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Abstract: We propose an efficient scheme to enhance the generation of optical second-order sidebands
(OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving
field and a weak probe field, and a control field is applied to the atom. We use the steady-state
method to analyze the nonlinear interaction in the system, which is different from the traditional linear
analysis method. The existence of an auxiliary three-level atom driven by the control field significantly
enhances the generation of an OSS. It is found that the efficiency of the OSS can be effectively
modulated by adjusting the Rabi frequency of the control field, optomechanical cooperativity and
atomic coupling strength. Our scheme provides a promising solution for controlling light propagation
and has potential application in quantum optical devices and quantum information networks.

Keywords: optical second-order sidebands; atom assistance; hybrid optomechanical system

1. Introduction

In recent decades, the study of cavity optomechanical systems has developed rapidly
in theory and experiments, such as radiation-pressure fluctuations, three-dimensional vis-
cous confinement and cooling, tunable electromagnetically induced multi-transparencies,
quantum-coherent coupling, etc. [1–8]. As we know, a cavity optomechanical system
comprises an optical nano/microcavity coupled with a mechanical oscillator via radiation
pressure coupling. Due to the continuous advancements in micro- and nano-processing
technology, the fabrication of high-quality optical microcavities has been significantly
improved [9,10]. This progress has led to the rapid development of cavity optomechan-
ical systems in various applied fields, such as normal mode splitting [11,12], mechani-
cal resonator sideband cooling [13,14], quantum sensors [15–18], quantum information
processes [19–21], etc. An intriguing phenomenon observed in a cavity optomechanical
system is known as optomechanically induced transparency (OMIT) [22–24]. This effect
serves as an analog to electromagnetically induced transparency and can be comprehen-
sively understood as the linearization of optomechanical interactions [25–27]. Due to the
correlation between the output spectrum and the measured physical quantities, the trans-
mission window of the probe field can be applied to the measurement of small physical
quantities in optically and mechanically induced transparent structures.

In recent years, there has been a growing interest in nonlinear optical–mechanical
effects within cavity optomechanical systems. By considering the nonlinear interac-
tion term in the dynamic equation of an optical–mechanical system, many interesting
phenomena caused by nonlinear optical–mechanical interactions have been revealed,
and the scope of cavity optical–mechanical systems has been expanded to topics such
as the generation of second-order sidebands [28–30], sideband frequency combs [31],
optical–mechanical chaos [32], photon-blockade effects [33,34] and carrier–envelope phase
correlation effects [35,36]. Among these phenomena, OSS is the first non-linear sideband
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of the higher-order sidebands, and the generation of high-order sidebands stands out as
a characteristic manifestation of nonlinear interactions. It has garnered significant attention
in various fields, such as optical frequency combs [29,30], optical communication [36,37]
and high-sensitivity measurement [38]. However, the generally weak effect of high-order
sidebands has limited their practical applications. As a consequence, a significant amount
of research effort has been dedicated to enhancing the higher-order sideband effects in
optomechanical systems, leading to the development of numerous hybrid optomechanical
systems. For example, the hybrid atomic cavity optomechanical system [39–42], the hybrid
electromagnetic optomechanical system [43] and the PT symmetric optical resonator [44]
have been used to enhance the high-order sideband effect.

In this paper, we introduce a novel hybrid optomechanical system aimed at enhancing
the effects of a second-order sideband. This system comprises an optical microcavity
with a movable mirror and a three-level cold atom. In this work, we found that the
Rabi frequency of the atom, optomechanical cooperativity and atomic coupling strength
play important roles in the generation of second-order sideband conversion efficiency.
Moreover, we also found that the conversion efficiency of the second-order sideband can be
significantly enhanced under different parameters in the hybrid optical–mechanical system
of a three-level cold atom.

The structure of this paper is organized as follows. Section 2 presents the model
and Hamiltonian of the system and derives the analytical expression of the output field.
Section 3 discusses the influence of system parameters on the generation of the second-order
sideband, and analyses the mutual compensation between the influence of the parameters.
Section 4 presents the conclusions of this paper.

2. Theoretical Model and Equations

The model we consider is shown schematically in Figure 1. The system consists of an
optical microcavity with a mobile reflector and a three-level atom. The resonance frequency
and loss rate of the cavity are described as ωcav and κa. The cavity is driven by a strong
driving field with a frequency of ωd and an amplitude of εd as well as a weak probe field
with a frequency of ωp and an amplitude of εp, respectively. The three-level atom is located
in the cavity, and its excited and ground states are labeled as |1⟩ and |2⟩, |3⟩. The atomic
transition |1⟩ ↔ |2⟩ with an energy-level difference of ω12 = ω1 − ω2 is coupled by the
cavity mode of frequency ωcav. The corresponding frequency detuning and coupling
strength are indicated by ∆cav = ω12 − ωcav and g. The transition |1⟩ ↔ |3⟩ is driven
by a control field of frequency ω0 with Rabi frequency Ω and detuning ∆0 = ω12 − ω0.
The interaction between the cavity mode and the mechanical resonator is described by
radiation pressure with a coupling strength of G, where the frequency of the mechanical
resonator is ωm.

Using the rotating wave approximation of the system, the full Hamiltonian of the
system, as shown in Figure 1, can be written as [26,27,32,34]

HI = ℏ∆cavσ11 + ℏ(∆cav − ∆d)σ22 + ℏ(∆cav − ∆0)σ33
+ℏ(∆d − ∆cav)a†a + ℏωmb†b − ℏGa†a(b† + b)
+ℏ(Ωσ13 + gaσ12 + H.c.) + iℏ

√
2ηγa[(εda† − εd

∗a)
+(εpa†ei(∆p−∆d)t − εp

∗ae−i(∆p−∆d)t)],

(1)

where a and b (a† and b†) are the annihilation (creation) operators of the cavity field
and phonon field, respectively; ∆p = ωp − ωcav is the detuning of the cavity resonance
frequency and the frequency of the probe laser; and ∆d = ωd − ωcav is the detuning of the
cavity resonance frequency and the frequency of the drive laser.

The term ℏ∆cavσ11 + ℏ(∆cav − ∆d)σ22 + ℏ(∆cav − ∆0)σ33 + ℏ(∆d − ∆cav)a†a + ℏωmb†b
in Equation (1) describes the free Hamiltonian of the system. The term ℏGa†a(b† + b)
describes the coupling between the cavity field and the phonon field with the coupling
coefficient G. The term ℏΩσ13 describes the coupling between the control field and the
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atom. The term ℏgaσ12 describes the coupling between the cavity field and the atom
with the coupling coefficient g. The term iℏ

√
2ηγa(εda† − εd

∗a) describes the interaction
between the cavity field and the drive field, and iℏ

√
2ηγa(εpa†ei(∆p−∆d)t − εp

∗ae−i(∆p−∆d)t)
describes the interaction between the cavity field and the probe field. The amplitude of the
driving field [7] is defined as εd =

√
Pd/ℏωd, where Pd is the power of the driving field,

and the amplitude of the probe field is defined as εp =
√

Pp/ℏωp, where Pp is the power
of the probe field. In addition, the coupling coefficient ηc is assumed to be a constant, and
the specific value ηc = 1/2.

Photonics 2024, 11, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. (a) Schematic diagram of a hybrid optomechanical system, which consists of a passive 
cavity system and an atom as well as an oscillator. The hybrid system is driven by a strong control 
field and a weak probe field through the passive cavity. (b) Schematic diagram of the internal energy 
level structure of an L-type three-level cold atom. (c) Atomic and mechanical oscillators coupled 
with the cavity field separately. 

Using the rotating wave approximation of the system, the full Hamiltonian of the 
system, as shown in Figure 1, can be written as [26,27,32,34] 

11 22 0 33
† † † †

† *
13 12

( ) ( )† *

( ) ( )
( ) ( )

( . .) 2 [( )

( )],p d p d

I cav cav d cav

d cav m

a d d

i t i t
p p

H
a a b b Ga a b b

ga H c i a a

a e ae

s s s

w

s s hg e e

e eD -D - D -D

= D + D -D + D -D

+ D -D + - +

+ W + + + -

+ -

  

  

 
 (1)

where a   and b   ( †a   and †b  ) are the annihilation (creation) operators of the cavity 
field and phonon field, respectively; p p cavw wD = -  is the detuning of the cavity reso-
nance frequency and the frequency of the probe laser; and d d cavw wD = -  is the detuning 
of the cavity resonance frequency and the frequency of the drive laser. 

The term † †
11 22 0 33( ) ( ) ( )cav cav d cav d cav ma a b bs s s wD + D -D + D -D + D -D +       in 

Equation (1) describes the free Hamiltonian of the system. The term † †( )Ga a b b+  de-
scribes the coupling between the cavity field and the phonon field with the coupling coef-
ficient G . The term 13sW  describes the coupling between the control field and the atom. 
The term 12gas  describes the coupling between the cavity field and the atom with the 

coupling coefficient g . The term † *2 ( )a d di a ahg e e-  describes the interaction between 

the cavity field and the drive field, and ( ) ( )† *2 ( )p d p di t i t
a p pi a e aehg e eD -D - D -D-  describes 

the interaction between the cavity field and the probe field. The amplitude of the driving 
field [7] is defined as /d d dPε ω=  , where dP  is the power of the driving field, and the 

amplitude of the probe field is defined as /p p pPε ω=  , where pP  is the power of the 
probe field. In addition, the coupling coefficient cη  is assumed to be a constant, and the 
specific value 1/ 2cη = . 

Figure 1. (a) Schematic diagram of a hybrid optomechanical system, which consists of a passive
cavity system and an atom as well as an oscillator. The hybrid system is driven by a strong control
field and a weak probe field through the passive cavity. (b) Schematic diagram of the internal energy
level structure of an Λ-type three-level cold atom. (c) Atomic and mechanical oscillators coupled
with the cavity field separately.

Based on the Hamiltonian in Equation (1) and considering the damping of the cavity
field and phonon field, the quantum dynamic evolution of the system can be described by
the following Heisenberg–Langevin equation [33,35]:

.
a = −[κa + i(∆d − ∆cav)− iG(b + b†)]a − ig∗σ21

+
√

2ηγaεd +
√

2ηγaεpei(∆p−∆d)t + fa,
.
b = −(γm + iωm)b − iGa†a + fb,
.
σ21 = −(γ12 + i∆d)σ21 + iga(σ11 − σ22)− iΩσ23 + f21,
.
σ23 = −[γ32 + i(∆d − ∆0)]σ23 − iΩ∗σ21 + f23,

(2)

where the quantum noise of the cavity terms fa, fb, f21 and f23, have been neglected in
Equation (2), because ⟨ fa⟩ = ⟨ fb⟩ = ⟨ f21⟩ = ⟨ f23⟩ = 0. κa and γm are the loss rates of
the cavity and atom. It should be noted that the steady-state solution of the system is not
easy to obtain because of the nonlinear terms (i.e., iGa(b + b†) and iGa†a) in Equation (2).
Using the linearization of the Heisenberg–Langevin equations, these nonlinear terms are
neglected in many previous works. However, we focus on the efficient generation of
a second-order sideband caused by the nonlinear terms in this hybrid system.

Based on the assumption that the driving field is much stronger than the probe field,
the perturbation method is used to solve Equation (2). This method allows us to describe
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all operators in the form of o = os + δo(o = a, a†, b, b†), where os is the steady-state solution.
We can write operators as their expected values, because we only focus on the value
response of the probe field in the system. Then, the expression of the steady-state solution
can be obtained as follows:

as =

√
2ηκaεd

γa+i∆′+ g2

γ12+i∆d
Ω2

γ32+i(∆d−∆0)

,

bs =
iGa2

γm+iωm
.

(3)

Then, we focus on the perturbation made by the probe field. The evolution of the
perturbation can be written as

δ
.
a = −(κa + i∆′)δa − ig∗δc
+
√

2ηγaεpei(∆p−∆d)t,
δ

.
b = −(γm + iωm)δb − iGδa†δa,

δ
.
c = −(γ12 + i∆d)δc − igδa − iΩδd,

δ
.
d = −[γ32 + i(∆d − ∆0)]δd − iΩ∗δc.

(4)

In this work, we focus on the influence of the probe field caused by the nonlinear
terms (i.e., iGδa(δb+ δb†) and iGδa†δa). Therefore, we give the trial solution of Equation (4),
which has the following form:

δa = A−
1 e−iδt + A+

1 eiδt + A−
2 e−2iδt + A+

2 e2iδt,
δa† = (A−

1 )
∗eiδt + (A+

1 )
∗e−iδt + (A−

2 )
∗e2iδt + (A+

2 )
∗e−2iδt,

δb = B−
1 e−iδt + B+

1 eiδt + B−
2 e−2iδt + B+

2 e2iδt,
δb† = (B−

1 )
∗eiδt + (B+

1 )
∗e−iδt + (B−

2 )
∗e2iδt + (B+

2 )
∗e−2iδt,

(5)

where the coefficients A∓
1 and A∓

2 correspond to the first-order sideband with frequency
ωd ± δ and second-order sideband with frequency ωd ± 2δ, and the signs + and − in ωd ± δ
and ωd ± 2δ describe the lower and upper sidebands, respectively. When the probe field and
pump field drive the cavity optomechanical system simultaneously, due to the nonlinear
terms (i.e., −iGδa(δb† + δb), −iGδa†δa) in Equation(4), there are a series of frequencies
ωd ± nδ (n is an integer) in the output field, where the first upper and lower sidebands
are also called the anti-Stokes field and Stokes field. The output fields with frequencies
of ωd + 2δ and ωd − 2δ are divided into higher and lower second-order sidebands. By
substituting Equation (5) into Equation (4) and comparing the coefficients of the same order,
we can obtain the amplitude of the first-order sideband and second-order sideband:

A−
1 =

F3(δ)F4(δ)
√

2ηcκaεp
F12(δ)−F13(δ)

,

(A+
1 )

∗ =
[F3(δ)−F4(δ)]G2|as |2 A−

1
F11(δ)

,

B−
1 =

−iG[as(A+
1 )∗+a∗s A−

1 ]

F4(δ)
,

(B+
1 )∗ =

iG[as(A+
1 )∗+a∗s A−

1 ]

F3(δ)
,

A−
2 =

[F13(2δ)+[F3(2δ)−F4(2δ)]G2as ]A−
1 (A+

1 )
∗

F12(2δ)−F13(2δ)

+
iGF3(δ)F4(δ)F11(2δ)A−

1 (B+
1 )

∗−iG3|as |2F3(δ)F4(δ)[F3(2δ)−F4(2δ)](A+
1 )

∗B−
1

[F12(2δ)−F13(2δ)]F11(2δ)
,

(6)

with
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F1(nδ) = −inδ + (κa − i∆′),
F2(nδ) = −inδ + (κa + i∆′),
F3(nδ) = −inδ + (γm − iωm),
F4(nδ) = −inδ + (γm + iωm),
F5(nδ) = −inδ + (γ12 − i∆d),
F6(nδ) = −inδ + (γ12 + i∆d),
F7(nδ) = −inδ + γ32 − i(∆d − ∆0),
F8(nδ) = −inδ + γ32 + i(∆d − ∆0),
F9(nδ) = |g|2F7(nδ)/(|Ω|2 + F5(nδ)F7(nδ)),
F10(nδ) = |g|2F8(nδ)/(|Ω|2 + F6(nδ)F8(nδ)),
F11(nδ) = [F1(nδ) + F9(nδ)]F3(nδ)F4(nδ) + [F3(nδ)− F4(nδ)]G2|as|2,
F12(nδ) = [F2(nδ) + F10(nδ)]F3(nδ)F4(nδ) + [F4(nδ)− F3(nδ)]G2|as|2,

F13(nδ) = [F3(nδ)−F4(nδ)][F4(nδ)−F3(nδ)]G4|as |4
F11(nδ)

.

(7)

From Equation (6), it can be seen that the amplitude of the first-order sideband is
proportional to the probe field, while the amplitude of the second-order sideband contains
a term from the upconverted first-order sideband generation process and a term directly
describing the second-order sideband generation process. According to the input–output
relation of the cavity sout = sin − √

ηcκaa [7], we can obtain the output transmission
spectrum as follows:

sout = c1e−iωdt + cpe−iωpt −√
ηcκa A−

2 e−i(2ωp−ωd)t

−√
ηcκa A+

1 e−i(2ωd−ωp)t −√
ηcκa A+

2 e−i(3ωd−2ωp)t,
(8)

where the terms c1 = εd −
√

ηcκaas and cp = εp −
√

ηcκa A−
1 represent the frequency of ωd

and ωp in the output transmission spectrum, respectively; the term −√
ηcκa A+

1 e−i(2ωd−ωp)t

represents the Stokes process; the term −√
ηcκa A−

2 e−i(2ωp−ωd)t describes the second-order
upper sideband process, in which the output field with frequency ωd + 2Ω can be produced;
and the term −√

ηcκa A+
2 e−i(3ωd−2ωp)t describes the second-order lower sideband process,

in which the output field with frequency ωd − 2Ω can be produced.
The transmission of the probe field is defined as tp = cp/εp. As mentioned above, the

optical transmission strength can be obtained as follows

∣∣tp
∣∣2 =

∣∣∣∣∣1 −
√

ηcκa A−
1

εp

∣∣∣∣∣
2

. (9)

In this work, we introduce a dimensionless parameter to describe the conversion
efficiency of the second-order sideband in this hybrid system.

η =
∣∣−√

ηcκa A−
2 /εp

∣∣. (10)

The above equation can describe the generation efficiency of the second-order side-
band. In the next section, we will discuss how to achieve the enhancement of the second-
order sideband.

3. Numerical Results and Discussion

In this section, we will numerically investigate the properties of second-order sideband
generation in Figures 2–5. In this study, our primary focus lies in the generation efficiency
of the second-order sideband.
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Figure 2. (Color online) Calculation results of (a) the transmission
∣∣tp

∣∣2 and (b) the efficiency of
the second-order upper sideband η as a function of detuning δ/ωm for different values of the Rabi
frequency Ω. The other system parameters: κa = 2πMHz, ωm = ωpl = 2π × 50 MHz, γm = 0.01 κa,
C = 100, g = κa, λa = 532 nm, Pd = 300 µW, ∆a = ∆b = ωm.
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First, we examine the influence of the atom on the efficiency of second-order sideband
generation. In Figure 2, we plot the transmission

∣∣tp
∣∣2 and the efficiency of the second-order

upper sideband η as a function of detuning δ/ωm for different values of the Rabi frequency
Ω of the control field. The red solid line and blue dash-dotted line in Figure 2 correspond to
the cases of Ω = 0 and Ω = 2κa, respectively. In the absence of the control field, i.e., Ω = 0,
there is a transparent window near the resonance condition δ = ωm. At the positions of
the transmission dip, the conversion efficiency of the second-order sideband η only arrives
at 15.5% (see Figure 2b, blue dash-dotted line). When the Rabi frequency of the control
field exists and increases to Ω = 2κa, Rabi splitting occurs, the number of peaks of the
second-order sideband changes from two to three and the conversion efficiency of the
second-order sideband η is significantly improved, reaching 31.5%. One can conclude that
the existence of an intracavity atom driven by a control field can significantly improve the
conversion efficiency of the second-order sideband.

Second, we investigate the effect of optomechanical cooperativity C on the efficiency
of the second-order sideband. Figure 3 plots

∣∣tp
∣∣2 and η as a function of detuning δ/ωm for

different levels of optomechanical cooperativity C. Here, we give the optomechanical coop-
erativity C = G2a2/κaγm [42]. As we know, optomechanical cooperativity C is negatively
correlated with cavity field attenuation κa and mechanical mode attenuation γm. From the
spectrum lines of Figure 3, we can find that the conversion efficiency of the second-order
sideband increases significantly with an increase in optomechanical cooperativity from 0 to
100. Therefore, enhanced optomechanical cooperativity C can improve the efficiency of the
second-order sideband. According to Equation (4), the conversion efficiency of the second-
order sideband mainly comes from the nonlinear terms (i.e., −iGδa(δb† + δb), −iGδa†δa).
That is to say, the efficiency of the second-order sideband is related to optomechanical
coupling strength G. In our model, the optomechanical cooperativity C will increase
proportionally with an increase in optomechanical coupling strength G. Thus, the conver-
sion efficiency of the second-order sideband increases with an increase in optomechanical
cooperativity C.

Third, we explore the influence of atom–cavity coupling strength on the efficiency
of the second-order sideband. We plot the transmission

∣∣tp
∣∣2 and the efficiency of the

second-order upper sideband η as a function of detuning δ/ωm for different values of
coupling strength g in Figure 4. From the three spectrum lines of Figure 4 with different
values of coupling strength g = 0.5κa (see Figure 4, red solid line), g = κa (see Figure 4,
blue dash-dotted line) and g = 1.5κa (see Figure 4, yellow dashed line), when adjusting the
atomic coupling strength g, we can find that the second-order sidebands rapidly decrease
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as the coupling strength g increases. This indicates that atom–cavity coupling inhibits the
generation of a second-order sideband. Therefore, controlling the atom–cavity coupling
strength is also an effective means to modulate the generation of a second-order sideband.

Finally, according to Equation (4), the second-order sideband efficiency η is directly
influenced by optomechanical coupling. When the optomechanical coupling is very weak,
we can reduce the strength of the atom–cavity coupling to compensate for the nonlinear
effect. In Figure 5, by setting optomechanical cooperativity to C = 0.01 and the atom–cavity
coupling strength to g = 0.00015κa, we can find that the conversion efficiency of the second-
order sideband can also reach nearly 30%. This demonstrates that the optomechanical
cooperativity C and the atom-cavity coupling strength g can effectively control the second-
order sideband conversion efficiency of the system.

4. Conclusions

In summary, our study focused on the theoretical investigation of the enhanced genera-
tion of an optical second-order sideband in a three-level cold atom-assisted optomechanical
system. The optomechanical cavity with the three-level cold atom is driven by a strong
control field and a weak probe pulse. By utilizing the perturbation method, we successfully
derived explicit analytical expressions for the transmission intensity and the conversion
efficiency of the second-order sideband. Based on these equations and by carefully se-
lecting appropriate parameters, we analyze the influences of Rabi frequency of the atom
Ω, optomechanical cooperativity C and atomic coupling strength g on the conversion
efficiency of the second-order sideband. The results show that the second-order sideband
conversion efficiency can be enhanced by adjusting the Rabi frequency of the atom Ω,
optomechanical cooperativity C and atomic coupling strength g, and the effects of different
parameters on the second-order sideband conversion efficiency can compensate for each
other. The present investigation offers a promising pathway for modulating the nonlinear
optical properties of hybrid optomechanical systems.
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