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Abstract: Traditional lidar techniques mainly rely on the backscattering/echo light intensity and
spectrum as information sources. In contrast, polarization lidar (P-lidar) expands the dimensions
of detection by utilizing the physical property of polarization. By incorporating parameters such
as polarization degree, polarization angle, and ellipticity, P-lidar enhances the richness of physical
information obtained from target objects, providing advantages for subsequent information analysis.
Over the past five decades, the application fields of P-lidar have rapidly expanded, starting from its
early use in atmospheric remote sensing to later applications in oceanic remote sensing. This review
first provides a brief introduction to the basic principles of both polarization and P-lidar, along with
typical systems. It then explores the applications of P-lidar in various remote sensing fields, including
atmospheric, oceanic, and terrestrial domains. Additionally, we propose potential research directions
based on current cutting-edge applications, with the aims of providing critical insights to researchers
in the fields of polarization and lidar and inspiring further exciting ideas.

Keywords: polarization; lidar; remote sensing; P-lidar

1. Introduction

Polarization, akin to parameters such as frequency, phase, and amplitude/intensity,
represents a fundamental physical property of light [1–3]. The earliest records of polarized
light can be traced back to 1669, when Bartholin discovered the phenomenon of double-
refraction in a piece of Iceland spar (calcite), which paved the way for human exploration
of polarized optics [2]. Subsequently, in 1678, Huygens proposed the wave theory of
light, providing a satisfactory explanation for the polarization characteristics of light [2].
Therefore, Huygens is recognized as the first scientist in the history of physics to discover
the properties of polarized light.

Polarized light is prevalent in the natural world, primarily resulting from reflection and
scattering processes. This is because reflection and scattering often induce varying optical
efficiencies and/or phase changes for the orthogonal polarization components of the incident
light [3,4]. Consequently, differences in the surface structure and texture of an object can
influence the polarization state of reflected and/or scattered light [5,6]. By measuring the
polarization characteristics of reflected or scattered light, the analysis of surface morphology
information becomes possible, leading to extensive applications of polarized light in remote
sensing [7,8]. For example, in passive remote sensing, the polarization characteristics of solar
spectral lines serve as important carriers for navigation [9,10]; when sunlight interacts with
water vapor, ice crystals, dust, sand, smoke, and other substances, polarized light can be
generated, proving the physical properties of such materials [11,12]. Furthermore, polarized
light plays a significant role in areas including resource exploration, vegetation and soil
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classification, research on the sea surface, and global atmospheric aerosol studies [5,13]. In
active remote sensing, polarized light is indispensable for detecting aerosols’ shape, identifying
cloud phases, and determining particles’ orientation [14–16].

In 1916, Einstein proposed the theory of light’s stimulated emission (LSE) [17], which
guided humanity to recognize such light with a precise single color and wavelength,
which is also named light amplification by stimulated emissions of radiation (laser) [18].
However, it was not until 1960 that the first laser generator was developed, marking the
beginning of laser utilization [19]. Actually, the idea of using a laser in radar systems,
i.e., light detection and ranging (Lidar), was immediately considered after the laser’s
invention [20]. For instance, in 1969, an American team installed a retro-reflector device
similar to a mirror on the lunar surface. Laser beams were directed towards this device
from Earth, enabling accurate measurement of the Earth–Moon distance [21,22]. However,
lasers quickly expanded beyond this application and found widespread utility in various
fields, including surveying, atmospheric remote sensing, and oceanic remote sensing.

Lidar systems consist of three main components: transmitter, receiver, and processing.
The transmitter emits a laser beam into a target scene, initiating an interaction between
the laser and the target object (such as suspended particles in the atmosphere or seawater),
which causes changes in various aspects of the optical signal, including propagation
direction, intensity, frequency, polarization, and phase [23]. By detecting these changes and
combining transmission models, information related to the target’s physical properties,
such as its position, velocity, and composition, can be inferred [24,25]. Figure 1 presents
the basic elements of lidar: the laser sources, ranging principles, beam modulations, and
detectors. It should be noted that all the used abbreviations and the related full definitions
are listed in Appendix A.

Figure 1. Basic components of lidar.

Lidar is a remote sensing technology similar to radar, which uses laser pulses as
the radiation source instead of continuous electromagnetic waves. Commonly used laser
sources include vertical-cavity surface-emitting lasers (VCSELs) [26], edge-emitting lasers
(EELs) [27], fiber lasers, and light-emitting diodes (LEDs) [28]. It is worth noting that
both pulsed and continuous-wave lasers are employed in lidar systems, where the pulsed
systems measure the round-trip time of a short light pulse from the laser to the target
and back to the receiver, i.e., the ranging principle is named time of flight (TOF) [29]; the
continuous wave systems range by measuring the phase difference between the transmitted
and received signals, for example the frequency-modulated continuous wave (FMCW) [30].
In lidar systems, three different wavelength regions are used: near-infrared (NIR) excitation
at 1064 nm using diode-flashlamp-pumped solid-state or thulium-doped fiber lasers, visible
light (VIS) excitation at 532 nm generated through frequency doubling of the 1064 nm laser
or ultraviolet (UV) at 355 nm though frequency tripling, and short-wave infrared (SWIR)
excitation at 1550 nm using erbium-doped fiber lasers. The advantages and disadvantages
of these choices depend on the target reflectance and absorption, background radiation,
atmospheric transmission, and eye safety considerations. According to the different ways
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the laser beam is emitted towards the targets, lidar can be roughly divided into flash
lidar and scanning lidar. Flash lidar systems observe the complete field of view (FOV)
simultaneously and often employ a charge-coupled device (CCD) or complementary metal–
oxide semiconductor (CMOS) sensors as detection devices [31]. Conversely, scanning lidar
systems focus on a subset of the FOV before moving on to the next subset, covering the
entire FOV sequentially. Scanning lidar systems have the ability to detect objects at greater
area compared to flash lidar systems since the laser beam is concentrated on a subset of the
FOV at a time [32]. However, the laser beam of the scanner necessitates redirection from
one subset to another to cover the entire FOV. Current systems typically use mechanical-
beam-steering principles, achieved either by rotating the entire sensor head (rotational
lidar) or using internal micro-electromechanical systems (MEMS) within the sensor for
beam steering. In this case, the detector may be a single-point detector, such as the PIN
photodiode (PD) [33], silicon photo-multiplier (SiPM) [34], avalanche photodiode (APD),
or single-photon APD (SPAD) [35]. More information about lidar’s basic components can
be found in previous reviews [32,36–38].

Initially, lidar only detected intensity (or power) changes of backscattering or echo
light signals; later, wavelength and/or frequency modulation was added; then, polariza-
tion modulation was introduced, forming polarization lidar, i.e., P-lidar. Researchers [39]
from New York University initially borrowed the P-lidar technique from the microwave
radar methods, which were developed in about the 1950s (before the laser was invented).
They found that laser depolarization is considerably stronger compared to microwave
depolarization from non-spherical particles, suggesting that P-lidar is more promising for
studying aerosols, particles in clouds, and precipitation (i.e., hydrometeors). Polarization
has become a crucial aspect in contemporary radar systems, with most systems incorpo-
rating polarization components to enable either the partial or complete functionality of
P-lidar. A concise chronological chart of P-lidar (including spaceborne P-lidar launched by
different countries and various P-lidar technologies) is presented in Figure 2.

Figure 2. History of P-lidar. 1C: single-channel; 2C: dual-channel; 4C: four-channel; SP: single-photon;
other abbreviations can be found in the main text. The corresponding references for the second line
are [17,21,22,40–55].

In terms of applications, according to the Mie scattering theory [56], when polarized
light is incident on spherical particles (such as water droplets), the backscattered light is in
the same polarization state as the emitted light. However, when polarized light is incident
on non-spherical particles (such as ice crystals), a portion of the backscattered light becomes
depolarized, resulting in partially polarized light. By analyzing the changes in the echo
signal’s polarization state, P-lidar can distinguish between spherical and non-spherical
particles in the atmosphere [15]. As a result, P-lidar was initially widely used for identifying
liquid water clouds and ice clouds in the atmosphere. Furthermore, P-lidars have proven
to be valuable for the remote sensing of the Earth’s surface parameters, i.e., the surface
texture and dielectric properties, which influence the multi-scattering processes and result
in depolarization [41,57]. For example, P-lidars have the potential to provide information
on soil, sand, and volcanic ash properties such as particle size and moisture content [58–60];
snow and ice characteristics such as age and types [61,62]; as well as plants and ground
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cover such as types and classification [41]. In oceanic remote sensing, polarimetry has been
a well-known tool in ocean optics. For example, with the elastic Mie backscattering, seawa-
ter’s optical properties can be estimated by retrieving the lidar attenuation coefficient over
the laser penetrating depth [63]; with the depolarization effect of non-spherical particles, P-
lidar can recognize ocean communities using the linear depolarization ratio [64,65]. Recent
advancements have unveiled several promising applications in diverse fields, including
the detection of oceanic scattering layers, fish schools, phytoplankton, seawater optical
properties, and internal waves [66–70]. Figure 3 presents the triad of applications for P-lidar:
(1) atmosphere remote sensing, which involves detecting clouds, precipitation, aerosol,
and wind velocity; (2) oceanic remote sensing, such as phytoplankton layers’ detection,
turbulence measurement, and fish school detection; (3) the remote sensing of the Earth’s
surface, such as detecting and classifying vegetation, smoke, and urban objectives. From
the figure, it is evident that P-lidar (as well as other lidar types) can be categorized into four
groups: near-ground (terrestrial [71], ground-based [72], mobile [73], and UAV-based [74]),
airborne [75], shipborne [76], and spaceborne/satellite-based lidar [77].

Figure 3. Triad of applications of P-lidar.

The rest of this review is organized as follows: Section 2 introduces the principles of
polarization and lidar configurations. Section 3 surveys the representative applications of
P-lidar in three fields, i.e., atmosphere, ocean, and the Earth’s surface. Finally, conclusions,
a critical summary, and an outlook toward future research are presented in Section 4.

2. Principles of Polarization and P-Lidar
2.1. Polarized Light and Its Description

Currently, there are three main mathematical representations for polarized optics:
Jones vector, Stokes vector, and Mueller matrix [1,2]; the first two are used to describe the
polarization state of light, while the last one describes the polarization characterizes of
materials or targets [78,79]. According to Maxwell’s electromagnetic theory, light propa-
gates in space as a transverse wave, where the direction of the optical vector vibration is
perpendicular to the direction of light propagation. Based on the theory of polarization,
polarized light can be decomposed into two mutually orthogonal vectors, Ex and Ey [2].
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The Jones vector (i.e., J) describes both the amplitude and phase of the two orthogonal
components, usually horizontal Ex and vertical Ey, of the electric field, as:

J =
[

Ex
Ey

]
=

[
E0xejδx

E0yejδy

]
, (1)

where (E0x, E0y) and (δx, δy) denote the corresponding amplitudes and phases. If we use Ji
and Jo, respectively, to represent the Jones vectors of the incident light and the out-going
light after reflecting or scattering from a target, we can use a 2× 2 matrix J (named the
Jones matrix) to describe how the target changes the polarization of incident light, as:

Jo = J Ji. (2)

It is necessary to point out that the Jones matrix J has four elements, all of which are
complex numbers, which means it has a maximum of eight degrees of freedom [6].

Stokes first proposed a method in 1852 to represent arbitrary polarized light using
four intensities, but he did not apply this method to the process of light scattering [80]. It
was not until 1947 that Chandrasekhar utilized the Stokes vector to calculate the intensity
vector of scattered light and represent the effects of polarization in the scattering process [2].
The Stokes vector, i.e., S = [s0, s1, s2, s3]

T , can be obtained from only power or intensity
measurements and is sufficient to characterize the magnitude and relative phase, i.e., the
polarization of a monochromatic electromagnetic wave [2]. The Stokes vector can also be
written as a function of the polarization ellipse parameters: orientation angle φ, ellipticity
angle χ, and ellipse magnitude A, as:

S =


E2

0x + E2
0y

E2
0x − E2

0y
2E0xE0y cos δ

2E0xE0y sin δ

 =


A2

A2 cos(2φ) cos(2χ)
A2 sin(2φ) cos(2χ)

A2 sin(2χ)

 (3)

where δ = δx − δy. From S, one can obtain other polarization parameters. Three of them
are the DoP (i.e., P), the degree of linear polarization (i.e., DoLP), and the degree of circle
polarization (i.e., DoCP):

P =

√
s2

1 + s2
2 + s2

3

s0
, DoLP =

√
s2

1 + s2
2

s0
, DoCP =

s3

s0
. (4)

Obviously, P ∈ [0, 1], and the light is non-polarized when P = 0; completely polarized
when P = 1; and partially polarized when P ∈ (0, 1) [81]. It should be noted that one
also defines the DoLP by the following Equation (5) when there only two orthogonal
polarization components (i.e., I‖ and I⊥) [81,82]. Another important parameter in the field
of P-lidar is the depolarization ratio (i.e., R), which is also determined by I‖ and I⊥ [83,84].

DoLP =
s1

s0
=

I‖ − I⊥
I‖ + I⊥

, R =
I⊥
I‖

. (5)

Similar to the Jones vector and Jones matrix, the polarization characteristics of targeted
objects can also be represented by corresponding matrices, connecting the incident and
out-going light with Stokes vectors. The polarization states of the incident and out-going
light are described by Si and So, respectively [79]. Then, the polarization characteristics of
the object can be represented by a 4× 4 Mueller matrix M, as:

So = MSi. (6)
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Due to the fact that the elements of the Stokes vector are real numbers and have
dimensions of intensity, the elements of the Mueller matrix M are also real numbers and
dimensionless. This is in contrast to the Jones vector and Jones matrix, which exhibit
significant differences as they involve complex numbers and consider both amplitude and
phase information [1]. The Mueller matrix solely represents the polarization characteristics
of an optical element in terms of intensity transformations, without incorporating phase in-
formation [1]. The Jones matrix and the corresponding Mueller matrix can be connected by:

M = C
(

J
⊗

J∗
)
C−1. (7)

where
⊗

denotes the Kronecker product, ∗ represents the conjugation, and C is

C =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 (8)

Just as we claimed, both the Jones matrix and Mueller matrix are related to the ability of
target objects to change the polarization state of incident light. In fact, when light interacts
with targets, the polarization state can undergo the following changes: (1) alteration of the
amplitude/intensity difference of the orthogonal polarization components; (2) modification
of the phase difference between the two orthogonal polarization components; (3) changes
in the direction of the two orthogonal optical fields. To characterize such changes, one can
decompose, for example, the Mueller matrix into three different sub-matrices according to
the Lu–Chipman decomposition method [85–87], as:

M = Mdep ·Mret ·Mdia. (9)

where the three sub-matrices represent the matrix related to depolarization, retardance, and
diattenuation. The measurement of the Mueller matrix requires the establishment of at least
16 sets of intensity equations corresponding to different polarization states. This is because
the Mueller matrix consists of 16 elements [1,88]. A typical Mueller measurement system
includes two core modules: the polarization state generator (PSG) and the polarization
state analyzer (PSA) [89,90]. The PSG and PSA are modulated four times each, resulting in
a total of 16 intensity recordings, as:

I = WPSA ·M ·WPSG. (10)

where WPSG and WPSA denote measurement matrices corresponding to the PSG and PSA,
respectively. Then, by solving these equations, the Mueller matrix can be calculated, i.e.,

M = W−1
PSA · I ·W

−1
PSG. (11)

More information about Mueller polarimeters can be found in previous publications [79,90].

2.2. Principle of P-Lidar

The lidar system is primarily divided into two parts: the signal-transmission system
and the signal-receiving system [91–93]. At the transmission end of the lidar system, a
pulse laser beam is emitted, interacting with the target object (such as particles in the air)
through processes such as absorption, reflection, and scattering. The receiving system
utilizes an optical telescope to receive the echo signals, which are then subjected to spectral
analysis and opto-electronic conversion. Finally, through mathematical calculations and
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inversion, various parameters of the target object with different meanings can be obtained.
The lidar equation at a height/distance z is given by [94]:

P(z) = P0Y(z)
ctp

2
Ar
z2 β(z) exp

[
−2

∫ z

0
α(z)dz

]
(12)

where P(z) denotes the received power at height z; P0 the peak power of the laser pulse;
Y(z) the geometric overlap factor; c the speed of light; tp the pulse width; Ar the receiving
telescope area; β(z) the backscatter coefficient; and α(z) the extinction coefficient [95,96].

P-lidar emits a polarized modulated (or unmodulated) beam at the laser-transmission
end. Then, the beam interacts with the target object and is recorded at the receiving
end through different polarization modulation techniques, such as a polarization beam
splitter (PBS) [15,97]. The power of the echo signal corresponding to a special polarization
component, for example at the polarization direction of θ, can be obtained by:

Pθ(z) =
kθ P0

z2 βθ(z) exp
[
−2

∫ z

0
αθ(z)dz

]
(13)

where kθ denotes the system parameter at the state of polarization direction θ, and can be
considered as a constant. Based on the Mueller decomposition, Hayman et al. defined the
Stokes vector lidar equation (SVLE) by linking the transmitted/received polarization states
and the polarization properties of the target [47,48]. The equation is given by:

N(z) = oTMR

[(
G(z)

A
R2 ∆z

)
T(kb, z)F(ki, kb, z)T(ko, z)MTSL + SB

]
(14)

where N(z) is the photon count vector for each polarization channel as a function of range
z; o is the observation vector describing each polarization observation channel, each row of
which is the polarization eigenvector related to each channel; and MT and MR are Mueller
matrices related to the transmitter and receiver systems. G is the physical overlap function
of the transmitter and receiver; A is the telescope area; R is the range resolution of the
counting system; T(ko, z) and T(kb, z) are the out-going and back-going transmission
Mueller matrices (wave direction vectors of ki and kb); F is the phase matrix, which is a
function of both transmitted and received wave vectors and range; SL denotes the Stokes
vector of laser; Sn denotes the Stokes vector of background noises.

Inspired by the formalism in Equation (10), we can simplify Equation (14) by using
two generated measurement vectors (O, B), as:

N(z) = BTF(ko, kb, z)O (15)

where (O, B), which are very similar to the measurement vectors related to the PSG and
PSA part in a Mueller polarimeter, are determined by all the Mueller matrices on the way
of out (O)- and back-going (B):

O = oTMRT(kb, z), B = T(ko, z)MTSL. (16)

Based on the SVLE model, the basic principle of P-lidar is shown in Figure 4. All
mathematical notations relevant to the model are, respectively, labeled at the transmitter
and receiver locations to facilitate the readers’ clear understanding of the model. Besides, in
the configuration, the polarization modulation is optional, which depends on whether one
needs a circular or linearly polarized beam in the P-lidar. The pulsed lasers generally used
in lidar naturally produce linearly polarized light as the crystalline nature of the lasing
media (e.g., a doped glass rod) and the method used in giant-pulsing, which typically relies
on a polarization rotation device (e.g., a Pockels cell) to stop the cavity from lasing until the
most-propitious instant. Sometimes, one may also use a cleaning polarizing sheet filter to
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ensure the output beam’s polarization state [98]. Thus, basic P-lidar applications involve
the transmission of a linearly polarized laser pulse [16].

Figure 4. Principle of P-lidar.

According to the number of polarization modulation channels, which also is the num-
ber of detectors in the receiver, as shown in Figure 4, common P-lidars include dual-channel
(2C), single-channel (1C), three-channel (3C), and four-channel (4C) configurations. Besides,
if one wants to measure all elements in phase matrix F, we need to obtain 16 measurements;
in this case, we call it full P-lidar, and the receiver must have at least four channels, while
the transmitter’s polarization modulation must include circularly polarized elements.

In the following, we will introduce the four types of P-lidar. However, it is important
to note that the initial design of these four types was for single-point detection and cannot
achieve two-dimensional or three-dimensional imaging. By adding a scanning module or
an array imaging module to the system, lidar imaging can be achieved. Therefore, in the
following, we also included an introduction to relevant imaging P-lidar systems.

2.2.1. Dual-Channel P-Lidar

The dual-channel configuration is the most-commonly used type of P-lidar. It can si-
multaneously measure the vertical polarization signal (i.e., Ps) and the parallel polarization
(i.e., Pp) signal of the echo signal, providing real-time information about the depolarization
ratio of the scattering medium [15,16,99]. Guasta et al. [44] from Italy were the first to
propose the dual-channel P-lidar system, as shown in Figure 5.

The Cloud-Aerosol lidar with Orthogonal Polarization (CALIOP), which is carried
by the CALIPSO satellite launched by NASA [99,100], is a typical dual-channel P-lidar.
CALIOP has been in orbit and operating stably, providing abundant data for global atmo-
spheric observations [101].

Although dual-channel P-lidar can provide real-time measurement of the vertical and
parallel channel components of the echo signal and obtain depolarization ratio information,
it is prone to misjudgment due to the influence of gain coefficients and system errors from
various sources. As a result, there are many challenges in system calibration [102,103], and
we will discuss the calibration process in the following Section 2.2.6.

2.2.2. Single-Channel P-Lidar

The main idea of single-channel P-lidar is to use the same detector to receive both
the parallel polarization component and the vertical polarization component of the echo
signal, thereby avoiding the need for gain ratio calibration. Figure 6 presents an example
configuration of single-channel P-lidar.
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Figure 5. Examples of dual-channel P-lidar. PMT: photomultiplier, a detector.

Figure 6. Examples of single-channel P-lidar.

In 1977, Plat et al. first proposed a single-channel P-lidar system, in which the trans-
mitted laser polarization state remains unchanged, while the polarization direction of the
analyzer in the receiving optical path rotates around the central optical axis by 90◦ with a ro-
tation frequency consistent with the transmitted laser’s pulse repetition frequency [40,104].
As a result, the parallel polarization component and the vertical polarization component in
the echo signal are sequentially received by the same detector, resolving the issue of system
errors caused by gain coefficient influence.

However, the single-channel solution also has inherent issues. For dual-channel
P-lidar, the parallel and vertical polarization components of the echo signal at any altitude
are always synchronously received by two detectors, resulting in a depolarization ratio
profile for each laser pulse. However, in the single-channel one, the detector can only
receive the parallel polarization component of each laser pulse’s echo signal. It requires
the combination of the echo signals from two consecutive laser pulses (with a time delay)
to obtain a depolarization ratio profile, making the detection results highly susceptible to
environment changes [105].

To address the real-time issue of single-channel solutions, Xia et al. in 2017 devel-
oped a new single-channel P-lidar based on a single-photon detector [50]. They utilized a
polarization-maintaining fiber to receive the reflection signal from the PBS, reducing the
time difference (40.6 µs) for the signal to reach the detectors in the reflection and transmis-
sion channels. This allowed them to obtain real-time depolarization ratio profiles using a



Photonics 2023, 10, 1118 10 of 35

single detector. However, this single-mode polarization-maintaining fiber is relatively long
(8 km) and introduces an additional energy loss of approximately 30%.

2.2.3. Three/Four-Channel P-Lidar

The two types of P-lidar mentioned above are based on the parallel and vertical
components of the echo signal. However, when the reflection or scattering from the
target objects becomes more complex, errors can occur in depolarization analysis based on
orthogonal polarization states. This can also be seen from the definition of the DoP, as shown
in Equations (4) and (5), which state that the depolarization ratio (i.e., R) calculated based
on orthogonal polarization components is just a simplified version of DoLP. Taking this
into consideration and to further study the influence of multiple scattering on polarization
changes, Pal et al. proposed a three-channel P-lidar [106]. At the receiving end, three
telescopes are used to receive the signals, and polarization plates are used to modulate
each beam channel with polarization directions of ‖, ⊥, and 45◦, respectively, to obtain the
first three parameters of the Stokes vector, i.e., s0, s1, and s2, by

s0(z) = P‖(z) + P⊥(z)
s1(z) = P‖(z)− P⊥(z)
s2(z) = 2P45(z)− s0(z)

, (17)

Furthermore, based on Equation (3), angle φ and ellipticity angle χ can also be calcu-
lated, which provides more comprehensive information about the polarization characteris-
tics of the measured object.

Three-channel P-lidar has primarily employed only a portion of the polarization infor-
mation available by utilizing linear depolarization as the main observable. To extract more
polarization information, the full Stokes vector has been studied, i.e., four independent
measurements for s0, s1, s2, and s3. Houston et al. [107] designed a four-channel P-lidar,
where the first receiver channel was used with its polarizer aligned parallel to the direction
of linear polarization of the transmitted signal and the second with its polarizer aligned
perpendicular to that of the transmitted signal. The third channel was set with its polarizer
at an angle of 45◦ to this direction. In the fourth channel, the QWP reference axis was
aligned with the transmitted polarization direction and the polarizer transmission axis
at 45◦. The recording four powers/intensities are denoted as P‖(z), P⊥(z), P45(z), and
Pcircle(z), and the four Stokes parameters can be solved by:

s0(z) = P‖(z) + P⊥(z)
s1(z) = P‖(z)− P⊥(z)
s2(z) = 2P45(z)− s0(z)
s3(z) = 2Pcircle(z)− s0(z)

, (18)

However, Houston et al. stated that the two-channel configuration for measuring
R seems to be more efficient when compared to the four-channel configuration. This is
because there is no significant additional information gained, but it does require additional
instrumentation and data handling for the full four-channel measurements, at least for the
examples presented in this work [107]. Of course, they also mentioned that further studies
using a four-channel configuration are necessary to address certain issues and provide
answers to specific questions.

In fact, the studies for three- and four-channel P-lidar have never stopped. The Clouds
Aerosol Polarization and Backscatter Lidar (CAPABL) has been updated to include four on-
orthogonal receiver polarization channels. These polarizations are all linear, i.e., 0◦, 90◦, 30◦,
and 110◦. It should be noted that this design does not aim to measure the full Stokes vector,
but to provide more inversion methods, granting flexibility to optimize the polarization
measurements [51].
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2.2.4. Full P-Lidar

As we mentioned in the above section, to measure the polarization characteristics,
denoted as F, of a target object (such as scattered particles in the atmosphere), at least
16 detection signals are required. Additionally, the out-going light needs four linearly
independent polarization states. The telescope’s receiving system needs to simultaneously
measure S (which means at least four channels are necessary). In this configuration, both
the transmitting end and the receiving end require a rotatable retarder. By continuously
changing the polarization state of the transmitted laser and altering the polarization state
of the received light path, multiple equations can be established to solve F.

In 2004, Kaul et al. first proposed the use of a full-polarization lidar to detect and
compute the atmospheric backscattering Mueller matrix [43]. In 2012, the Atmospheric
Research Center in the United States retrofitted an existing high-spectral-resolution lidar, as
shown in Figure 7 [48]. A QWP was rotated at the receiving end to generate circularly polar-
ized light, obtaining the full Stokes vector and providing a comprehensive characterization
of raindrop evaporation, condensation, and liquid water content.

Figure 7. Examples of full P-lidar.

2.2.5. Scanning and Imaging P-Lidar Systems

The P-lidar systems introduced above do not incorporate scanning or mechanical
motion devices, so they can only acquire point- or line-polarization information; we also
call them non-scanning lidar or flash lidar [37]. In contrast, scanning P-lidar systems steer
the laser beam and are more popular and mature as the captured data can reveal more
diverse and complex polarization information of the target under test, such as information
related to its direction or shape [108,109]. The simplest way to achieve this is to fix the
transmitter or receiver ends of the above-mentioned system on a platform capable of
mechanical motion or scanning [52,110]. Alternatively, scanning of the emitted beam can be
achieved by adding a scanning mirror (or MEMS) at the transmitter end (for 2D scanning
with a one-dimensional mirror or using a two-dimensional mirror for 3D scanning [111]).
Generally, there are two classes of laser beam scanning: non-mechanical scanning and
mechanical scanning. The former is also called solid-state beam scanning because it has
no moving parts. We present these lidar types, i.e., non-scanning, optical-phased-array-
scanner-based, motorized-spinning-scanner-based, and MEMS-/mirror-scanner-based, in
Figure 8 to aid the readers’ understanding, and more details can be found in [37,112].
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Figure 8. Different types of lidar. (a) Non-scanning; (b) optical phased array scanner; (c) motorized
spinning scanner; (d) microelectromechanical systems (MEMS)/mirror laser scanner.

LOSA-M3, developed at the V. E. Zuev Institute of Atmospheric Optics, the Siberian
Branch of the Russian Academy of Sciences, is a scanning P-lidar [52]. As depicted in
Figure 9, it is equipped with an automatic scanning device that allows for changing the
sensing direction in the upper hemisphere at speeds of up to 1.5◦ s−1 with an angle
measurement accuracy setting of at least 1 arcmin. Bissonnette et al. chose to perform the
scanning by rotating a mirror mounted at 45◦ to the laser axis, with a speed of 3.5◦ s−1,
and its rotation axis is the same as the transceiver axis. However, it should be noted that,
for an accurate assessment of measurement errors, it is necessary to measure the refractive
index of the applied mirror coating with good accuracy [113]. To some extent, the process
of acquiring data using scanning P-lidar is imaging. One can also use imaging sensors
(traditional imaging CCD, electron multiplying CCD, or polarization camera), instead of
PMT in non-scanning P-lidar, to achieve polarization-sensitive imaging lidar [54,55,114].

Figure 9. Photographs of the scanning polarizing lidar LOSA-M3 on a rotary column in the laboratory
room (a) and on the roof of the institute’s building (b) [52].

2.2.6. Calibration for P-Lidar Systems

In fact, achieving high-precision depolarization ratio measurements is crucial for
subsequent applications and has been a focal point of P-lidar [115]. The main error sources
for the depolarization ratio include the calibration error of the gain ratio, the error caused
by impurities in the transmitted laser’s polarization state, the alignment error between the
laser polarization vector and the incident plane of the PBS, and the polarization crosstalk
caused by the inability of the PBS to achieve 100% reflection and transmission [103,116,117].
Among these errors, the calibration error of the gain ratio (the first one) plays a decisive role
in determining the final measurement accuracy; as a result, various methods for calibrating
the gain ratio are continuously being proposed.

The most-common calibration methods are the +45◦ method, the ∆90◦ method, the
∆45◦ method, the rotation-fitting method, and the pseudo-depolarizer method. For ex-
ample, CALIOP used the pseudo-depolarizer method to calibrate the gain ratio of the
system [118], while the Multichannel Lidar System (MULIS) and Portable Lidar System
(POLIS) used the ∆90◦ method [119]. Liu et al. from Zhejiang University systematically
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compared the accuracy and pros and cons of the four methods under different alignment
angle conditions for gain ratio calibration [120]. Through theoretical and experimental
comparisons, they provided the best choice for gain ratio calibration methods. The +45◦

method’s advantage lies in its simple operation, but its drawback is that it neglects the ef-
fects of alignment angle errors and polarization crosstalk, which may introduce errors [121].
The ∆90◦ method is relatively easy to operate and provides higher accuracy, but it cannot
eliminate alignment angle errors [98,122]. The ∆45◦ method improves calibration speed
while ensuring calibration accuracy, but its drawback is that it cannot exclude the influence
of atmospheric state changes [116]. The rotation fitting method’s advantage is that it can
simultaneously invert three unknowns, namely the gain ratio, depolarization ratio, and
initial alignment angle, without requiring prior knowledge. However, its drawbacks are
that calibration takes a longer time, the operation is cumbersome, and it is only suitable for
relatively stable atmospheric environments [103]. The depolarizer method is advantageous
for its simplicity and real-time calibration, which eliminates the influence of atmospheric
environment changes. However, the commercial depolarizer may still have difficulties
generating completely depolarized light, introducing other errors [117,118].

3. Applications
3.1. Atmospheric Remote Sensing

Lidar and polarimeter technologies complement each other effectively. Lidar excels
at detailing aerosol profiles and types, while polarimeters offer constraints on overall
aerosol abundance, absorption, and microphysical properties [13,101]. Combining these
methods enhances aerosol property observations; this is also why P-lidar has been widely
employed in atmospheric remote sensing to study the optical properties of the atmosphere
and the characteristics of particles such as aerosols, clouds, and water vapor. Specifically,
P-lidar can measure the polarization scattering characteristics of aerosol particles, providing
information about aerosol concentration, size distribution, shape, etc. This is crucial for
understanding aerosol sources, transport, and interaction mechanisms in the atmosphere.
By measuring polarization scattering properties using P-lidar, information such as aerosol
types, cloud optical thickness, particle size, and shape distribution can be obtained.

This is significant for studying cloud formation and evolution and their impact on
climate and weather. P-lidar can measure atmospheric transparency parameters such as
atmospheric optical thickness and aerosol optical depth. This is important for monitoring
atmospheric pollution and studying atmospheric composition [14,49].

In 1963, the Massachusetts Institute of Technology (MIT) established the first lidar
based on ruby lasers, which was used to detect high-altitude aerosols in the troposphere and
middle atmosphere [123]. This marked the beginning of the development and application
of lidar for aerosol detection. Around the same time, mature polarization optical techniques
were applied to lidar systems. In the 1960s, New York University began using polarization
lidar, i.e., P-lidar, systems to observe atmospheric ice crystals and water droplets [39]. As
shown in Figure 10, ice crystal detection hinges on measuring the volume depolarization ra-
tio. While backscattering from spherical objects (such as liquid drops) at exactly 180◦ yields
no depolarization, non-spherical crystal backscattering introduces notable depolarization
through multiple internal reflections. Thus, the volume depolarization ratio effectively
distinguishes between cloud layers with water drops and those where backscattering by ice
crystals prevails [124]. In 1971, Schotland et al. conducted research on the depolarization
ratio of water vapor condensates [39]. Understanding and quantifying the various forms
of ice crystals in the atmosphere and precipitation are crucial for comprehending micro-
physical and radiative processes in different scenarios and improving regional and global
climate models. In 2017, Sergey et al. used measurements from the U.S. Department of
Energy’s Atmospheric Radiation Measurement (ARM) program’s cloud P-lidar to retrieve
the nonsphericity of ice particles. The observed ice particles included irregularly shaped
crystals and aggregates, with aspect ratios spanning from around 0.3 to 0.8 [125].
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Using polarization information for particle shape measurement and properties’ analy-
sis is a well-established technique. In 2015, Wu et al. developed the Water Vapor, Cloud,
and Aerosol Lidar (WACAL) for comprehensive atmospheric measurements, including
the water vapor mixing ratio, depolarization ratio, backscatter and extinction coefficients,
and cloud information [126]. The WACAL system, featuring Raman, polarization, and
infrared channels, was installed at Qingdao Ocean University, enabling the assessment
of aerosol and cloud optical properties and water vapor mixing ratios. In 2019, Tan et al.
introduced a novel method to infer the phase state of submicron particles using linear
depolarization ratios obtained from P-lidar [127]. This innovative approach demonstrated
the feasibility of inferring aerosol phase distributions and established a parameterization
scheme for deducing aerosol phase states from backscatter depolarization ratios, marking a
significant advancement in real-time aerosol phase state profiling. In 2020, Jimenez et al.
first introduced a novel cloud-retrieval technique using lidar observations of the volume
linear depolarization ratio at two different receiver field of views (FOVs) to retrieve the
micro-physical properties of liquid cloud layers [128] and then applied it to cloud measure-
ments in pristine marine conditions at Punta Arenas in southern Chile [129]. Following
Jimenez’s work, in 2023, Zhang et al. introduced a dual-FOV high-spectral-resolution Lidar
(HSRL) for simultaneous analysis of aerosol and water cloud properties, particularly the
microphysical properties of liquid water clouds. This instrument allowed for continuous
monitoring of aerosols and clouds and underwent validation through synchronous obser-
vations, including Monte Carlo simulations and other methods, to investigate the interplay
between aerosol levels and the microphysical properties of liquid water clouds [130].

Figure 10. Demonstration of P-lidar for distinguishing liquid cloud droplets and ice crystals [124].

Another important application, aside from distinguishing various aerosols’ shapes, is
the identification of different types/altitudes of clouds. In 1977, Pal and Carswell utilized
ruby lasers at 347 nm and 694 nm wavelengths as fundamental and second harmonic laser
sources, respectively, to measure the depolarization ratio of falling snow, ice crystals, cu-
mulonimbus clouds, and low-level rain clouds [61,131]. Their findings indicated a positive
correlation between the depolarization ratio and cloud height, with clouds exhibiting a
higher depolarization effect on 347 nm laser light compared to 694 nm laser light. In 1991,
Sassen conducted research on the polarization characteristics of various cloud types using a
P-lidar. He observed depolarization ratios of less than 0.15 for liquid water clouds, around
0.50 for cirrus clouds, and values between these two for mixed clouds [15,132]. P-lidars
can be also applied to separate the dust and non-dust (e.g., the smoke) parts [133–135].
For example, Sugimoto et al. used the depolarization ratio and the volume backscatter
coefficient (both at 532 nm and 1064 nm) to retrieve the dust and non-dust and the spectral
dependence of the backscatter-related Ângström exponent [136,137]. By combining the
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multi-wavelength Raman lidar and P-lidar, Tesche et al. separated the optical properties of
desert dust and biomass burning particles by using the depolarization ratio [138].

The advantages of P-lidar in detecting optical and microphysical properties of aerosol
particles can also be extended to aerosol classification as different aerosols exhibit varying
responses to different optical wavelengths. Among these different choices of optical
wavelength, the 355 nm and 532 nm wavelengths are the most-widely used combinations.
In 2014, Huang et al. developed a dual-polarization lidar system that simultaneously
measured polarization at 355 nm and 532 nm wavelengths. During observations of dust
and haze events in northern China, it was found that dust-dominated aerosols exhibited
a higher depolarization ratio at 532 nm compared to 355 nm, whereas air pollutants
showed relatively low depolarization ratios. This suggests that such multi-wavelength
systems have the potential to enhance aerosol classification accuracy [49]. In 2021, Qi et
al. developed a ground-based dual-polarization lidar system capable of simultaneously
measuring polarization at 355 nm and 532 nm wavelengths to identify aerosol and cloud
types [53]. Their findings revealed significant differences in volume depolarization ratios
between typical aerosols and cloud layers at the two wavelengths. In addition to the above
two wavelengths, the depolarization ratio measurement at 1064 nm is also useful. More
details about its applications can be found in previous references [139–141]

In 2021, Kong et al. introduced a P-lidar system designed for precise all-weather
retrieval of atmospheric depolarization ratios. This system simultaneously captured four-
directional P-lidar signals, offering numerous possibilities for real-time field measurements
of dust, clouds, and urban aerosols, directional particles (another typical work is [142]).
Furthermore, the team employed laser diodes and a polarization camera to create a visible
and near-infrared dual-polarization lidar technology for unattended atmospheric aerosol
field measurements in all-weather conditions. Using one month of continuous atmospheric
observation data, they analyzed and assessed the spectral features, including the aerosol
extinction coefficient and the linear particle depolarization ratio (LPDR). Through this
analysis, different types of aerosols were able to be classified [55].

There are three primary methods for detecting atmospheric aerosols: ground-based
observations, airborne, and satellite remote sensing. Among these, using a lidar on moving
platforms such as aircraft or satellites is the most-effective way to gather regional-scale
aerosol data. In 2006, CALIPSO, a spaceborne P-lidar, successfully launched, equipped
with a dual-wavelength (532/1064 nm) laser and a three-channel (532 nm P/S channels
and 1064 nm) receiver. CALIPSO identifies clouds, measures particle content, and creates
atmospheric profiles for research purposes. It is employed to detect the vertical distribution
of aerosols and clouds, ascertain the cloud particle phase (via the signal ratio at 532 nm
in parallel and perpendicular polarization channels), and classify aerosol sizes using the
wavelength-dependent backscatter-related Ângström exponent [45,143].

Recently, MIT has been designing a satellite-based P-lidar system to categorize aerosols,
as shown in Figure 11a. The system comprises two satellites: the primary satellite emits po-
larized laser pulses, while the second satellite is equipped with a lidar receiver that captures
images of scattered polarization [144]. The proposed architecture enhances a satellite-based
lidar system by introducing a second lidar receiver satellite, flying in formation with the
transmitting satellite, to capture obliquely scattered light. The primary satellite emits polar-
ized laser pulses, and the secondary satellite generates polarization-analyzed lidar images
of the illuminated atmospheric column. Due to its oblique perspective, the secondary
satellite observes changes in polarization that are not accessible to the primary satellite.
These polarization variations provide critical information for aerosol classification.
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Figure 11. (a) P-lidar system with two satellites [144]. (b) The ACEPOL field campaign emblem [145].

Airborne lidar provides mobility and a high signal-to-noise ratio (SNR), serving as a
valuable complement to spaceborne lidar. In 2003, Dulac et al. utilized the airborne P-lidar
known as ALEX to study multi-layer aerosol structures in the Eastern Mediterranean [146].
In 2012, Bo et al. developed an all-weather atmospheric aerosol–water vapor lidar system
for aircraft. This system simultaneously captures backscatter at 355 nm/532 nm wave-
lengths, 532 nm depolarization, and nitrogen and water vapor molecular Raman signals,
facilitating long-term monitoring of aerosols and water vapor [147]. Another famous
airborne system is the Aerosol Characterization from Polarimeter and Lidar (ACEPOL),
which was conducted in the fall of 2017 by NASA. Figure 11b shows the ACEPOL emblem,
which illustrates the locations of the remote sensing instruments on the aircraft, with two
on the fuselage and two in each wing pod [145]. Additionally, there is a growing emphasis
on developing portable P-lidar systems. For instance in 2021, Kong et al. introduced a
portable P-lidar system using a focal-plane-splitting scheme. This system is designed in a
T-shaped structure, featuring a sealed transmitter and a detachable large-aperture receiver.
It is well-suited for cost-effective, low-maintenance outdoor unmanned measurements [13].

As detection instruments continue to progress, research algorithms are also under-
going gradual evolution. Many solutions to the lidar equation for elastic scattering (e.g.,
Fernald et al. [148], Klett [149], Davis [150], Sasano and Nakane [151], and Collis and Rus-
sell [152]) have been proposed. Among these solutions, the Fernald analysis method treats
atmospheric molecules and aerosol particles separately, making it the current pinnacle of
inversion methods under development [153]. Building upon Fernald’s forward inversion
technique, CALIOP employs the hybrid extinction retrieval algorithm (HERA), known for
its flexibility and robustness as an iterative inversion method [99]. It utilizes hierarchical
position data from the selective iterative boundary locator (SIBYL) and layer classification
results from the scene classification algorithms (SCAs) to determine particle backscatter
and extinction coefficients. It should be noted that Raman and HSRL, as the two typical
systems to provide high-quality backscatter and extinction coefficients, have the potential
for providing vertically resolved information about aerosol size/concentration [154,155].
For example, Thorsen et al. developed a comprehensive set of algorithms for processing
the Raman lidar data to obtain the retrievals of aerosol extinction and feature detection.
The details of the Raman algorithms for aerosol backscattering and extinction can be found
in [156,157]. The HSRL data were processed in a manner akin to that of the Raman lidar
data, ensuring alignment in terms of timestamps, altitudes, as well as temporal and vertical
resolutions. While it is worth noting that the HSRL does not employ distinct low- and high-
sensitivity channels, the processing and averaging approach for HSRL data is to mimic the
processing of the Raman lidar low- and high-sensitivity channels for consistency. In 2017,
based on the above algorithms, Ferrare et al. processed both the Raman lidar and HSRL
to obtain a consistent set of profiles, with equivalent resolutions and averaging, across all
wavelengths [158]. Recently, there have also been many researchers focused on developing
advanced algorithms. For example, in 2022, the researchers in Italy employed a Bayesian
parameter approach to infer the atmospheric particle size distribution [159]. In April of
the same year, based on the spaceborne Aerosol and Cloud High-Spectral-Resolution Li-
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dar (ACHSRL), capable of highly precise global aerosol and cloud detection, launched
by China, Ju et al. proposed a retrieval algorithm for deriving aerosol and cloud optical
properties from ACHSRL data, comparing it against end-to-end Monte Carlo simulations
for validation. These efforts involved the use of the airborne prototype of ACHSRL [160].

3.2. Remote Sensing of Earth’s Surface

In applications related to terrain characterization, vegetation remote sensing, and other
surface environmental studies, microwave radar has been proven to possess certain advan-
tages. However, due to its relatively long wavelengths, it cannot provide high-resolution
information about targets. lidar, on the other hand, operates at shorter wavelengths, en-
abling sufficient resolution of surface environmental structures and, thus, enhancing the
performance of relevant applications.

In vegetation remote sensing, traditional lidars are mainly used for measuring height
and echo intensity, thus inferring the three-dimensional surface structure of vegetation. One
example is the Scanning lidar Imager of Canopies by Echo Recovery (SLICER) scanning
lidar system [161]. SLICER used a 1064 nm neodymium-doped yttrium aluminum garnet
(Nd:YAG) laser with a beam divergence angle of approximately 2 mrad. Under normal
operating conditions, SLICER had a footprint diameter of about 9 m, and it could obtain the
canopy height, above-ground biomass, cross-sectional area, and other forest characteristics.
Another example is the vegetation canopy lidar, a spaceborne lidar system with three
1064 nm Nd:YAG lasers, providing a 25 m field of view at an altitude of 400 km. It can
characterize the three-dimensional structure of the Earth’s surface on a global scale and offer
improved global forest canopy height detection and biomass estimation [162]. However,
all these lidars are non-polarimetric, and the ability to study the polarimetric properties of
vegetation is of great significance.

In 1993, the NASA Goddard Space Flight Center made the first airborne laser polar-
ization sensor (ALPS), i.e., a P-lidar, for the remote sensing of the Earth’s surface (vegeta-
tion) [41]. ALPS has a linearly polarized Nd:YAG laser source at both 1064 and 532 nm,
with a detector field of view of approximately 0.03 rad. It can measure desired parameters
such as the total backscatter and the polarization state. Using the ALPS system, researchers
were able to distinguish unique cross-polarization signatures for different tree species, such
as broadleaf and coniferous trees [41]. This system also revealed a significant correlation
between near-infrared depolarization and crop parameters, specifically nitrogen fertiliza-
tion. The depolarization spectral difference index proved to be effective for estimating crop
yields [163]. However, one limitation of the ALPS system was its inability to capture the
lidar return waveform, which prevented obtaining detailed information about the vertical
structure of the vegetation canopy. To handle this issue, the University of Nebraska has
refurbished the ALPS system and developed it into a multi-wavelength airborne P-lidar
system, named MAPL [164]. MAPL’s receiver has four channels (dual-wavelength and dual-
polarization detection) and records the entire lidar waveform. Therefore, it can study both
vegetation canopy structure and the characterization of vegetation cross-polarization [165].
The same team also used MAPL to study the polarimetric reflectance from different tree
species in the forest and proved its ability to detect different trees by analyzing the lidar
waveform shapes, the depolarization ratios, and the reflectance percentages [166]. In 2018,
Tian et al. proposed the measurement of co-polarized and cross-polarized components
of maize leaves at a 532 nm laser wavelength [167]. They analyzed the depolarization
differences under varying biochar contents and demonstrated that the laser depolarization
ratio could serve as an indicator to monitor plant growth conditions.

P-lidars can also be applied for forest fire/smoke detection. By detecting and analyzing
the backscattering process caused by the interaction between atmospheric particles and
lasers, lidar can achieve precise measurements of smoke. However, traditional intensity-
based lidar needs to find a commanding height for scanning, which is often hard to
fulfill [168,169]. Moreover, due to the complexity of forest terrains, as they contain leaves
and other obstacles, the lidar signals must pass through these leaves and obstacles, which
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makes it difficult to distinguish forest-fire smoke with a single-channel lidar. To solve this
problem, Xian et al., in 2020, proposed a scanning P-lidar system to detect smoke from
forest fires [108]. This system uses a 1064 nm pulsed laser and differentiates smoke from
lidar signals contaminated by forest obstacles through the depolarization ratio.

A very important function of scanning or imaging lidar is its ability of 3D imaging in
Urban remote sensing. The first polarization-modulated 3D lidar was proposed by Taboada
and Tamburino in 1992 [170]. In order to improve the image quality, Chen et al. proposed
an electron-multiplying charge-coupled-devices (EMCCDs)-based lidar system, in which
the echo signal is separated into two orthogonal polarized components via a PBS. Such a
polarization-modulated method improves the range accuracy of the objects of interest from
4.4 to 0.26 m with a gate opening range of 200 m [171]. In 2018, the same team found that
the 3D imaging P-lidar had very promising performance in an FOV of 0.9 mrad [172]. The
mentioned types of P-lidar, to some extent, belong to dual-channel P-lidar because they
can only simultaneously acquire orthogonal polarization states. However, these systems
require two cameras and a PBS to obtain orthogonal polarization states, making pixel-level
alignment challenging [173]. In 2016, Jo et al. proposed a 3D flash P-lidar based on a
micro-polarizer camera, as shown in Figure 12a, which can obtain the linear Stokes vector
with a single shot [174], and achieved a spatial resolution and range precision of 0.12 mrad
and 5.2 mm at 16 m, respectively [175].

Figure 12. (a) P-lidar based on a polarization camera [175]. (b) Reconstructed point clouds for (b-1)
co-polarization and (b-2) cross-polarization configurations at 20 m, 75 m, and 120 m of visibility [7].

Another important application is autonomous driving, as lidar sensors are one of the
key supporting technologies for implementing autonomous driving. Nunes-Pereira et al.
demonstrated through experiments that the reflection signals from metallic car paints have
distinct polarization characteristics [176]. Therefore, by using a P-lidar, distance measure-
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ments can be supplemented, thereby aiding in target classification. In their experiments,
they utilized a custom-built P-lidar system, which employed a pulsed, linearly polarized
785 nm laser, a pair of 2D scanning galvanometer mirrors, and a linear polarizer positioned
in front of the collection objective. The polarizer was alternately set for co-linear and cross-
linear polarized detection. Including polarization into the lidar can improve autonomous
driving performance in a dense atmosphere. In 2021, Ronen et al. introduced a model that
combines traditional lidar and Stokes–Mueller formulations and conducted experiments
inside an aerosol chamber [177]. The results showed that the use of a polarized source to-
gether with a cross-polarized receiver can improve the target-signal-to-atmospheric-signal
ratio in a dense aerosol medium for a lidar system. Therefore, implementing polarimetric
imaging techniques in lidars can enhance the performance of autonomous vehicles in
poor-visibility conditions. Actually, this characteristic of polarization information can be
found in many applications of polarization imaging [5,6]. In 2022, Ballesta-Garcia et al.
studied the performance of P-lidar in a macro-scale fog chamber under controlled fog
conditions and demonstrated many interesting findings [7]. For example, a system based
on circularly polarized incident light and cross-polarized configuration helps to reduce the
SNR, and a cross-polarized configuration enables the detection of objects while allowing
the filtering out of most of the fog response, as shown in Figure 12b.

3.3. Ocean Remote Sensing

Aerosol observations utilize various passive and active remote sensing techniques,
which can be applied to the ocean to better characterize hydrosols and enhance the
atmospheric-correction process. While spectral radiance provides sensitivity to the absorp-
tion and scattering properties of constituents within the water column, polarized light
emerging from the Earth system carries a wealth of information about the atmosphere,
ocean, and surface, which remains underutilized in ocean color remote sensing. Polarized
light originating beneath the ocean surface contains valuable microphysical details about
hydrosols, including their shape, composition, and attenuation. Retrieving such infor-
mation is challenging, if not impossible, using traditional scalar remote sensing methods
alone. Moreover, polarimetric measurements offer opportunities to enhance the characteri-
zation and removal of atmospheric and surface reflectance that can interfere with ocean
color measurements.

Kattawar et al. [178] were pioneers in conducting vector radiative transfer simula-
tions for a coupled atmosphere–ocean system. It was not until 30 years later, in 2006,
that Chowdhary et al. [179] first introduced models specifically addressing the polarized
contribution from the ocean for photopolarimetric remote sensing observations of aerosols
above the ocean [180]. This marked the beginning of increased interest in ocean-related
applications of polarimetry. In 2007, Chami demonstrated the potential advantages of
utilizing polarimetry to understand the optical and microphysical properties of suspended
oceanic particles (hydrosols) through radiative transfer (RT) simulations [181]. In aquatic
environments characterized by the prevalence of phytoplankton, the polarized reflectance
at the top of the atmosphere exhibits a high degree of insensitivity to fluctuations in chloro-
phyll concentration. In 2009, Tonizzo et al. [182] developed a hyperspectral, multiangular
polarimeter designed to measure the polarized light field in the ocean, accompanied by
an RT closure analysis, which validated the theoretical analysis. Additionally, in 2010,
Voss and Souaidia successfully measured the upwelling hemispheric polarized radiance at
various visible wavelengths, revealing the geometrical dependence of polarized light [183].

Oceanic lidars can penetrate seawater to acquire highly accurate vertical profiles of
multiple parameters within the ocean. Since the introduction of the first bathymetry lidar
in 1968, various types of ocean lidars have been developed to assess different oceanic pa-
rameters and constituents. In particular, P-lidar, widely employed in oceanic studies, offers
significant advantages in providing multiple oceanic parameters. Analyzing the elastic Mie
backscattering signal, seawater’s optical properties can be estimated by retrieving the lidar
attenuation coefficient within the laser’s penetration depth. Additionally, it can identify
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oceanic communities through the linear depolarization ratio, owing to the depolarization
effect of non-spherical particles on incident light. In other words, oceanic P-lidar has
achieved successful applications in various domains such as the retrieval of depolarization
optical products in the upper ocean [67], the detection of phytoplankton layers [184,185],
turbulence measurement [186,187], and marine biological population detection [188,189].

Over the past decade, oceanic P-lidar has found numerous applications in oceano-
graphic research. For example, Vasilkov et al. employed an airborne P-lidar to generate
profiles of the scattering coefficient and identified subsurface layers with high scattering
properties during their field experiments [75]. Furthermore, Churnside et al. developed a
radiative transfer equation for airborne polarized lidar returns, facilitating the detection
of scattering layers, fish schools, seawater optical properties, and internal waves [67]. To
expand the scope of ocean observing efforts, Collister et al. designed a shipborne lidar
to investigate the combined impacts of particle composition and seawater multiple scat-
tering based on the lidar’s linear depolarization ratio [190]. Behrenfeld et al. quantified
phytoplankton biomass and diel vertical migration using the particulate backscattering coef-
ficient and diffuse attenuation coefficient derived from the spaceborne P-lidar CALIOP [64].
Chen et al. observed the vertical distribution of subsurface phytoplankton layers in the
South China Sea using a dual-wavelength airborne P-lidar [70]. Furthermore, Chen et
al. introduced the planned “Guanlan” ocean remote sensing mission, featuring a near-
nadir-pointing oceanic lidar and a dual-frequency interferometric altimetry system [70].
The oceanic lidar payload is expected to contribute significantly to our understanding of
the marine food chain and ecosystem by providing data with a 10 m vertical resolution
within the euphotic layer, advancing our knowledge of both the dynamic and bio-optical
characteristics of the oceanic mixed layer.

Marine biological population detection is also a promising application for oceanic
lidars. Likely, the initial development of the theory for using lidar to detect fish schools was
pioneered by Murphree et al. [191]. The first experimental trials, conducted in a controlled
environment, were carried out by Swedish scientists [192]. In 1999, Churnside from the
National Oceanic and Atmospheric Administration (NOAA) developed an airborne lidar
for marine fisheries. This lidar is indeed a single-channel P-lidar and uses a polarizer in
front of the telescope system to select either the component of the return that is co-polarized
with the laser or the cross-polarized component [42]. Their results showed that one can
see fish from an airborne P-lidar. In clear water, one can see to depths of 40–50 m, and
in turbid waters, this depth penetration is reduced. In 2010, Churnside took a case study
in Chesapeake Bay, by using the cross-polarized component as its contrast between fish,
and the background-scattering level was greater than that of the co-polarized return. They
found that the average depth penetration of lidar was 12 m, and the average depth of
detected schools was 3 m [46]. In 2018, Shamanaev proposed a method of P-lidar sensing of
marine fish schools based on a comparison of the numerical values of the lidar return power
and depolarization with their threshold levels determined by the sea water extinction index
in the fishery region [193].

Another example is jellyfish detection, which facilitates the acquisition of data encom-
passing jellyfish taxonomy, population metrics, spatial dispersion, and related particulars.
This process holds a pivotal role within the ambit of jellyfish prevention and manage-
ment. The existing methodologies for jellyfish detection presently exhibit limitations in
terms of detection efficiency, precision, and vertical distribution insights. P-lidar holds
the potential to accomplish remote sensing of individual jellyfish organisms. This ad-
vanced technology offers an efficient, cost-effective, and accurate means of monitoring
variations in jellyfish distribution and population dynamics. Currently, there is a relatively
limited amount of research focused on utilizing marine lidar for jellyfish detection. In
2015, Churnside et al. [189] employed an airborne polarized marine lidar to observe the
phenomenon of hollow aggregations within jellyfish populations. Their findings were cor-
roborated by sonar detection results, thereby substantiating the viability of using polarized
marine lidar for jellyfish population detection. In August 2017, a shipborne polarimetric
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marine lidar, independently developed by the research team at Zhejiang University, China,
conducted experimental measurements in the Yellow Sea [194]. During these experiments,
it observed a wealth of strong scattering signals. By combining these data with video
monitoring information, the team was able to identify the source of these signals as jellyfish,
demonstrating that jellyfish in the same area exhibited clustering patterns in their optical
characteristics. Furthermore, jellyfish signals from different regions had similar contrast,
but varied depolarization rates, suggesting that the optical properties of jellyfish are closely
related to their local environmental conditions.

Besides, P-lidar can be used to detect sea surface oil spills. Oil spillage on the sea
surface tends to create a film, impeding the exchange of gases between the sea and the
atmosphere. This results in a reduction of dissolved oxygen in the seawater. Research
has revealed that the complete oxidation of 1 kg of petroleum requires the consumption
of approximately 400,000 L of dissolved oxygen from seawater. Consequently, oil spill
pollution can lead to extensive areas of hypoxia [195]. During the 1990s, the University
of Oldenburg (Germany) achieved a significant milestone by successfully developing a
marine lidar system, which was subsequently employed for real-time monitoring of oil
spill areas [196]. Furthermore, countries such as Canada, France, and Italy have also
sequentially developed airborne lidar systems for oil spill monitoring [197]. In 2009, the
marine fluorescence lidar system developed by Zhao et al. underwent multiple experiments
in the vicinity of Qingdao. In 2021, the Aerospace Science and Technology Corporation’s
9th Academy successfully completed emergency monitoring tasks for oil spill incidents
in the Yellow Sea, utilizing unmanned aerial vehicles (UAVs) equipped with their self-
developed dual-wavelength polarized marine-detection lidar, X-band target surveillance
radar, and miniaturized synthetic aperture radar (MiniSAR) [198]. The results indicated
that the P-lidar system exhibited reliable performance in monitoring oil spills on the sea
surface. It could accurately differentiate the types of oil spills and assess the degree of oil
pollution [199].

Previous studies predominantly used 532 nm lasers in oceanic P-lidar due to mature
solid-state Nd:YAG lasers. Different seawater compositions across coastal and open seas
result in varying optimal optical penetration wavelengths. Single-wavelength lidar cannot
reveal particle size and absorption effects. Exploring diverse wavelengths in seawater
is essential. Using the multi-wavelength volume linear depolarization ratio (VDR) and
color ratio measurements from lidar, specific substances in seawater can be identified and
distinguished. Meanwhile, in situ measurements are essential for validating the optical
properties obtained from marine lidar measurements and for establishing simulation tools
for future spaceborne marine lidar missions. In 2022, Liu et al. designed a shipborne
variable-FOV, dual-wavelength oceanic P-lidar (as shown in Figure 13), named lidar for
Ocean Optics Profiler (LOOP), to obtain the VDR, color ratio, and optical parameter pro-
files of seawater [63]. High-power pulse lasers and photon-counting detectors effectively
increased the detectable seawater depth of the lidar in clean open seas. The system ensured
the reliability of oceanic P-lidar by controlling the peak pulse intensity of backscattered
signals and calibrating the after-pulse effects of the PMT to maintain the linear response
of PMTs, providing seawater backscattered signal profiles. The consistency of the results
demonstrated its ability to obtain the optical properties of seawater at certain depths,
validating its reliability.
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Figure 13. (a) The optical layout and (b) the photo of the LOOP system [63].

Compared to atmospheric or Earth remote sensing, oceanic P-lidar faces greater
challenges due to strong seawater attenuation, limiting laser beam penetration. In nearshore
seawater, the 532 nm laser energy attenuates by nearly five orders of magnitude when
penetrating 30 m deep. Additionally, intense backscattered signals from the sea surface
and shallow subsurface seawater can saturate the photodetectors, causing nonlinearity
and after-pulse effects, leading to incorrect results. The complex marine environment also
complicates accurate VDR. P-lidar for ocean applications, in conjunction with other oceanic
measurements, has the potential to revolutionize the capacity for oceanic measurements.

4. Conclusions

This paper systematically reviewed the principles related to P-lidar and introduced
the evolution of P-lidar systems from fixed to scanning configurations from an optical
perspective. Moreover, we explored the applications of P-lidar technology in various fields,
including atmospheric, oceanic, and terrestrial environments, with a special emphasis
on intriguing areas such as aerosol detection and classification, ocean profiling, and un-
manned driving. Table 1 provides a summary of the P-lidar systems related to various
applications discussed in this paper; this also serves as a callback to Figure 3 presented in
the Introduction.
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Table 1. List of representative applications.

Scene Application Reference

Precise all-weather retrieval of atmospheric depolarization ratios [13]
Research on the polarization characteristics of various cloud types [15,132]
Observe atmospheric ice crystals and water droplets [39]
Detect the vertical distribution of aerosols and clouds, ascertain cloud particle phase [45,143]
Identify aerosol and cloud types [53]
Classification of various aerosol types [55]
Measure the depolarization ratio of falling snow [61,131]
Detect high-altitude aerosols [123]

Atmospheric Retrieve the nonsphericity of ice particles [125]
Comprehensive atmospheric measurements [126]
Infer the phase state of submicron particles [127]
Retrieve micro-physical properties of liquid cloud layers [128,129]
Analysis of aerosol and water cloud properties [130]
Detect dust orientation [142]
Study multi-layer aerosol structures [146]

Distinguish unique cross-polarization signatures for different tree species [41]
Detect smoke from forest fires [108]
Infer three-dimensional surface structure of vegetation [161]

Earth surface Characterize the three-dimensional structure of the Earth’s canopy height detection [162]
Study vegetation canopy structure and vegetation cross polarization characterization [165]
3D imaging in Urban remote sensing [170]
Autonomous driving [176]

Obtain optical properties of seawater at certain depths [63]
Detection of scattering layers, fish schools, seawater properties, and internal waves [67]
Oceanographic research [75]
Observations of aerosols above the ocean [180]
Understand the optical and microphysical properties of suspended oceanic particles [181]

Oceanic Measure the polarized light field in the ocean [182]
Detection of phytoplankton layers [184,185]
Turbulence measurement [186,187]
Jellyfish detection [189,194]
Retrieval of depolarization optical products in the upper ocean [190]
Marine biological population detection [191]
Sea surface oil spill detection [196,197]

Thanks to priors of the polarization differences in target reflection and the polarization
characteristics of medium-scattered light, the integration of polarization information ac-
quisition and processing into lidar technology has demonstrated exceptional performance.
Recent rapid advancements in both laser source and detector technologies have made it pos-
sible to realize multi-channel, multi-spectral (even full-spectral), and full-polarization lidar
systems, thereby expanding the application fields of P-lidar. The foundational technologies
of P-lidars (e.g., laser sources, polarization detectors, real-time processing algorithms, and
system integration) are interdependent and mutually reinforcing.

The increasing demand for practical applications will undoubtedly drive the ad-
vancement of P-lidar systems and methodologies. A long-standing pursuit has been the
development of a compact and cost-effective P-lidar. The advantage of P-lidar lies in its
ability to integrate 3D imaging/detecting and optical material characterization, allowing
for the measurement of spectral reflectance and polarimetric reflectance (i.e., represented
using Mueller matrices) along with other sensing modalities. Moreover, the demand for
miniaturization and cost-effectiveness necessitates novel approaches in designing P-lidar
systems, while the need for enhanced target detection and recognition drives research into
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light–material interactions and new machine learning algorithms. Based on these insights,
we propose several intriguing topics for future research.

Multi-modal integration: Integrating P-lidar with various other remote sensing tech-
nologies, including traditional lidar, radar, infrared imaging, and more, or merging systems
that operate at different wavelengths offers the potential to gather a more-comprehensive
set of environmental data. The integration of multiple modalities holds the promise of
enhancing our capacity for comprehensive data analysis, enabling a deeper understanding
of target recognition and environmental perception. As an illustrative example, Kong et al.
designed a visible, near-infrared (Vis–NIR) dual-polarization imaging lidar [55]. Their
research demonstrated the system’s remarkable ability to characterize aerosol optical prop-
erties, distinguish between different aerosol types, and analyze the long-distance movement
of aerosols. This exemplifies the practical advantages of multi-modal integration in envi-
ronmental sensing. Nevertheless, it is essential to acknowledge that combining multiple
sensor modalities also presents certain challenges. These include issues such as data fusion,
calibration, synchronization, and increased computational complexity. To fully harness
the advantages of integrating diverse sensors, it is imperative to develop appropriate
data processing and integration techniques. These solutions will be crucial in overcoming
the complexities associated with multi-modal data and ensuring that the combined data
streams are effectively utilized.

Customized P-lidar tailored for oceanic remote sensing: P-lidar has found mature ap-
plications in atmospheric remote sensing. Many airborne or spaceborne P-lidars in use
worldwide are primarily tailored for aerosol remote sensing. While it is possible to modify
these instruments and systems for ocean color remote sensing, they were not originally
designed for this purpose, mainly due to their lower spatial resolution (around 3–4 km). Ad-
ditionally, ocean polarimetry requires measuring light at an off-principal viewing plane to
reduce glint while staying reasonably close to the principal plane to maximize the polarized
signal. This preference results in reduced ocean coverage. In ocean applications, it is crucial
for the instrument to maintain a very high radiometric accuracy [200,201]. This accuracy is
necessary to detect subtle variations in polarized light within the ocean, especially at small
scales. Promising solutions include designing advanced sensors with greater sensitivity
to polarization measurements and improved noise suppression capabilities. Additionally,
the development of spaceborne high-spectral-resolution lidars at wavelengths of 355 and
532 nm is also a viable avenue [202,203].

Deep-learning-based P-lidar techniques: Deep learning technology, with its nonlinear con-
volution operations and powerful implicit correlation learning, leverages the advantages of
data-driven approaches to enhance performance in various tasks related to polarization
or lidar [204–209]. Compared to traditional intensity-based lidar, P-lidar offers additional
information, including time-of-flight data and polarization information. Extracting mean-
ingful features from P-lidar data for use by deep learning models or employing automatic
feature selection to enhance model performance is essential. Huang et al. [210] compared
distance-resolved aerosol volume concentration (VC) and effective radius (ER) retrieval
methods based on partial least-squares regression and deep neural networks (DNNs). They
found that the inversion results from DNN outperformed PLSR, particularly in cases with
higher VC and ER values. Di Noia et al. (2015) discussed the use of DNN for retrieving
the aerosol refractive index, size, and optical depth based on ground-based SPEX measure-
ments [211]. In their subsequent work in 2017, they developed a DNN inversion approach
for airborne MAP measurements over land using a research scanning polarimeter [212]. In
both studies, the results obtained from DNN inversions were employed as initial values
for iterative optimization, resulting in notable improvements in efficiency and retrieval
accuracy. However, while using a DNN for direct inversion proves efficient, it is often
perceived as a “black box”, making it challenging to account for measurement uncertainties.
The combination of DNN inversion with P-lidar’s physical characterizations holds great
promise. Besides, in the future, custom-designed deep learning strategies and network
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architectures hold the potential to enhance the efficiency of P-lidar in improving resolution,
suppressing signal noise, and optimizing radiative transfer iteration.

Imaging snapshot P-lidar technology: With the rapid advancement of semiconductor
processes and optoelectronic integration techniques, the development of compact, cost-
effective, high-resolution, and user-friendly snapshot imaging P-lidar has become possible.
In 2021, the California-based startup SiLC Technologies [213] introduced the first com-
mercial chip-level FMCW lidar named “Eyeonic”. Technologically more complex than
traditional lidar systems, it has the capability to miniaturize the entire system to chip-level
specifications, as shown in Figure 14. In terms of functionality, Eyeonic’s visual sensor
showcases an industry-leading detection range of over 1000 m, with three flyovers depicted
in different modes, including distance, instantaneous velocity, and polarization intensity, all
generating the same point cloud. Another promising direction is to build an imaging P-lidar
based on division-of-focal-plane (DoFP) polarization cameras. This involves leveraging
the partial polarization characteristics of backscattering light caused by scattering particles
in challenging environments such as seawater, low light, or hazy weather [214–217]. This
approach can include the development of polarization-suppression algorithms to enhance
imaging quality in these complex conditions. Alternatively, constructing a polarimetric-
gated lidar imaging device [171,218] can be explored to achieve high-quality imaging in
such challenging environments.

Figure 14. (a) The Eyeonic and (b) its output information [213].

Polarization metasurfaces + lidar: Even though one of the purposes behind metasurfaces
is miniaturization, we still aspire to combine fascinating realms of the metasurfaces tech-
nology and P-lidar [219]. Metasurfaces possess the capability to manipulate and control
the light state at sub-wavelength scales, presenting a unique opportunity to enhance lidar
systems’ performance [220]. For instance, in 2022, a team from South Korea were utilizing
metasurfaces to create a solid-state lidar sensor, as illustrated in Figure 15a, which offers
a 360◦ view of the surrounding environment [221]. Almost simultaneously, a team from
France proposed an alternative high-frequency beam-scanning approach, harnessing the
light-deflecting capabilities of large-area metasurfaces to expand the lidar FOV to 150× 150◦

and achieve simultaneous low- and high-resolution multi-zone imaging, as depicted in
Figure 15b [222]. The convergence of polarization metasurfaces and lidar technologies
holds immense promise in advancing the field of P-lidars [223,224]. By integrating polar-
ization metasurfaces into lidar sensors, we can anticipate significant improvements in the
precision and sensitivity of polarization measurements, enabling the extraction of richer en-
vironmental information. This synergy has the potential to revolutionize applications such
as remote sensing, autonomous navigation, and atmospheric monitoring, where precise
polarization information can unveil new insights and enhance systems’ performance.
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Figure 15. (a) Schematic of the optical setup in [221] and the stereo matching algorithm. (b) Schematic
representation of the lidar system in [222] and its 3D ranging demonstration.

By addressing these research topics, we can push the boundaries of P-lidar technology,
opening up new possibilities for its practical implementation and enhancing its impact in
diverse fields.
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Appendix A

In the paper, all abbreviations used are listed with their full definitions in Table A1.

Table A1. List of abbreviations.

Abbreviation Definition

1C Single-channel
2C Dual-channel
4C Four-channel
3D Three-dimensional
2D Two-dimensional
ACEPOL Aerosol Characterization from Polarimeter and Lidar
ACHSRL Aerosol and Cloud High-Spectral-Resolution Lidar
ALPS Airborne Laser Polarization Sensor
APD Avalanche photodiode
ARM Atmospheric radiation measurement
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CAPABL Clouds Aerosol Polarization and Backscatter Lidar
CCD Charge-coupled device
CMOS Complementary metal–oxide semiconductor
DNN Deep neural network
DoFP Division-of-focal-plane
DoLP Degree of linear polarization
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Table A1. Cont.

Abbreviation Definition

DoCP Degree of circle polarization
EEL Edge-emitting laser
EMCCD Electron multiplying charge-coupled devices
FMCW Frequency-modulated continuous wave
ER Effective radius
ESA European Space Agency
EUR Europe
FOV Field of view
FR France
GR Germany
HERA Hybrid extinction retrieval algorithm
HSRL High-spectral-resolution lidar
LASER Light amplification by stimulated emissions of radiation
LED Light-emitting diode
Lidar Light detection and ranging
LOOP Lidar for Ocean Optics Profiler
LSE Light’s stimulated emission
MEMS Micro-electro mechanical system
MiniSAR Miniaturized synthetic aperture radar
MIT Massachusetts Institute of Technology
MULIS Multichannel Lidar System
NASA National Aeronautics and Space Administration
Nd:YAG Neodymium-doped yttrium aluminum garnet
NOAA National Oceanic and Atmospheric Administration
OPA Optical phased array
PBS Polarization beam splitter
PD Photodiode
P-Lidar Polarization lidar
PMT Photo-multiplier tube
POLIS Portable lidar system
PSA Polarization state analyzer
PSG Polarization state generator
QWP Quarter-wave plate
RT Radiative transfer
SCA Scene classification algorithms
SiPM Silicon photo-multiplier
SIBYL Selective Iterative Boundary Locator
SLICER Scanning Lidar Imager of Canopies by Echo Recovery
SNR Signal-to-noise ratio
SP Single-photon
SPAD Single-photon APD
SVLE Stokes vector lidar
SWIR Short-wave infrared
TOF Time of flight
UAV Unmanned aerial vehicles
USA The United States of America
UV Ultraviolet
VC Volume concentration
VCSEL Vertical-cavity surface-emitting laser
Vis–NIR Visible, near-infrared
VLDR Volume linear depolarization ratio
WACAL Water vapor, cloud, and aerosol lidar
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