. Time series plots and COMB distances between some pairs of wind turbines: analyses of 
data from sector 9, 3rd largest time band. 

In the previous example, no dissimilarity caused by the autocorrelation structure was 
identified. To complete the analysis of the four distances, time band 3 of sector 12 was 
used to illustrate the ACF distance (Figure 11). 

Figure 10. Time series plots and COMB distances between some pairs of wind turbines: analyses of
data from sector 9, 3rd largest time band.

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 15 of 17 
 

 
Figure 11. Sector 12, time band 3: time series plots and distances (left) and ACF (right). 

Figures 10 and 11 show some selected time bands side to side to allow their visual 
comparison and their alignment with the COMB distance and its components. In Figure 
10, it is evident that time bands for the pair (WT7, WT8) are not different, while the other 
pairs differ mostly in a specific distance, capturing specific differences of the time series 
and highlighting their contribution to the COMB distance. Time bands for the pair (WT1, 
WT2) in Figure 11 differ most significantly in their ACF (autocorrelation-based distance). 

4. Final Remarks and Future Work 
The quantity of data acquired by SCADA systems in wind farms is huge. These data 

contain valuable information for a successful wind farm operation and management. 
However, dealing with a huge quantity of data is usually a challenge that may lead to a 
waste of information due to a lack of data interpretation capabilities.  

To bridge this gap, a methodology was proposed for clustering time bands based on 
the K-medoids algorithm, employing a convex combination of various time series dis-
tances measures known as the COMB distance. This approach incorporated information 
that enabled the assessment of similarities and dissimilarities in pairs of time bands, cap-
turing differences in scale, trend, variability, and autocorrelation. Furthermore, multidi-
mensional scaling (MDS) enhanced the visualization of clustering results, and a matrix 
plot display was introduced as an efficient tool for interpreting the COMB distance results 
for each pair of wind turbines on the wind farm at a glance. 

Indeed, the proposed methodology was introduced and implemented specifically for 
wind datasets, given the significance of this field. However, its capability for interpreting 
time series can be extended to various sources. It is important to highlight that additional 
variables, such as turbulence index or air temperature, could be incorporated into the time 
bands analysis. Depending on the study’s objectives, alternative dimensions could replace 
or complement wind direction in both criteria. 

In this work, clustering based on K-medoids was applied to a two-year wind dataset, 
corresponding to SCADA data from two groups of four wind turbines on a wind farm on 
a complex terrain. The harvested time bands were the input for the clustering. As there 
were two geographically distinct groups of four wind turbines on the wind farm, it was 
expected that the time bands’ clustering would correspond to these two groups. However, 
the number of obtained clusters varied from two to six, and even when two clusters were 
identified, they often were composed of groups of wind turbines that differed from the 
ones related to their geographical arrangement. The analysis of the wind turbines in each 
cluster allowed for the assessment of the wind reaching the farm from specific wind di-
rection sectors, which contributed to the diagnosis of the wind flow on the wind farm and 
its interaction with the terrain. The COMB distance computed for time bands harvested 
for specific wind direction sectors exposed that the wind reaching the farm from a specific 
sector could result in dissimilar wind records at the various turbines. This was related to 
the interactions between turbines and the terrain that were not consistent with the actual 
distribution of wind turbines in the wind farm. In the context of wind data, the clustering 
results may be used to perform anomaly detection via the analysis of dissimilarities be-
tween pairs of time bands related to different wind turbines supporting the decision-mak-
ing process regarding different aspects of the wind farm management over its lifecycle. 

Figure 11. Sector 12, time band 3: time series plots and distances (left) and ACF (right).

Figures 10 and 11 show some selected time bands side to side to allow their visual
comparison and their alignment with the COMB distance and its components. In Figure 10,
it is evident that time bands for the pair (WT7, WT8) are not different, while the other pairs
differ mostly in a specific distance, capturing specific differences of the time series and
highlighting their contribution to the COMB distance. Time bands for the pair (WT1, WT2)
in Figure 11 differ most significantly in their ACF (autocorrelation-based distance).

4. Final Remarks and Future Work

The quantity of data acquired by SCADA systems in wind farms is huge. These
data contain valuable information for a successful wind farm operation and management.
However, dealing with a huge quantity of data is usually a challenge that may lead to a
waste of information due to a lack of data interpretation capabilities.

To bridge this gap, a methodology was proposed for clustering time bands based on
the K-medoids algorithm, employing a convex combination of various time series distances
measures known as the COMB distance. This approach incorporated information that
enabled the assessment of similarities and dissimilarities in pairs of time bands, capturing
differences in scale, trend, variability, and autocorrelation. Furthermore, multidimensional
scaling (MDS) enhanced the visualization of clustering results, and a matrix plot display
was introduced as an efficient tool for interpreting the COMB distance results for each pair
of wind turbines on the wind farm at a glance.
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Indeed, the proposed methodology was introduced and implemented specifically for
wind datasets, given the significance of this field. However, its capability for interpreting
time series can be extended to various sources. It is important to highlight that additional
variables, such as turbulence index or air temperature, could be incorporated into the time
bands analysis. Depending on the study’s objectives, alternative dimensions could replace
or complement wind direction in both criteria.

In this work, clustering based on K-medoids was applied to a two-year wind dataset,
corresponding to SCADA data from two groups of four wind turbines on a wind farm
on a complex terrain. The harvested time bands were the input for the clustering. As
there were two geographically distinct groups of four wind turbines on the wind farm,
it was expected that the time bands’ clustering would correspond to these two groups.
However, the number of obtained clusters varied from two to six, and even when two
clusters were identified, they often were composed of groups of wind turbines that differed
from the ones related to their geographical arrangement. The analysis of the wind turbines
in each cluster allowed for the assessment of the wind reaching the farm from specific
wind direction sectors, which contributed to the diagnosis of the wind flow on the wind
farm and its interaction with the terrain. The COMB distance computed for time bands
harvested for specific wind direction sectors exposed that the wind reaching the farm
from a specific sector could result in dissimilar wind records at the various turbines. This
was related to the interactions between turbines and the terrain that were not consistent
with the actual distribution of wind turbines in the wind farm. In the context of wind
data, the clustering results may be used to perform anomaly detection via the analysis of
dissimilarities between pairs of time bands related to different wind turbines supporting
the decision-making process regarding different aspects of the wind farm management over
its lifecycle. Hence, by interpreting the COMB distance, one may track trends in specific
distances relating them to changes in time series, e.g., a trend on the periodogram-based
distance is related to changes in variability, empowering the analysis of information that is
valuable to the wind farm management, regarding maintenance management, and giving
information on the actual wind flow on the wind farm.

The presented results are promising, suggesting the potential of the application of the
proposed methodology to treat time series from further variables of interest. For future
developments, one anticipates that the study of turbulent intensity time series and its
correlation with results in this study will allow for the assessment of changes in terrain
features and for the correlation of the wind reaching each wind turbine with maintenance
performance indicators.
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