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Abstract: Due to their excellent performance, superhydrophobic materials have received a lot of at-
tention and research in friction reduction and wear resistance. However, the effect of different contact
angles of superhydrophobicity on friction and wear properties has not been thoroughly studied. In
this paper, a nanosecond pulsed laser was used to realize the preparation of a superhydrophobic
nickel surface, which indeed reduced the coefficient of friction but also increased the wear volume
when compared to the unprocessed surface. As the contact angle of the superhydrophobic nickel
surface increased, the coefficient of friction gradually increased, and the wear volume decreased
gradually in superhydrophobic nickel surfaces. When the laser energy density was 1 J/cm2, the
contact angle was 150.3◦ and the minimum friction coefficient was 0.4. However, when the laser
energy density was 50 J/cm2, the maximum contact angle was 156.4◦ and the minimum wear vol-
ume was 4.23 × 107 µm3. The friction direction also influenced the tribological properties of the
superhydrophobic-textured surface. This method makes it possible to process superhydrophobic
surfaces with more suitable friction and wear properties.

Keywords: laser surface texturing; nickel; superhydrophobicity; tribology; contact angle

1. Introduction

Wettability is an important characteristic of solid surfaces, and the contact angle is
the most used parameter to characterize wettability [1]. The material is superhydrophobic
when the water droplet contact angle is greater than 150◦ and the water droplet sliding
angle is less than or equal to 10◦ [2]. Studies have shown that hydrophobicity can change
the properties of the material surface by changing the chemical composition of the material
surface and the geometry of the micro/nanostructure, making superhydrophobic materials
useful [3,4].

At present, methods for preparing superhydrophobic surfaces on metals include hy-
drothermal [5], chemical deposition [6], electrodeposition [7], etc. Compared with other
superhydrophobic surface fabrication methods, the operation process of laser surface tex-
turing is simple, non-toxic, non-polluting, and has high stability and diversity of processed
materials [8,9]. Many studies have discussed laser preparation of superhydrophobic metal
surfaces. Rajab [10] obtained a stable superhydrophobic surface on 316 L stainless steel
using laser surface texturing. Huang [11] fabricated a superhydrophobic surface on alu-
minum alloy using laser treatment coupled with a chemical functionalization method.
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Lu [12] illustrated that the laser-textured superhydrophobic surface enhanced the corrosion
resistance dramatically. Shimada [13] proposed a concept of direct laser processing of
two-scale periodic structures exhibiting superhydrophobicity, with the maximum apparent
contact angle of 161.4◦ and the contact angle hysteresis of 4.2◦ for a pitch of 80 µm and
20 repetition shots. Huang [14] used an ultrafast femtosecond laser to prepare a superhy-
drophobic/superlipophilic lead bronze surface and found that the anisotropy of the surface
structure led to the anisotropy of the tribological properties.

Due to their excellent performance, superhydrophobic materials have good perfor-
mance in anti-friction [15], anti-corrosion [16], antibacterial [17], etc., and are widely used
in aerospace, petroleum engineering, and other fields. Among them, anti-friction and
anti-wear have received a lot of attention and research. Jiao [18] manufactured a superhy-
drophobic aluminum surface with great wear-resistance and decreased the friction force of
the sliding interface. Guo [19] carried out nanosecond laser processing to construct a grid
of microgrooves on an aluminum surface and reported whether it was under dry friction
or water lubrication conditions, with the obtained superhydrophobic samples resulting in
good anti-friction and wear-resistant ability. However, the influence of different contact
angles of superhydrophobicity on the friction and wear properties has not been thoroughly
studied. It is still unknown how large the contact angle of the metal surface can be prepared
to have the best tribological properties.

In this paper, the common nickel was used to prepare a nickel surface with super-
hydrophobic properties by using nanosecond laser processing technology. The effect of
laser energy density on wettability was studied, and the friction and wear properties of
superhydrophobic surfaces with different contact angles were compared and analyzed.
We also analyzed the effect of perpendicular and parallel friction directions on the tri-
bological behavior of superhydrophobic surfaces. This is very important for producing
superhydrophobic surfaces with specified tribo-testing directions, which is beneficial for
the development of superhydrophobic surfaces with the best contact angle.

2. Experimental Details
2.1. Sample Preparation

The pure nickel content in the nickel material was greater than 99.5%, which was
grinded by 800#, 1000#, and 1500# sandpaper successively to ensure that the roughness
of the sample was consistent and smooth before the experiment. And then they were
ultrasonic treated with acetone, anhydrous ethanol, and deionized water, respectively, for
5 min and dried with compressed air to remove the impurities on the surfaces. In addition,
the above ultrasonic cleaning process was still required after the laser surface texturing for
the samples, as shown in Figure 1. The wettability and tribology properties were measured
after the samples were exposed to the air for two weeks. In our previous experiments [20],
most of the samples achieved superhydrophobicity by exposing nickel to air for two weeks.
Of course, the longer the time, the better the superhydrophobicity may be. However,
this experiment did not focus on the effect of time on the superhydrophobic properties
of the surface, so the performance of the surface of the sample placed at other times was
not discussed.

2.2. Laser Surface Texturing

A nanosecond pulsed fiber laser (Sanda laser, YLP-SD20L, Wuhan, China) with
1064 nm center wavelength, 20 kHz repetition frequency, and 10 W maximum average
power was adopted in our experiment. The scanning galvanometer with a 110 mm focal
length controlled the movement of the laser in the plane, and the focused spot diameter
was less than 20 µm. The laser processing was carried out in the air with a lateral stripe
scanning path. The energy density range could be set from 0 to 100 J/cm2 with a scanning
interval of 0.5 mm and a scanning speed of 20 mm/s. The experimental principle is shown
in Figure 2.
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Figure 2. Experimental schematic.

2.3. The Measurement of the Wettability

The water contact angle of the surfaces was measured by the contact angle measuring
instrument (OCA20). The surface topography of the samples was observed by the scanning
electron microscope (SEM) and the ZYGONexView white light interferometer (WLI).

2.4. The Antifriction Performance

The SRV-4 friction and wear testing machine was used to analyze the antifriction
performance for the point of contact. The friction parts were Si3N4 ceramics. The parameters
were load of 10 N, time of 20 min, stroke of 1000 mm, and frequency of 20 kHz under dry
friction conditions, and each test was repeated three times.

3. Results
3.1. Effect of Laser Energy Density on Contact Angle

According to various laser energy densities, the nickel surface was processed, and
the measured contact angle is shown in Figure 3. When the energy density was less than
1 J/cm2, the contact angle increased almost linearly with the increase in energy density,
from 60.8◦ on the unprocessed surface to 144.7◦ at 0.5 J/cm2. At this time, the surface had
strong adhesion, the surface of the sample was turned over, and the water droplets would
not slip off. When the energy density was greater than 1 J/cm2, the contact angle showed
a stable trend without an obvious increase, and all of them were greater than 150◦. The
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sample was placed on a platform with an inclination angle of 10◦, and the water droplets
fell off. Therefore, the samples all exhibited superhydrophobic properties.
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3.2. Analysis of Wettability Transition Reasons

The surface wettability of materials was mainly related to the surface roughness and
surface chemical composition, so the characterization and analysis were carried out for
these two aspects. In addition to the unprocessed surface, superhydrophobic samples with
laser energy densities of 1, 20, 50, and 100 J/cm2 were selected as examples and named U,
L1, L20, L50, and L100, respectively.

Figure 4a–e show the SEM two-dimensional topography of samples U, L1, L20, L50,
and L100. The two-dimensional diagram showed that the unprocessed surface was very
smooth, and the processed superhydrophobic surface formed a periodic stripe structure.
Due to the action of the laser, the material in the illuminated area was ablated and removed
and then re-solidified in the non-irradiated area. Protrusions were formed on the sample
surface due to the rapid temperature drop caused by the movement of the laser beam.
These protrusions were attached to a smaller cylindrical protrusion that was spherical and
disc-shaped, ranging from a few micrometers to ten micrometers. The striped-textured
surface presents a multi-scale micro-nano structure. The formation of these dimples and
protrusions increased the surface roughness of the samples [21].

Figure 4f–j show the LCM three-dimensional topography of samples U, L1, L20, L50,
and L100. The three-dimensional map and roughness results of the surface roughness after
laser processing was much higher than that of the unprocessed surface, and the surface
roughness gradually increased with the increase in energy density. According to the rough-
ness results, its relationship with the contact angle was analyzed. The roughness of the
superhydrophobic surface was greater than 3564 µm. The surface roughness increased, and
the samples also maintain superhydrophobic properties. Therefore, the surface roughness
of the samples played an important role in the superhydrophobicity.

Next, the influence of the surface chemical composition on the contact angle was
analyzed. The EDS element content map of samples U, L1, L20, L50, and L100 is shown
in Figure 5. Since the C content was lower than 1%, the influence of C was ignored. It
was considered that the surface contains only O and Ni elements before and after laser
processing. The atomic content ratio of each sample is shown in Figure 6. With the increase
in the laser energy density, the atomic proportion of O on the surface gradually increased,
and the increase rate also gradually decreased, and the change rule was the same as that
of the roughness. The change law of the contact angle with the O atom ratio was also
similar. An increase in O content represents an increase in the content of metal oxides
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formed, and the chemical bonds of metal oxides are polar chemical bonds [22]. The higher
the content of polar chemical bonds, the higher the surface free energy, which is not
conducive to the acquisition of superhydrophobicity. Considering the surface chemical
composition, the increase in laser energy density was not conducive to the formation of
surface superhydrophobicity.
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The above analysis showed that the laser energy density would increase the roughness
and O content of the nickel surface at the same time. Under the combined action of the two,
the surface with a laser energy density greater than 1 J/cm2 exhibited superhydrophobic
properties. As the energy density increased, the surface roughness increased, which
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was conducive to the formation of superhydrophobic surfaces. However, currently, the
proportion of O atoms was also increased, and the surface free energy was increased, which
was not conducive to the formation of a superhydrophobic surface [23]. Surface roughness
played a dominant role at this time, offsetting the adverse effects of surface free energy
so that the surface still exhibited superhydrophobic properties. The combined effect of
the two also led to the fact that the contact angle did not change monotonously with the
increase in surface roughness.

4. Discussion

Next, the effect of laser energy density on the friction and wear properties of super-
hydrophobic surfaces was analyzed. The superhydrophobic samples with laser energy
densities of 1, 20, 50, and 100 J/cm2 were still selected for friction and wear experiments.
The measured coefficient of friction (COF) curve is shown in Figure 7a. The COF of the
superhydrophobic surface was reduced compared with 0.821 of sample U. The relationship
between the surface contact angle and the COF was analyzed, as shown in Figure 7b. As the
contact angle increased, the COF increased gradually. When the laser energy was 1 J/cm2,
the contact angle was 150.3◦ and the minimum friction coefficient was 0.4.
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The three-dimensional morphology of the wear scar on the surface after friction is
shown in Figure 8. The width of the wear scar on the superhydrophobic surface after
laser processing was larger than that of the unprocessed sample U, and the measured wear
volume of sample U was 1.25 × 107 µm3. The relationship between surface contact angle
and wear volume is shown in Figure 9. The wear volume of the superhydrophobic sample
surface was larger than that of sample U without processing. With the increase in the
contact angle, the wear volume presented a gradually decreasing trend. At 50 J/cm2, the
maximum contact angle was 156.4◦ and the minimum wear volume was 4.23 × 107 µm3.

The laser-fabricated superhydrophobic surface reduced the COF of nickel but also
increased the wear volume. The superhydrophobic property of the surface reduced the
adhesion of the surface of the friction pair and reduced the COF. Due to the thermal effect
of laser processing, the hardness of the surface micro-nano texture was greater than that of
the metal itself. High-hardness abrasive debris would participate in the subsequent friction
and wear process, and the resulting ditch effect would increase the wear volume [24].
However, as the contact angle increased, the removal effect of the laser on the material
surface increased, the removed surface area increased, and the contact area with the friction
piece decreased; therefore, the COF gradually increased [25]. At the same time, when
the contact angle increased, the surface roughness also increased. Currently, the surface
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micro-nano structure increased, and the surface captured the wear debris, which led to a
gradual decrease in the wear volume.
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Due to the striped texture, we analyzed the tribological properties of the striped-
textured surface in different friction directions. Figure 8 shows that the friction directions
of samples L1 and L20 are perpendicular to the stripe texture direction, while the friction
directions of L50 and L100 are parallel. It can be seen from Figures 7b and 9 that when the
texture is perpendicular to the friction direction, as the contact angle increases, the COF and
wear volume increase gradually, but the increase is very small. When the texture is parallel
to the friction direction, as the contact angle increases, the COF increases, but the wear
volume decreases. The texture perpendicular to the friction direction was more conducive
to the preparation of parts that required a small COF and a large wear volume, such as
cheap parts that were easy to replace, and which would protect other high-precision and
expensive parts. The texture parallel to the friction direction was more conducive to the
preparation of situations that required a large COF and small wear volume, such as parts
that were not easy to replace or that were expensive.
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5. Conclusions

We used a nanosecond pulsed laser to realize the preparation of the superhydrophobic
nickel surface and we studied the friction and wear properties of the superhydrophobic
nickel surface with different contact angles under dry friction conditions. Compared to the
unprocessed surface, the laser-fabricated superhydrophobic surface reduced the friction
coefficient of nickel but also increased the wear volume. However, as the contact angle
increased, the COF of the superhydrophobic surface increased gradually and the wear
volume decreased gradually. The texture perpendicular to the friction direction is more
conducive to the preparation of parts requiring a small COF and large wear volume, while
the texture parallel to the friction direction is more conducive to the preparation of parts
requiring a large COF and small wear volume. This method provides a reference for
preparing superhydrophobic surfaces with more suitable friction and wear properties.
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