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Abstract: In practical applications, the independent scattering approximation (ISA) is widely used to
analyze light transfer in nanoparticle systems. However, the traditional independent scattering crite-
rion is obtained under the assumption that the host medium surrounding particles is nonabsorbing,
and thus may be invalid in certain circumstances. In this work, to explore the applicability of the ISA
for small particles in absorbing host media, we calculate the extinction efficiency of particle clusters
by direct solutions of macroscopic Maxwell equations. Using the far-field and distance-independent
definitions of extinction, the computational efficiency multi-sphere method is applied for particle
clusters in absorbing host, and its accuracy is verified with the discrete dipole approximation method.
It is well known that for small particles, the dependent scattering in transparent host always enhances
the extinction of the cluster and the criterion for the ISA is nearly independent of the particle refractive
index and particle size. We show, however, that when the host medium is absorbing, the dependent
scattering between particles can lead to a decreased or even negative extinction, and thus the ISA
criterion depends on the particle refractive index, size, and host medium absorption index. In this
result, the generalized criteria for absorbing host media may differ significantly from the conventional
ones for transparent host media. The results can provide guidance in solving problems related to
light transfer in nanoparticle systems, particularly in the presence of absorption in the host medium.

Keywords: absorbing host medium; radiative properties; multi-sphere method; dependent scattering;
independent scattering approximation

1. Introduction

The phenomenon of radiative (light) transfer in nanoparticle systems is ubiquitous and
plays a vital role in numerous applications, including climate science, ocean optics, remote
sensing, biomedicine, color paints, solar energy utilization and radiative cooling [1–12].
Accurate prediction of the radiative properties of nanoparticle systems is central to such
applications. An approximate method based on the radiative transfer equation (RTE)
is one of the most used methods for calculating the radiative properties of nanoparticle
systems [13,14]. Prior to solving the RTE, the scattering properties of particles should be
determined. Most works usually calculate the scattering properties of particles based on
the independent scattering approximation (ISA) [1,2,15,16]. Under the ISA, the scattering
properties of an individual particle in the nanoparticle system are independent of the other
particles [1,2]. While the ISA predictions are accurate when the interparticle separation
is sufficiently large, they may deviate significantly from the actual properties when par-
ticles are in close proximity [2,15,17]. Therefore, the main task of the radiative property
calculation is to decide whether the ISA is applicable for the specific practical problem at
hand [18].

So far, plenty of works have been conducted to investigate the applicability conditions
of the ISA (independent scattering criterion) [2,19,20]. Tien and coworkers [21–23] estab-
lished a regime map for deciding whether dependent scattering can be neglected over a
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wide range of size parameters and volume fractions based on theoretical analysis and experi-
mental research. Their results suggest that the ISA is satisfied if the clearance-to-wavelength
ratio is larger than 0.5 (or the particle volume fraction is less than 0.006). Quirantes et al. [24]
used the T-matrix method to calculate scattering cross sections of two-sphere clusters and
used the results to determine the maximum distance required to produce interparticle
light scattering interaction. Hohmann et al. [25] investigated the effects of multiple and
dependent scattering on the Mueller matrix by comparing results of a polarization-sensitive
radiative transfer solution to the Maxwell theory. Mishchenko et al. [26] studied the appli-
cability conditions of the RTE based on comparisons of the experimentally measured Stokes
reflection matrix for suspensions of microscopic latex particles in water with solutions of
the vector RTE. Galy et al. [15] proposed a new criterion for the scattering cross section and
the asymmetry factor based on electromagnetic scattering calculation of particle systems
with up to eight spherical particles. However, previous studies typically assumed that
particles are embedded in the nonabsorbing (transparent) host medium, neglecting the
effect of host medium absorption on particle scattering [15,16,18,27,28].

Cases where the absorption of the host medium cannot be neglected are frequently
encountered in practical applications. Examples include light scattering by cloud particles
surrounded by water vapor in the atmosphere, light scattering by particles in polymers,
biomedicine, and many others [4,29,30]. Neglecting host medium absorption can result in
errors, because the host medium absorption nullifies the validity of many scattering quanti-
ties that are well defined for the nonabsorbing host medium [31]. To obtain appropriate
scattering properties for absorbing host media, various approaches have been proposed
from different perspectives. One widely used approach is based on the asymptotic form of
the scattered field in the far-field zone [32–34]. Another widely used approach is based on
the integration of the field on the surface of the particle [35,36]. Mishchenko [37–39] has
developed an alternative approach using the vector volume integral equation, where the
far-field extinction cross section and scattering matrix represent observable quantities and
can be applied to the RTE. Using the above or other approaches, the optical properties of
individual spherical particles [31,40–48] and individual aspherical [49–52] particles have
been studied with consideration of the effect of host medium absorption on particle scatter-
ing. Additionally, light transfer in the nanoparticle system, which consists of monodisperse
or polydisperse spheres randomly dispersed in an absorbing host medium, has also been
investigated based on the RTE and the ISA [29,30,53]. However, the independent scattering
criterion used in these studies is derived for nonabsorbing host media, and thus may be
invalid for absorbing host media. Recently, multiple scattering of light by spherical particles
embedded in absorbing host media has been investigated using the statistical approach,
and several numerical examples have been presented to illustrate the spectral transmittance
and reflectance of thin films containing a two-dimensional array of spherical particles [54].

Many aspects of light scattering by particles in absorbing host media have been
studied; however, little work has focused on the effects of host medium absorption on the
independent scattering criterion. Considering the widespread use of the ISA (and the RTE)
and the presence of absorption in the host medium in many applications, it is necessary
to explore the applicability conditions of the ISA for absorbing host media. In this paper,
we aim at providing a comprehensive analysis of the applicability conditions of the ISA
for absorbing host media. To accomplish this objective, we must obtain the scattering
properties of a cluster of nanoparticles considering both the host medium absorption and
dependent scattering effects. Using the far-field and distance-independent definitions
of extinction [37] and the multi-sphere method (MSM) [55], we can obtain the scattering
properties that take these two effects into account simultaneously. Note that the MSM is
one of the most efficient numerically exact methods for solving the macroscopic Maxwell
equations, which can take into account the interactions between particles. Although the
MSM is typically used for nonabsorbing host media, it can be used for absorbing host
media with appropriate modifications of the definition of the scattering quantities. With
the help of the above methods, we first investigate the extinction properties of a cluster of
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particles embedded in absorbing host media considering the dependent scattering effect.
Then, the effects of host medium absorption on the applicability conditions of the ISA are
analyzed. Various factors, including particle refractive index, particle radius, and host
medium absorption index, are discussed.

2. Methodology

In this section, we describe the MSM for the absorbing host medium and the cluster
models for investigating the independent scattering criterion. The MSM has been well
established, and several codes, such as the GMM code [56], the MSTM code [57], the
FaSTMM code [58], and the CELES code [59], are freely available. The main idea of the
MSM is to expand the scattered fields from all the spheres into a single expansion written
about the origin of the cluster. This procedure is based on the addition theorem for vector
spherical wave functions, which allows a scattered field from one sphere to be represented
as an exciting field in another sphere [55]. It should be noted that to account for the host
medium absorption effect, the far-field scattering quantities need to be redefined. In this
work, the definition given by Mishchenko [37,60] is adopted because the corresponding
scattering quantities can be applied to the RTE.

2.1. Expansion of the Scattered Field

We consider the model of a cluster consisting of Ns nonoverlapping spheres embedded
in an absorbing host medium with known complex refractive index mh = m′h + im′′h . Each
sphere is characterized by its radius ai and complex refractive index mp,i = m′p,i + im′′p,i,
for i = 1, 2 . . . Ns. The central point of the cluster O serves as the origin of the primary
coordinate system and the central point of the ith sphere Oi serves as the origin of the ith
coordinate system, as shown in Figure 1.
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Figure 1. Illustration of the coordinate systems. The central point of the cluster O serves as the origin
of the primary coordinate system, and the central point of the ith (jth) sphere Oi (Oj) serves as the
origin of the ith (jth) coordinate system. Rij is the distance from Oj to Oi, and Θij and Φij are the
directions from Oj to Oi.

According to the MSM, the scattered field of the cluster Es can be represented by the
superposition of scattered fields from each of the spheres in the cluster [55]

Es =
Ns

∑
i=1

Ei
s. (1)

The scattered field of the ith sphere Ei
s can be expanded in terms of vector spherical

wave functions about its origin Oi as

Ei
s =

Li

∑
n=1

n

∑
m=−n

[
ai

mnN(3)
mn

(
khri, θi, φi

)
+ bi

mnM(3)
mn

(
khri, θi, φi

)]
, (2)

where Li is the truncation order [61], kh = k′h + ik′′h = 2πmh/λ is the complex wavenumber
in the host medium, λ is the wavelength in a vacuum, and ai

mn and bi
mn are the scattering
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expansion coefficients for sphere i. M(υ)
mn and N(υ)

mn represent the vector spherical wave
functions and are given by [62]

M(υ)
mn = 1√

Γmn
∇× ru(υ)

mn,

N(υ)
mn = 1

kh
∇×M(υ)

mn,
(3)

where Γmn = n(n+1)
2n+1

(n+m)!
(n−m)! , u(1)

mn(ρ, θ, φ) = jn(ρ)Pm
n (cos θ)eimφ, and u(3)

mn(ρ, θ, φ) =

hn(ρ)Pm
n (cos θ)eimφ. In addition, jn, hn and Pm

n denote the spherical Bessel function, the
spherical Hankel function of the first kind, and the associated Legendre function, respec-
tively [1,63,64]. In a similar fashion, the vector spherical harmonic expansion of the incident
field is written about the origin of the ith sphere Oi as [55]

Ei
inc =

Li

∑
n=1

n

∑
m=−n

[
pi

mnN(1)
mn

(
khri, θi, φi

)
+ qi

mnM(1)
mn

(
khri, θi, φi

)]
, (4)

where pi
mn and qi

mn are the incident expansion coefficients about the origin Oi. Using the
above equations and the addition theorem for vector spherical wave functions, the scattered
field of the cluster as a whole can be expanded about the origin of the cluster O as [55]

Es =
Li

∑
n=1

n

∑
m=−n

[
amnN(3)

mn(khr, θ, φ) + bmnM(3)
mn(khr, θ, φ)

]
, (5)

where amn and bmn are the scattering expansion coefficients of the cluster as a whole in the
primary coordinate system. Note that the complex-valued wavevector kh does not affect
the form of the formulas jn(khr) and hn(khr) [65]. Thus, the expressions of the fields for an
absorbing medium do not differ from those for a nonabsorbing medium, except that the
refractive index of the host medium is complex-valued.

2.2. Far-Field Extinction and Scattering of Sphere Clusters

As shown in Figure 2, we assume the incident light propagates along the z axis, and
the plane containing the scattering direction n̂s (or êr) and the incident direction n̂i (or ẑ)
defines the scattering plane.
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Figure 2. Schematic of light scattering by particles when the incident direction is along the +z axis.
The scattering plane contains the scattering direction n̂s (or êr) and the incident direction n̂i (or ẑ).
The scattered field is resolved into components parallel (ês‖) and perpendicular (ês⊥) to the scattering
plane, respectively.



Photonics 2023, 10, 782 5 of 18

Following these conventions, the incident electric field is resolved as [1,64]

Einc = E0ieikhz =
(

êi⊥E0i⊥ + êi‖E0i‖

)
eikhz. (6)

Similarly, the scattered field in the far-field region is resolved as [64]

Es =
eikhr

r
E0s =

eikhr

r

(
ês‖E0s‖ + ês⊥E0s⊥

)
, (7)

or as

Es =
eikhr

r
(
êsθE0sθ + êsφE0sφ

)
, (8)

where ês‖ = êsθ and ês⊥ = −êsφ. Note that the wavenumber kh = k′h + ik′′h is complex for
the absorbing host medium. The relation between the scattered and incident fields can be
represented by a 2× 2 amplitude scattering matrix [64][

E0s‖
E0s⊥

]
=

[
s11(n̂s, n̂i) s12(n̂s, n̂i)
s21(n̂s, n̂i) s22(n̂s, n̂i)

][
E0i‖
E0i⊥

]
. (9)

With the elements of the amplitude scattering matrix known, the optical quantities of
interest can be derived from them.

Using Mishchenko’s definition [37,60], the far-field and distance-independent extinc-
tion and scattering cross sections and the scattering phase function are written as

Cext =
4π
k′h

Im
(
E0s(n̂i) · (E0i)

∗)
|E0i|2

, (10)

Csca = 2π
∫ π

0

1
2

(
|s11|2 + |s22|2

)
sin θdθ, (11)

p(θ) =
4π

Csca

(
1
2
|s11|2 + |s22|2

)
, (12)

where k′h is the real part of the complex wavenumber in the absorbing host medium,
Im represents the imaginary part of the argument, and the asterisk denotes the complex
conjugate. Taking the extinction cross section as an example, the explicit expressions for
incident x-polarized and y-polarized lights are written as

Cext,x =
2π
k′h

Re

(
1
kh

Li

∑
n=1

(−i)n+1√2n + 1[(a1n,x + b1n,x) + (−a−1n,x + b−1n,x)]

)
, (13)

Cext,y =
2π
k′h

Re

(
1
kh

Li

∑
n=1

(−i)n+1i
√

2n + 1
[(

a1n,y + b1n,y
)
+
(
a−1n,y − b−1n,y

)])
, (14)

where the subscripts x and y on amn (or bmn) denote the arguments calculated for incident
x-polarized and y-polarized lights, respectively, and Re represents the real part of the
argument. The formulas reduce to the conventional formulas in a nonabsorbing host
medium [61]. For incident unpolarized light, the extinction cross section is simply given
by Cext =

(
Cext,x + Cext,y

)
/2, and the corresponding extinction efficiency factor is given

by Qext = Cext/
(
πa2

eff
)
, while aeff is the effective volume-equivalent-sphere radius. For

monodispersed spheres, we have aeff = ai · (Ns)
1/3.

2.3. Nanoparticle Cluster Model for Investigating the Independent Scattering Criterion

Similar to previous studies [15,16,18,27], the model of an imaginary spherical volume
filled with Ns randomly distributed identical spheres (see Figure 3) is used to explored the
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effect of host medium absorption on the scattering properties of a nanoparticle cluster. By
keeping the particle radius fixed while scaling all particle coordinates, the clusters with
different average interparticle clearances cave (or particle volume fraction fv) are obtained.
The average clearance cave is calculated based on the relative positions of particles.
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If the interactions between particles can be neglected, the total extinction cross section
of the Ns-sphere cluster Cext is equal to Ns times the corresponding single-particle extinction
cross section Csingle

ext . Therefore, in the independent scattering regime, the value of the
nondimensional extinction cross section

ηext =
Cext

NsCsingle
ext

(15)

must be equal to unity [27]. In practical applications, the independent scattering regime
is usually considered to be reached when the extinction of the cluster deviates less than
5% from the summation of extinction by the individual particles (the value of ηext locates
between 0.95 and 1.05). In this work, the ratio of average interparticle clearance to wave-
length c∗ = cave/λ is used to determine the ISA criterion, and the ISA is considered to be
applicable when 0.95 ≤ ηext ≤ 1.05.

First, we investigate the extinction properties of sphere cluster embedded in absorbing
host media with different particle radii ai and particle numbers Ns for both fixed and
random orientations. Then, the impact of host medium absorption on the applicability
conditions of the ISA is analyzed, considering the effects of the particle refractive index
and particle radius.

3. Validation

In this section, we validate the MSM by comparing it with the discrete dipole approxi-
mation (DDA) method [50,51] for absorbing host media. The extinction efficiency factor
and the scattering phase function are used for validation in this work, because these two
parameters represent observable quantities in the absorbing host medium. The clusters
composed of Ns = 2, 3 and 8 spheres are considered. The complex refractive indices of
the spheres and the host medium are mp = 1.5 and mh = 1.0 + 0.02i, respectively. The
incident light propagates along the z axis, and the wavelength in a vacuum is λ = 2π µm.
Figure 4a–d shows the extinction efficiency factors Qext of two-sphere clusters, calculated
by the MSM and the DDA method, as a function of the ratio of interparticle clearance c to
the radius of sphere 1, c/a1. Nd represents the total number of discretized sub-volumes
of the multiple-sphere cluster. Different numbers of discretized sub-volumes are used to
ensure the accuracy of the DDA results. As shown, the extinction efficiency factors obtained
by the MSM coincide very well with those obtained by the DDA method. Figure 4e,f
shows the extinction efficiency factors Qext of three-sphere and eight-sphere clusters as a
function of sphere radius ai. Some minor differences are observed for large radius, but the
differences become smaller with increasing the number of the discretized sub-volumes Nd.
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Figure 5 compares the scattering phase functions p(θ) calculated by the MSM and
DDA method. It is seen that the MSM results are also in good agreement with the DDA
results. In addition, the running times of the MSM and the DDA (Nd = 526,016) method
for calculating the scattering properties of the eight-sphere cluster (ai = 5.0 µm) are 0.463 s
and 2423 s, respectively. Note that the calculations are performed on a 64-bit Windows 10
operating system with an Intel Xeon 6144 CPU using one core. Obviously, MSM is much
more efficient in calculating particle clusters than the DDA method.
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4. Results and Discussion
4.1. Extinction Properties of Sphere Clusters Embedded in Absorbing Host Media

In this subsection, we will investigate the effect of the host medium absorption on the
extinction properties of multiple-sphere clusters. Figure 6 depicts the extinction efficiency
factors Qext of two-sphere clusters at a fixed orientation versus the ratio of interparticle
gap to sphere radius c/ai with ai = 0.2, 1.0 and 2.0 µm, respectively. The incident light
propagates (a)–(c) perpendicularly to and (d)–(f) along the line connecting the centers
of the two spheres. The complex refractive indices of the particle and the host medium
are mp = 1.59 and mh = 1.0 + im′′h with m′′h = 0.0, 0.001, 0.01 and 0.02, respectively. The
incident wavelength is λ = 2π µm. For comparison, the extinction efficiency factors of
the single sphere with radius equal to the cluster components are listed in Table 1. As
shown, with enhancing the absorption of the host medium, the extinction efficiency factor
of the single sphere decreases at ai = 0.2 and 1.0 µm, but increases at ai = 2.0 µm. A
similar trend is found for the two-sphere cluster. In addition, for the case of ai = 0.2 µm
and m′′h = 0.01 and 0.02, the extinction efficiency factor is negative for the single sphere,
but may become positive for the two-sphere cluster. This phenomenon can be understood
from the negative extinction and the dependent scattering effects. The concept of extinction
in an absorbing host medium is the difference between two readings of a well-collimated
detector in the absence and in the presence of particles [40,41]. Therefore, under the
conditions where the particle is less attenuated than the host medium, the extinction
efficiency factor of the particle is negative [45,66]. However, the dependent scattering
effects may enhance the extinction of light by particles, so that the host medium can be less
attenuated than the two-sphere cluster. As a consequence, the extinction efficiency factor
is no longer negative. On the other hand, it is found in Figure 6f that when m′′h = 0.02,
the amplitude of the interference oscillations increases exponentially with increasing c/ai.
This phenomenon has been observed and discussed in previous studies of individual
particles [40,41]. For a nonabsorbing particle embedded in an absorbing host medium, the
exponentially increasing amplitude of the oscillations with increasing particle size is due to
the fact that the directly transmitted light is no longer subject to the exponential attenuation
over the path length given by the particle diameter [40,41]. With this explanation, the
exponential increase in the amplitude of the oscillations of two-sphere clusters can also
be understood.
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Figure 6. The extinction efficiency factors Qext of two-sphere clusters versus the ratio of interparticle
gap to sphere radius c/ai with ai = 0.2, 1.0 and 2.0 µm, respectively. The incident light (λ = 2π µm)
propagates (a–c) perpendicularly to and (d–f) along the line connecting the centers of the two spheres.
The complex refractive indices of the particle and the host medium are mp = 1.59 and mh = 1.0 + im′′

h
with m′′

h = 0.0, 0.001, 0.01 and 0.02, respectively.
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Table 1. The extinction efficiency factors Qext of the single particle with ai = 0.2, 1.0 and 2.0 µm,
respectively. The complex refractive indices of the particle and the host medium are mp = 1.59 and
mh = 1.0 + im′′

h with m′′
h = 0.0, 0.001, 0.01 and 0.02, respectively.

m”
h= 0.0 m”

h= 0.001 m”
h= 0.01 m”

h= 0.02

ai = 0.2 µm 0.00048855 0.00043460 −0.000050653 −0.00058887
ai = 1.0 µm 0.29701 0.29619 0.28894 0.28123
ai = 2.0 µm 2.4220 2.4242 2.4444 2.4675

Considering that the complex refractive index of a material typically varies with
the wavelength, we also investigate the extinction efficiency factors Qext of randomly
oriented silica (SiO2) clusters embedded in polyethylene (PE), as presented in Figure 7a–d
for different particle numbers Ns, and in Figure 7d–f for different particle radii ai. The
complex refractive indices of SiO2 and PE are taken from [67] and [68], respectively. The
particle volume fraction is fixed at fv = 0.1. The extinction efficiency factors presented in
the figures are averaged over 132 different orientations and 10 different configurations to
obtain random-orientation averaging results. In practical applications, particles with radii
in the order of a few nanometers to micrometers may be used [6,69]; however, we only
focus on small particles with radii ranging from 40 to 160 nm. In addition, we consider
the wavelength range of 3–12 µm because it is especially useful for designing functional
coatings, and the resonance peak of SiO2 is also in this wavelength range [70,71]. As
demonstrated in Figure 7, within the wavelength range of 3.0–8.0 µm, the host medium
absorption can lead to negative extinction, which significantly deviates from the results for
the nonabsorbing host medium. In contrast, within the wavelength range of 8.0–12.0 µm,
the effect of host medium absorption on Qext can be neglected due to the extremely small
values of m′′h and the strong absorption of the particle. Moreover, the comparison between
the clusters with different particle radii (see Figure 7d–f) reveals that the differences caused
by neglecting the host medium absorption become more pronounced as the particle radius
ai increases from 40 to 160 nm. Notably, the changes in the extinction will, in turn, affect
the applicability conditions of the ISA, as we shall discuss in the following section.

4.2. Effect of Host Medium Absorption on the Dependent Scattering between Particles

In this subsection, we investigate the effect of host medium absorption on the appli-
cability conditions of the independent scattering approximation (ISA). The ISA is widely
used in many analyses involving particles [2]. Similar to previous studies [15,16,18,27], we
use the model of a small volume filled with monodisperse spherical particles to investigate
the applicability conditions of the ISA. Each cluster consists of Ns = 27 identical particles.
The complex refractive index of the host medium is mh = 1.5154 + im′′h with m′′h ranging
from 0.0 to 0.01, and the incident wavelength is λ = 4.0 µm, unless otherwise specified.
Note that the value of 1.5154 is selected as the refractive index (real part of the complex
refractive index) of polyethylene (PE) at λ = 4.0 µm. The particle radius ai ranges from 40
to 160 nm, which is small compared to the incident wavelength.

Figure 8 presents the color images of the nondimensional extinction cross section
ηext as functions of relative refractive index m′p,i/m′h and the ratio of average interparticle
clearance to wavelength c∗ = cave/λ, with m′p,i/m′h varying from 0.8 to 2.0, and c∗ varying
from 0.055 to 4.91. The particle radius is ai = 40 nm, and the particle absorption index
(imaginary part of the complex refractive index) is m′′p,i = 0.0. The white regions in the
images represent the value of ηext lying between 0.95 and 1.05, indicating that the ISA
is satisfied. It should be noted that Figure 8 does not encompass the instance where the
complex refractive index of the host medium is equal to that of the particle (m′p,i/m′h = 1.0
and m′′h = 0.0). As seen in Figure 8a, when the host medium is nonabsorbing (m′′h = 0.0), the
particle refractive index m′p,i has a negligible impact on ηext and the applicability conditions
of ISA. This observation agrees with previous results and can be attributed to the fact
that for small particles, the phase shift is negligible and the scattering is isotropic [15].
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Moreover, when particles are close to each other, the values of ηext are always greater than
1.0, suggesting that the interactions between particles enhance the particle extinction. In
contrast, when the host medium is absorbing, as illustrated in Figure 8b–d, the values
of ηext can be greater than 1.0, less than 1.0, or even negative (cause by the negative
extinction), depending on m′p,i/m′h. This means that the interactions between particles may
decrease particle extinction (ηext < 1.0), which differs significantly from that observed in
nonabsorbing host media. Meanwhile, it is found that as m′p,i/m′h decreases from 2.0 to
0.8, ηext may display a sharp transition from a value of greater than 1.0 to a value of less
than 0.0 (negative value). For example, when m′′h = 0.001 and c∗ = 0.055 (see Figure 8c),
the values of ηext at m′p,i/m′h = 1.56 and 1.58 are −396.84 and 113.04, respectively. When
m′′h = 0.01 and c∗ = 0.055 (see Figure 8d), the value of ηext is 15.95 at m′p,i/m′h = 1.66, but
decreases to −123.29 at m′p,i/m′h = 1.64.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 19 
 

 

  

Figure 7. The extinction efficiency factors 𝑄ext of SiO2 nanoparticle clusters embedded in PE and its 
nonabsorbing counterpart with different particle numbers 𝑁  and particle radii 𝑎 . Each cluster 
consists of 𝑁  identical particles with a particle volume fraction of 𝑓 = 0.1. (a) 𝑁 = 8 and 𝑎 = 
40 nm, (b) 𝑁 = 16 and 𝑎 = 40 nm, (c) 𝑁 = 27 and 𝑎 = 40 nm, (d) 𝑁 = 100 𝑎 = 40 nm, (e) 𝑁 = 100 and 𝑎 = 80 nm, and (f) 𝑁 = 100 and 𝑎 = 160 nm. The results are averaged over 132 
different orientations and 10 different configurations. 

4.2. Effect of Host Medium Absorption on the Dependent Scattering between Particles 
In this subsection, we investigate the effect of host medium absorption on the ap-

plicability conditions of the independent scattering approximation (ISA). The ISA is 
widely used in many analyses involving particles [2]. Similar to previous studies 
[15,16,18,27], we use the model of a small volume filled with monodisperse spherical par-
ticles to investigate the applicability conditions of the ISA. Each cluster consists of 𝑁  = 
27 identical particles. The complex refractive index of the host medium is 𝑚 = 1.5154 +𝑖𝑚  with 𝑚  ranging from 0.0 to 0.01, and the incident wavelength is λ = 4.0 μm, unless 
otherwise specified. Note that the value of 1.5154 is selected as the refractive index (real 
part of the complex refractive index) of polyethylene (PE) at λ = 4.0 μm. The particle radius 𝑎  ranges from 40 to 160 nm, which is small compared to the incident wavelength. 

Figure 8 presents the color images of the nondimensional extinction cross section 𝜂ext 
as functions of relative refractive index 𝑚 , /𝑚  and the ratio of average interparticle 

3 6 9 12
−0.5

0.0

0.5

1.0

1.5

2.0

fv = 0.1

Ns = 8

(a)

Q
ex

t

 nonabsorbing PE+SiO2

 PE+SiO2

ai = 40 nm

3 6 9 12
−0.5

0.0

0.5

1.0

1.5

2.0

Q
ex

t

(b)
ai = 40 nm
Ns = 16

fv = 0.1

3 6 9 12
−0.5

0.0

0.5

1.0

1.5

2.0

Q
ex

t

(c)
ai = 40 nm
Ns = 27

fv = 0.1

3 6 9 12
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

fv = 0.1

Q
ex

t

(d)
ai = 40 nm
Ns = 100

3 6 9 12
−2

0

2

4

6

8

Q
ex

t

Wavelength (μm)

(e)
ai = 80 nm
Ns = 100

fv = 0.1

3 6 9 12
−2

0

2

4

6

8

10

12

14

Q
ex

t

Wavelength (μm)

(f)
ai = 160 nm
Ns = 100

fv = 0.1

3 4 5 6 7 8
−0.06

−0.03

0.00

0.03

0.06

3 4 5 6 7 8
−0.09

−0.06

−0.03

0.00

0.03

0.06

3 4 5 6 7 8
−0.09

−0.06

−0.03

0.00

0.03

0.06

3 4 5 6 7 8
−0.15

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

3 4 5 6 7 8
−0.3

−0.2

−0.1

0.0

0.1

0.2

3 4 5 6 7 8
−0.6

−0.4

−0.2

0.0

0.2

0.4

Figure 7. The extinction efficiency factors Qext of SiO2 nanoparticle clusters embedded in PE and
its nonabsorbing counterpart with different particle numbers Ns and particle radii ai. Each cluster
consists of Ns identical particles with a particle volume fraction of fv = 0.1. (a) Ns = 8 and ai = 40 nm,
(b) Ns = 16 and ai = 40 nm, (c) Ns = 27 and ai = 40 nm, (d) Ns = 100 ai = 40 nm, (e) Ns = 100
and ai = 80 nm, and (f) Ns = 100 and ai = 160 nm. The results are averaged over 132 different
orientations and 10 different configurations.
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Figure 8. Color images of the nondimensional extinction cross sections ηext of 27-sphere clusters
versus m′p,i/m′h and the ratio of average interparticle clearance to wavelength c∗. The results are
averaged over 132 different orientations and 10 different configurations. The radius of the particle
is ai = 40 nm, and the incident wavelength is λ = 4.0 µm. The complex refractive index of the host
medium is mh = 1.5154 + im′′

h with (a) m′′
h = 0.0, (b) m′′

h = 0.0001, (c) m′′
h = 0.001 and (d) m′′

h = 0.01.
The white regions represent the ISA being satisfied (0.95 ≤ ηext ≤ 1.05).

The change in ηext will inevitably affect the critical c∗ that makes the ISA applicable
(0.95 ≤ ηext 1.05). To better illustrate the effect of host medium absorption on the ISA
criterion, we also plot the nondimensional extinction cross section ηext as a function of the
ratio of average interparticle clearance to wavelength c∗ for ai = 40 nm, m′p,i = 1.38, 2.1216
and 3.0308 (m′p,i/m′h = 0.911, 1.4 and 2.0), and (a) m′′h = 0.0, (b) m′′h = 0.0001, (c) m′′h = 0.001
and (d) m′′h = 0.01, respectively, as shown in Figure 9. The blue region indicates that the
ISA is satisfied for all the three m′p,i/m′h considered. Two dashed lines corresponding to
ηext = 0.95 and 1.05, respectively, are also plotted for comparison. As expected, when
the host medium is nonabsorbing (see Figure 9a), the particle refractive index m′p,i has
little impact on the critical c∗. In this case, the ISA is applicable regardless of the particle
refractive index, provided that c∗ ≥ 2.52. Nevertheless, it can be seen from Figure 9b–d that
when the host medium is absorbing, the ISA criterion is correlated with particle refractive
index m′p,i, and even a minor change in the host medium absorption index m′′h may result
in considerable changes in the critical c∗. For instance, when m′p,i = 1.38 (m′p,i/m′h = 0.911),
the criteria ensuring that the ISA is accurate within 5 percent are approximately c∗ = 2.52,
0.61, 0.22 and 0.055, for m′′h = 0.0, 0.0001, 0.001 and 0.01, respectively. When m′p,i = 3.0308
(m′p,i/m′h = 2.0), the criteria are approximately c∗ = 2.52, 2.1, 1.64 and 0.66, for m′′h = 0.0,
0.0001, 0.001 and 0.01, respectively. We note that when m′p,i = 1.38 and 3.0308, the critical c∗

decreases with the increase in m′′h , which agrees with the traditional view that absorption
suppresses dependent scattering [29]. However, when m′p,i = 2.1216 (m′p,i/m′h = 1.4), as m′′h
increases from 0.0 to 0.0001, the critical c∗ increases from 2.52 to 4.1. The larger critical c∗

means that the intensity attenuation in the absorbing host is not the only factor to influence
the dependent scattering.



Photonics 2023, 10, 782 12 of 18

Photonics 2023, 10, x FOR PEER REVIEW 12 of 19 
 

 

2.1216 and 3.0308 (𝑚𝑚𝑝𝑝,𝑖𝑖
′ /𝑚𝑚ℎ

′ = 0.911, 1.4 and 2.0), and (a) 𝑚𝑚ℎ
′′ = 0.0, (b) 𝑚𝑚ℎ

′′ = 0.0001, (c) 
𝑚𝑚ℎ
′′ = 0.001 and (d) 𝑚𝑚ℎ

′′ = 0.01, respectively, as shown in Figure 9. The blue region indi-
cates that the ISA is satisfied for all the three 𝑚𝑚𝑝𝑝,𝑖𝑖

′ /𝑚𝑚ℎ
′  considered. Two dashed lines cor-

responding to 𝜂𝜂ext = 0.95 and 1.05, respectively, are also plotted for comparison. As ex-
pected, when the host medium is nonabsorbing (see Figure 9a), the particle refractive in-
dex 𝑚𝑚𝑝𝑝,𝑖𝑖

′  has little impact on the critical 𝑐𝑐∗. In this case, the ISA is applicable regardless 
of the particle refractive index, provided that 𝑐𝑐∗ ≥ 2.52. Nevertheless, it can be seen from 
Figure 9b–d that when the host medium is absorbing, the ISA criterion is correlated with 
particle refractive index 𝑚𝑚𝑝𝑝,𝑖𝑖

′ , and even a minor change in the host medium absorption 
index 𝑚𝑚ℎ

′′ may result in considerable changes in the critical 𝑐𝑐∗. For instance, when 𝑚𝑚𝑝𝑝,𝑖𝑖
′ = 

1.38 (𝑚𝑚𝑝𝑝,𝑖𝑖
′ /𝑚𝑚ℎ

′ = 0.911), the criteria ensuring that the ISA is accurate within 5 percent are 
approximately 𝑐𝑐∗ = 2.52, 0.61, 0.22 and 0.055, for 𝑚𝑚ℎ

′′ = 0.0, 0.0001, 0.001 and 0.01, re-
spectively. When 𝑚𝑚𝑝𝑝,𝑖𝑖

′ = 3.0308 (𝑚𝑚𝑝𝑝,𝑖𝑖
′ /𝑚𝑚ℎ

′ = 2.0), the criteria are approximately 𝑐𝑐∗ = 2.52, 
2.1, 1.64 and 0.66, for 𝑚𝑚ℎ

′′ = 0.0, 0.0001, 0.001 and 0.01, respectively. We note that when 
𝑚𝑚𝑝𝑝,𝑖𝑖
′ = 1.38 and 3.0308, the critical 𝑐𝑐∗ decreases with the increase in 𝑚𝑚ℎ

′′, which agrees 
with the traditional view that absorption suppresses dependent scattering [29]. However, 
when 𝑚𝑚𝑝𝑝,𝑖𝑖

′ = 2.1216 (𝑚𝑚𝑝𝑝,𝑖𝑖
′ /𝑚𝑚ℎ

′ = 1.4), as 𝑚𝑚ℎ
′′ increases from 0.0 to 0.0001, the critical 𝑐𝑐∗ 

increases from 2.52 to 4.1. The larger critical 𝑐𝑐∗ means that the intensity attenuation in the 
absorbing host is not the only factor to influence the dependent scattering. 

 

Figure 9. The nondimensional extinction cross section 𝜂𝜂ext of 27-sphere cluster versus the ratio of 
average interparticle clearance to wavelength 𝑐𝑐∗ with incident wavelength of λ = 4.0 μm, particle 
radius of 𝑎𝑎𝑖𝑖 = 40 nm, and particle refractive index of 𝑚𝑚𝑝𝑝,𝑖𝑖

′ = 1.38, 2.1216 and 3.0308 (𝑚𝑚𝑝𝑝,𝑖𝑖
′ /𝑚𝑚ℎ

′ = 
0.911, 1.4, and 2.0), respectively. The complex refractive index of the host medium is 𝑚𝑚ℎ = 1.5154 +
𝑖𝑖𝑚𝑚ℎ

′′ with (a) 𝑚𝑚ℎ
′′ = 0.0, (b) 𝑚𝑚ℎ

′′ = 0.0001, (c) 𝑚𝑚ℎ
′′ = 0.001 and (d) 𝑚𝑚ℎ

′′ = 0.01. The blue region indi-
cates that the ISA is satisfied for all the three 𝑚𝑚𝑝𝑝,𝑖𝑖

′ /𝑚𝑚ℎ
′  considered. The results are averaged over 132 

different orientations and 10 different configurations. 

The preceding discussions have shown that the host medium absorption can either 
decrease or increase the critical 𝑐𝑐∗. This is reasonable because host medium absorption 
can affect the applicability conditions of the ISA from two perspectives. On the one hand, 
the intensity of light is attenuated as it travels through an absorbing medium. In this re-
gard, the host medium absorption suppresses the dependent scattering and thereby ren-
ders the ISA applicable at smaller 𝑐𝑐∗. On the other hand, the host medium absorption also 

0 1 2 3 4 5
0.5

1.0

1.5

2.0

2.5

c* = 2.52

Independent 
scattering

Ns = 27

mh = 1.5154+0.0i
ai = 40 nm

ηext = 1.05

ηext = 0.95

(a)

η e
xt

c*

 mp,i = 1.38
 mp,i = 2.1216
 mp,i = 3.0308

Dependent 
scattering

0 1 2 3 4 5
−0.5

0.0

0.5

1.0

1.5

2.0

2.5
mh = 1.5154+0.0001i

η e
xt

c*

(b)

c* = 4.1

0 1 2 3 4 5
−0.5

0.0

0.5

1.0

1.5

2.0

2.5
mh = 1.5154+0.001i

η e
xt

c*

(c)

c* = 1.64

0 1 2 3 4 5
0.5

1.0

1.5

2.0

2.5
mh = 1.5154+0.01i

c* = 0.66η e
xt

c*

(d)

Figure 9. The nondimensional extinction cross section ηext of 27-sphere cluster versus the ratio of
average interparticle clearance to wavelength c∗ with incident wavelength of λ = 4.0 µm, particle
radius of ai = 40 nm, and particle refractive index of m′p,i = 1.38, 2.1216 and 3.0308 (m′p,i/m′h = 0.911,
1.4, and 2.0), respectively. The complex refractive index of the host medium is mh = 1.5154 + im′′

h
with (a) m′′

h = 0.0, (b) m′′
h = 0.0001, (c) m′′

h = 0.001 and (d) m′′
h = 0.01. The blue region indicates that

the ISA is satisfied for all the three m′p,i/m′h considered. The results are averaged over 132 different
orientations and 10 different configurations.

The preceding discussions have shown that the host medium absorption can either
decrease or increase the critical c∗. This is reasonable because host medium absorption can
affect the applicability conditions of the ISA from two perspectives. On the one hand, the
intensity of light is attenuated as it travels through an absorbing medium. In this regard,
the host medium absorption suppresses the dependent scattering and thereby renders the
ISA applicable at smaller c∗. On the other hand, the host medium absorption also influences
the extinction efficiency factor of individual particles (or particle clusters), which, in turn,
affects the critical c∗. These two different effects result in the dependence of the critical
c∗ on particle refractive index m′p,i in an absorbing host medium. Although the variation
in the critical c∗ with m′p,i is complex. It can be seen from Figures 8 and 9 that in regimes
where the value of ηext changes from larger than 1.0 to less than 0.0 (negative), a larger c∗

may be required to ensure the accuracy of the ISA.
We also investigate particle clusters with different particle radii. The color images of

the nondimensional extinction cross sections ηext as functions of m′p,i/m′h and the ratio of
average interparticle clearance to wavelength c∗ are illustrated in Figure 10 for ai = 80 nm
and in Figure 11 for ai = 160 nm. It is obvious that both the nondimensional extinction cross
section ηext and the critical c∗ are almost independent of the particle refractive index m′p,i
when the host medium is nonabsorbing, but are correlated with the particle refractive index
m′p,i when the host medium is absorbing. A comparison among particles with different radii
demonstrates that in absorbing host media, the particle radius has significant impacts on
both ηext and the critical c∗. Furthermore, when the host medium is absorbing, it may need
a larger c∗ to ensure the accuracy of the ISA in regimes where the value of ηext changes from
larger than 1.0 to less than 0.0, which is similar to that observed for the case of ai = 40 nm.
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Figure 10. Color images of the nondimensional extinction cross sections ηext of 27-sphere clusters
versus m′p,i/m′h and the ratio of average interparticle clearance to wavelength c∗. The results are
averaged over 132 different orientations and 10 different configurations. The radius of the particle
is ai = 80 nm, and the incident wavelength is λ = 4.0 µm. The complex refractive index of the host
medium is mh = 1.5154 + im′′

h with (a) m′′
h = 0.0, (b) m′′

h = 0.0001, (c) m′′
h = 0.001 and (d) m′′

h = 0.01.
The white regions indicate that the ISA is satisfied (0.95 ≤ ηext ≤ 1.05).
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Overall, in absorbing host media, the applicability conditions of the ISA are affected by
the particle radius ai, particle refractive index m′p,i (or m′p,i/m′h) and host medium absorption
index m′′h , making it difficult to establish an accurate and comprehensive criterion of
ISA based only on limited calculation results. However, for all the cases considered in
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Figures 8–11, the criteria c∗ ≥ 2.52 for nonabsorbing host media and c∗ ≥ 4.8 for absorbing
host media ensure that the accuracy of the ISA is kept within 5 percent.

Additionally, to illustrate the effect of host medium absorption on the ISA criterion
in practical applications, we also investigate the case of silica (SiO2) particles embedded
in polyethylene (PE) and its nonabsorbing counterpart. Three incident wavelengths of
λ = 3.35, 5.0 and 10.0 µm are considered. The nondimensional extinction cross sections
ηext of multiple-sphere clusters composed of Ns = 27 identical particles as a function of
the ratio of average interparticle clearance to wavelength c∗ are presented in Figure 12.
The radii of the particles are ai = 40, 80 and 160 nm, respectively. The results for particles
embedded in PE are calculated using the actual complex refractive indices, whereas the
results for particles embedded in nonabsorbing PE are calculated by assuming m′′h = 0.0.
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Figure 12. The nondimensional extinction cross sections ηext of 27-sphere SiO2 clusters embedded in
PE and its nonabsorbing counterpart versus the ratio of average interparticle clearance to wavelength
c∗. The results are averaged over 132 different orientations and 10 different configurations. The
incident wavelengths are (a–c) λ = 3.35 µm, (d–f) λ = 5.0 µm, and (g–i) λ = 10.0 µm. The incident
wavelengths are λ = 3.35, 5.0 and 10.0 µm, respectively. The particle radii are ai = 40, 80 and 160 nm.

When λ = 3.35 µm, the host medium exhibits strong absorption with m′′h = 0.014027,
and the value of m′p,i/m′h is 0.9908. According to above discussions, under this condition,
the strong absorption of the host medium should significantly suppress the interaction
between particles, allowing the ISA to be applicable for very small values of c∗. As a
result, the critical c∗ for nonabsorbing host media should also be larger than the critical
c∗ for absorbing host media. These assertions are confirmed by the results depicted in
Figure 12a–c. It can be seen from Figure 12a–c that the values of ηext always locate between
0.95 and 1.05, suggesting that the accuracy of the ISA is always kept within 5 percent.

When λ = 5.0 µm, the values of m′′h and m′p,i/m′h are 0.0063785 and 0.8814, respectively.
From Figure 12d–f, it can be easily observed that the values of ηext can be less than 1.0 or less
than 0.0, which will no doubt affect the applicability conditions of the ISA. Therefore, the
applicability conditions of the ISA must be carefully considered in this case. These obser-
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vations are consistent with the above finding that in this regime, the interactions between
particles may result in a decreased or even negative particle extinction cross section.

When λ = 10.0 µm, the host medium exhibits extremely weak absorption with
m′′h = 0.000023606 and a value of m′p,i/m′h = 1.6463. We can thus expect that the effects of
host medium absorption on ηext and the applicability conditions of the ISA are negligible.
These predictions are supported by the observations in Figure 12g–i, where the values
of ηext obtained for nonabsorbing host media are almost identical to those obtained for
absorbing host media and the ISA criteria for nonabsorbing host media can be regarded as
the criteria for absorbing host media.

It is also found from Figure 12 that in nonabsorbing host media, the critical c∗ changes
with ai and m′p,i/m′h, which is inconsistent with our previous conclusion that the ISA criteria
for nonabsorbing host media are independent of particle radius and particle refractive
index. This discrepancy stems from the fact that the absorption index of SiO2 particle
is nonzero at the wavelengths considered. The issue of the effect of particle absorption
on ISA criteria is beyond the scope of the present work. Interested readers can refer to
Ma et al. [16] for detailed discussions.

In summary, for small particles, the host medium absorption has a significant impact
on the dependent scattering between particles. The generalized criteria for absorbing host
media depend on the particle refractive index, size, and the host medium absorption index
and may differ significantly from the conventional ones for nonabsorbing host media.
Moreover, since it is impossible to encompass all factors, many relevant factors, such as
polydispersity, spatial distributions and large particles, are not considered in this paper.
These factors may also affect applicability conditions of the ISA. For example, the effects of
host medium absorption on dependent scattering between particles are different for small
particles and large particles (see Supplementary Materials, Figure S1). Thus, a lot of work
remains to be done to establish an accurate and comprehensive criterion applicable to both
absorbing and nonabsorbing host media.

5. Conclusions

The aim of this paper was to investigate the extinction properties and the applicability
conditions of the independent scattering approximation (ISA) for multiple nanoparticles
embedded in absorbing host media. The multi-sphere method (MSM) is employed to
simultaneously consider the effects of host medium absorption and dependent scattering.

First, the effects of host medium absorption on the extinction properties of particles
are investigated with consideration of the dependent scattering effect. The results for
two-sphere clusters at a fixed orientation indicate that enhancing the absorption of the host
medium has a more pronounced effect where the incident light propagates along the line
connecting the centers of the two spheres. Moreover, the results for randomly oriented
multiple-sphere silica clusters (with particle radius ranging from 40 to 160 nm and particle
volume fraction of 0.1) embedded in polyethylene suggest that the host medium absorption
can lead to negative extinction within the wavelength range of 3.0–8.0 µm, which differs
significantly from the results for nonabsorbing host media.

Then, the effects of host medium absorption on the interactions between (nonabsorb-
ing) particles and the applicability conditions of the ISA are investigated for a wide range
of parameters. The particle radius ranges from 40 to 160 nm, which is small compared to
the incident wavelength. The ratio of particle refractive index to medium refractive index
ranges from 0.8 to 2.0, and the host medium absorption index ranges from 0 to 0.01. When
the host medium is nonabsorbing, the nondimensional extinction cross section ηext and the
ISA criteria are almost independent of the particle refractive index and particle radius, and
the interactions between particles always enhance particle extinction. In contrast, when the
host medium is absorbing, the nondimensional extinction cross section and the ISA criteria
correlate with particle size, particle refractive index and host medium absorption index,
and the interactions between particles may suppress particle extinction and even lead to
negative extinction. Moreover, it is found that in regimes where the value of ηext changes
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from larger than 1.0 to less than 0.0 (negative), a larger c∗ (the ratio of interparticle clearance
to wavelength) may be required to ensure the accuracy of the ISA, which is inconsistent
with the traditional view that absorption suppresses the dependent scattering. In this result,
the criteria for absorbing host media differ significantly from the conventional ones for
transparent host media. Specifically, for all the cases considered in this work, the criteria
c∗ ≥ 2.52 for nonabsorbing host media and c∗ ≥ 4.8 for absorbing host media ensure that
the accuracy of the ISA is kept within 5 percent.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/photonics10070782/s1, Figure S1: The nondimensional extinction
cross section ηext of 27-sphere cluster versus the ratio of average interparticle clearance to wavelength
c∗ with incident wavelength of λ = 4.0 µm, particle radius of ai = 500, 750 and 1000 nm, and particle
refractive index of m′p,i = 1.38, 2.1216 and 3.0308 (m′p,i/m′h = 0.911, 1.4, and 2.0). The complex
refractive index of the host medium is mh = 1.5154 + im′′

h with m′′
h = 0.0, and 0.001. (a) ai = 500 nm,

m′′
h = 0.0, (b) ai = 500 nm, m′′

h = 0.001, (c) ai = 750 nm, m′′
h = 0.0, (d) ai = 750 nm, m′′

h = 0.001,
(e) ai = 1000 nm, m′′

h = 0.0, and (f) ai = 1000 nm, m′′
h = 0.001. The blue region represents that the

ISA is satisfied for all the three m′p,i/m′h considered. The results are averaged over 132 different
orientations and 10 different configurations.
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