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Abstract: This study comprehensively characterizes synthesized phosphate materials, specifically
A2MnP2O7 (where A represents Na, K, or Li), utilizing the X-ray diffraction (XRD) and infrared (IR)
spectroscopy techniques. The XRD results corroborate the crystalline nature of these compounds,
while the IR spectra disclose pivotal structural characteristics, including the bent geometry of the
POP bridge. A significant observation is the mismatch of specific IR bands, suggesting a non-
centrosymmetric arrangement in the A2MnP2O7 crystal lattice. The synthesized materials were
evaluated as corrosion inhibitors for mild steel (MS) in 3 wt.% NaCl. Electrochemical assessments
indicate that these materials act as mixed-type inhibitors, demonstrating high inhibition efficiencies
(η%), reaching peak values of 88.3% for Na2MnP2O7, 87% for K2MnP2O7, and 86.7% for Li2MnP2O7 at
a concentration of 10−3 mol/L. The study also elucidates the thermodynamic and kinetic parameters
dictating the inhibition phenomena. Additionally, scanning electron microscopy (SEM) was employed
to examine the surface morphology of mild steel in the presence of these inhibitors.

Keywords: diphosphate; corrosion inhibitor; inorganic inhibitor; mild steel; crystallography; X-ray
diffraction; SEM

1. Introduction

Alkali metal phosphates, with their diverse structural arrangements and tunable prop-
erties, represent a fascinating class of materials with widespread technological implications.
These phosphates, described by the general formula A(MP2O7) or A2(MP2O7) (where A
represents an alkali metal and M denotes a transition metal), encompass a broad spectrum
of compounds finding applications in fields as varied as scintillation for radiation detec-
tion [1,2], phosphors for lighting [3], solid-state lasers [4], catalytic processes, and ionic
conductors [5]. Their structural adaptability stems from the fundamental building blocks
of corner-sharing MO4 tetrahedra and four distinct (P2O7) groups, which assemble into
layered architectures capable of accommodating monovalent alkali metal ions (A) within
the interlayer spaces [6]. This structural flexibility gives rise to remarkable variations in
optical, magnetic, electrical, and catalytic properties, making alkali metal phosphates highly
attractive for fundamental research and practical applications.
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Mild steel, a low-carbon form of steel, is a versatile and widely used engineering
material thanks to its affordability, strength, and ease of fabrication. It finds applications
in construction, automotive manufacturing, pipelines, and various industrial equipment.
However, a major drawback of mild steel is its susceptibility to corrosion in different envi-
ronments [7–10]. In the presence of moisture, oxygen, and electrolytes, mild steel readily
oxidizes, leading to rust formation and the degradation of its structural integrity. This
corrosion can be further accelerated in acidic or alkaline solutions, saltwater environments,
and under conditions of elevated temperature or stress, posing significant challenges for
the long-term use of mild steel components [11–13].

One of the most compelling challenges in materials science is the development of ef-
fective strategies to combat corrosion, a pervasive and costly degradation process affecting
metals and alloys exposed to various environments [14–17]. The economic consequences of
corrosion are staggering, with global costs estimated to be in the trillions of dollars annually.
Corrosion inhibitors offer a practical and efficient approach to mitigating the detrimental
effects of corrosion [6]. When judiciously incorporated into a susceptible system, these
substances significantly reduce the rate of material deterioration [6]. An especially critical
application of corrosion inhibitors lies in the protection of steel reinforcements embedded
within concrete structures, where premature corrosion represents a severe threat to struc-
tural integrity [18–20]. Corrosion inhibitors protect metal surfaces by adsorbing onto the
metal and forming a protective barrier that hinders the corrosive interaction with the envi-
ronment. This adsorption can occur through physical interactions (physisorption), chemical
bond formation (chemisorption), or a combination of both mechanisms. Physisorption
relies on weaker forces like van der Waals interactions and is often reversible. Chemisorp-
tion involves electron transfer or sharing, resulting in strong, irreversible bonds with the
metal surface, offering more robust protection. Understanding the dominant adsorption
mechanism is crucial, as it influences inhibitor stability and the impact of environmental
factors, and provides guidance for designing new, more effective corrosion inhibitors with
tailored structures.

Among the wide array of corrosion inhibitors explored to date, phosphates have
garnered considerable interest due to their favorable combination of cost-effectiveness, low
toxicity, and environmental compatibility [21,22]. The past two decades have witnessed
a surge in research endeavors aimed at elucidating the mechanisms of phosphate-based
corrosion inhibition and optimizing their performance in both simulated pore solutions
and real-world applications [23]. The efficacy of phosphates as corrosion inhibitors likely
stems from the formation of protective surface films that hinder the corrosive interaction
between the underlying metal and its environment.

A growing body of literature underscores the potential of phosphate-based materials
to combat corrosion in diverse settings. Bastidas et al. pioneered a comparative study
evaluating the performance of sodium monofluorophosphate (Na2PO3F), disodium hydro-
gen phosphate (Na2HPO4), and trisodium phosphate (Na3PO4) as corrosion inhibitors for
steel embedded in mortar [24]. Within this system, Na2PO3F exhibited superior inhibition
efficiency compared to the other phosphate compounds. More recently, Elhafiane et al.
synthesized a novel nickel potassium phosphate, NiK1.18N0.82(H2P2O7)2·2H2O (BP), and
demonstrated its ability to inhibit the corrosion of mild steel in 1 M HCl solution [25]. Fur-
thermore, Khmiyas explored the use of AgSrCu4.5(PO4)6 as a corrosion inhibitor for C35E
steel in an acidic medium and unveiled the influence of temperature on the underlying
inhibition mechanisms [26].

Motivated by the promising findings in the field of phosphate-based corrosion inhi-
bition, this study focuses on the synthesis of the A2MnP2O7 series of compounds (where
A = Li, Na, K) using a dry synthesis method. These materials are subsequently subjected to
meticulous characterization employing X-ray diffraction, FT-IR, and Raman spectroscopy
to establish their structural features and vibrational properties. Crucially, this work in-
vestigates their potential as corrosion inhibitors for mild steel in a 3 wt.% NaCl solution
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through comprehensive electrochemical measurements and in-depth surface analysis using
scanning electron microscopy (SEM).

2. Results and Discussion
2.1. X-ray Diffraction

The X-ray diffraction (XRD) patterns presented in Figure 1 provide compelling evi-
dence for the successful synthesis of the target compounds K2MnP2O7, Na2MnP2O7, and
Li2MnP2O7. A detailed analysis reveals that both K2MnP2O7 and Li2MnP2O7 crystallize
in the monoclinic system, as supported by their agreement with the reference patterns
JCPDS n◦ 810-4021 and JCPDS n◦ 100-8658, respectively. In contrast, Na2MnP2O7 exhibits
a triclinic crystal structure, aligning well with JCPDS n◦ 201-239.
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Figure 1. XRD spectra of different compounds.

These findings offer valuable insights into the structural characteristics of the synthe-
sized compounds. The distinct crystal systems (monoclinic and triclinic) suggest variations
in atomic arrangements and lattice parameters, potentially leading to differences in their
physical and chemical properties.

2.2. Spectroscopic Evaluation of A2MnP2O7 (A = Li, Na, K)

The infrared (IR) absorption and Raman scattering spectra of the synthesized diphos-
phates A2MnP2O7 (A = Li, Na, K) provide valuable insights into their vibrational modes
and structural characteristics (Figure 2). A careful analysis of the spectra reveals three
distinct frequency ranges. The high-frequency region (1001–1183 cm−1) features prominent
Raman bands for K2MnP2O7, Na2MnP2O7, and Li2MnP2O7, consistent with their crys-
talline nature. Notably, the exceptionally sharp bands observed for Na2MnP2O7 suggest
a higher degree of crystallinity. This region reveals characteristic bands for each com-
pound, such as the 1001–1137 cm−1 series for K2MnP2O7 and distinct peaks at 740, 732, and
787 cm−1 for Na2MnP2O7. These spectral features likely arise from the stretching vibrations
of the P-O-P bridges and terminal PO3 groups within the diphosphate framework.
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Figure 2. Infrared and Raman spectra of A2MnP2O7 (A = Li, Na, K).

The mid-frequency region (700–950 cm−1) encompasses the symmetric and asymmetric
stretching vibrations of P-O-P linkages. Examining both IR and Raman spectra within this
range offers a more comprehensive understanding of these vibrational modes. Finally, the
low-frequency region (200–700 cm−1) primarily reflects the deformation modes (δPO3) of the
phosphate groups, with potential contributions from lattice vibrations and Mn-O bonds. The
lack of coincidental bands in the IR and Raman spectra for A2MnP2O7 (A = Li, Na, K) strongly
indicates a centrosymmetric crystal lattice, a finding consistent with the X-ray diffraction analysis.
For clarity, Table 1 summarizes the key IR and Raman band assignments.

Table 1. Attribution of bands for infrared and Raman spectra corresponding to A2MnP2O7 (A = Li,
Na, K).

K2MnP2O7 Na2MnP2O7 Li2MnP2O7 Attribution

IR (cm−1) Ra (cm−1) IR (cm−1) Ra (cm−1) IR (cm−1) Ra (cm−1)
1137 1175 1148 1152 1183 1182
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2.3. Corrosion Inhibition Studies
2.3.1. Open Circuit Potential (OCP) Measurements

The open circuit potential (OCP) and its temporal evolution in a 3 wt.% NaCl aqueous
medium were meticulously investigated both before and after the addition of various con-
centrations of Na2MnP2O7, K2MnP2O7, and Li2MnP2O7 compounds, following a half-hour
immersion at 298 K. These observations are presented in Figure 3. Notably, the introduction
of these compounds into the solution induces a discernible shift in the corrosion potential
(Ecorr) towards more negative values when contrasted with the baseline solution devoid
of these additives. This shift is indicative of the influence exerted by the presence of the
examined species, suggesting a modification in the electrochemical environment at the
metal–solution interface.
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2.3.2. Potentiodynamic Polarization Curves

The inhibition efficiency of the synthesized phosphate compounds for mild steel in
3 wt.% NaCl was investigated by systematically varying their concentration from 10−6 to
10−3 M. Figure 4 illustrates the polarization curves of mild steel in 3 wt.% NaCl at 298 K,
both with and without the addition of these phosphate inhibitors at various concentra-
tions. The polarization curves reveal a decrease in current density upon the addition of
Na2MnP2O7, K2MnP2O7, and Li2MnP2O7, with both the cathodic and anodic branches
shifting downwards. This suppressive effect on the current density becomes more pro-
nounced as the concentration of the phosphate inhibitors is increased from 10−6 to 10−3 M.
Furthermore, the potential difference between the Ecorr of blank solutions and those of
inhibited solutions remains within 85 mV, indicating that Na2MnP2O7, K2MnP2O7, and
Li2MnP2O7 function as mixed-type inhibitors [21].
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Figure 4. Polarization curves at 298 K of mild steel with and without the addition of (a) Li2MnP2O7,
(b) K2MnP2O7, and (c) Na2MnP2O7 at varying concentrations in 3 wt.% NaCl.

Table 2 summarizes the electrochemical parameters derived from the polarization
curves, including corrosion potential (Ecorr) and corrosion current density (icorr). The data
demonstrate that the tested phosphate-based compounds effectively inhibit corrosion in a
3 wt.% NaCl medium. This effectiveness is reflected in the significantly reduced corrosion
current densities and high inhibition efficiencies [27,28].

Table 2. Electrochemical parameters of the polarization diagram of mild steel in 3 wt.% NaCl solution
with and without the addition of different compounds at different concentrations.

Compounds C
(M)

−Ecorr
mV/ECS

icorr
µA cm−2 η (%)

Blank - 559 464 -

Li2MnP2O7

10−3 641 62 86.6
10−4 653 126 72.8
10−5 657 212 54.3
10−6 614 265 42.9

K2MnP2O7

10−3 580 60 87.0
10−4 551 65 85.9
10−5 553 78 83.2
10−6 597 84 81.9

Na2MnP2O7

10−3 597 54 88.3
10−4 594 76 83.6
10−5 577 90 80.6
10−6 557 103 77.8
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The inhibition efficiency (η%) is calculated using the following equation:

η (%) =
i0 − i

i0
× 100 (1)

where i0 and i represent the corrosion current densities without and with the inhibitor,
respectively.

At the highest tested concentration of 10−3 M, the inhibition efficiencies for Na2MnP2O7,
K2MnP2O7, and Li2MnP2O7 reach 88.3%, 87%, and 86.6%, respectively.

2.3.3. Electrochemical Impedance Spectroscopy

Figure 5 presents the Nyquist diagrams obtained for mild steel immersed in 3 wt.%
NaCl, with and without the addition of the A2MnP2O7 compounds at varying concentra-
tions. The Nyquist plots exhibit two incomplete capacitive loops. The high-frequency loop
corresponds to the protective film formed on the electrode surface, while the low-frequency
loop is attributed to the charge transfer reaction. Notably, the diameter of the capacitive
loops increases with increasing A2MnP2O7 concentration, suggesting the formation of a
more robust inhibitor film on the metal surface [29].
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This observation is further supported by the Bode plots (Figure 6), which depict the
impedance response in the absence and presence of different A2MnP2O7 (A = Li, Na, K)
concentrations.
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To gain a quantitative understanding of the EIS data, an electrical equivalent circuit
(EEC, Figure 7) was employed to model the electrochemical behavior. In this circuit, Rs
denotes the solution resistance, Rct represents the charge transfer resistance, and Rf signifies
the film resistance. The constant phase elements (CPEs) CPEf and CPEdl represent the
film capacitance and double-layer capacitance, respectively. The use of CPEs accounts for
non-ideal behavior arising from surface inhomogeneities [30].

The impedance of a constant phase element is given by the following equation
(Equation (2)):

ZCPE(ω) = Q−1(jω)−n (2)

where Q is the CPE constant, ω is the angular frequency, j is the imaginary unit, and n is
the CPE exponent (0 ≤ n ≤ 1).

Brug’s equation calculates the effective double-layer (Ceff’dl, Equation (3)) and film
(Ceff’f, Equation (4)) capacitances using the constant phase element (CPE) parameters Q
and n, the solution resistance (Rs), and the polarization resistance (Rp) [30]:

Ce f f ′dl = Q1/n
dl ×

(
1

Rs
+

1
Rp

) n−1
n

(3)

Ce f f ′ f = Q1/n
f ×

(
R f

) 1−n
n (4)

The analysis of the EEC fitting parameters reveals important trends. The decrease in
Qct values with an increasing inhibitor concentration implies the formation of a protective
layer at the metal–solution interface, likely due to the displacement of pre-absorbed wa-
ter molecules [31]. This adsorption of Na2MnP2O7, K2MnP2O7, and Li2MnP2O7 on the
metal surface leads to a reduction in the electrical capacitance. An increase in inhibitor
concentration was directly correlated with a decrease in effective double-layer capacitance
(Ceff’dl) values when compared to the blank solution. This substantial capacitance decrease
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suggests the adsorption of inhibitor molecules onto the metal surface, resulting in a thicker
double electric layer [32].
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Figure 7. Equivalent circuit for adjusting the EIS of mild steel in the presence of Na2MnP2O7,
K2MnP2O7, and Li2MnP2O7.

The polarization resistance (Rp) is calculated as follows:

Rp = Rct + Rf (5)

Table 3 highlights a significant increase in Rp values as the inhibitor concentration
rises. This observation strongly supports the hypothesis that the adsorption of Na2MnP2O7,
K2MnP2O7, and Li2MnP2O7 molecules onto the mild steel surface enhances corrosion
resistance.

Table 3. Electrochemical impedance parameters extracted from EEC for mild steel in the absence and
presence of inhibitors in 3 wt.% NaCl at 298 K.

C (M) Rs
(Ω cm2)

Rf
(Ω cm2) nf

Qf
(µF/cm2)

Ceff,f
(µF/cm2)

Rct
(Ω cm2) nct

Qct
(µF/cm2)

Ceff,dl
(µF/cm2)

Rp
(Ω cm2)

η%

3 wt.%
NaCl 10.2 161.0 0.705 1399 750 38.0 0.99 1451 1387 199.0 -

Li2MnP2O7

10−3 5.8 260 0.603 1618 915 1091 0.731 678 88.15 1351 85.3
10−4 8.6 148 0.728 1297 700 562 0.729 935 154.76 710 72.0
10−5 6.5 51 0.811 1704 964 376 0.813 1047 330.95 427 53.4
10−6 5.4 32 0.812 1845 958 314 0.805 1124 325.06 346 42.5

K2MnP2O7

10−3 8.0 637 0.683 341 168 866 0.786 283 53.76 1503 86.7
10−4 6.7 229 0.675 1121 582 1150 0.901 196 94.48 1379 85.5
10−5 8.5 137 0.714 1129 535 1003 0.992 219 208.16 1140 82.5
10−6 7.6 250 0.667 1024 519 827 0.652 359 15.29 1077 81.5

Na2MnP2O7

10−3 3.4 1261 0.641 397 269 335 0.890 641 300.15 1596 87.5
10−4 8.8 886 0.609 499 295 284 0.923 759 498.50 1170 83.0
10−5 7.8 615 0.694 684 467 380 0.954 586 451.48 995 80.0
10−6 1.2 440 0.641 837 478 428 0.686 473 15.43 868 77.0

2.3.4. Analysis of Adsorption Isotherms

Adsorption isotherms offer crucial insights into the nature of the interaction between
inhibitors and the mild steel surface. Several adsorption isotherm models, including
Langmuir, Temkin, Freundlich, and Frumkin, were evaluated to describe the adsorption
behavior of the corrosion inhibitors in this study [33]. The analysis of the curves in
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Figure 8 reveals that the adsorption of the inorganic inhibitors Na2MnP2O7, K2MnP2O7,
and Li2MnP2O7 onto the mild steel surface can be best described by the Langmuir isotherm
model. This model is expressed by the following equation:

θ

1 − θ
= KadsCinh (6)

where θ represents the surface coverage, Kads is the equilibrium adsorption constant, and
Cinh denotes the equilibrium inhibitor concentration. A plot of Cinh/θ versus Cinh yields a
slope close to unity, further validating the applicability of the Langmuir adsorption model.

The strong linear correlations (correlation coefficients approaching 1) affirm that the
adsorption of Na2MnP2O7, K2MnP2O7, and Li2MnP2O7 derivatives on mild steel in a 3
wt.% NaCl medium adheres to the Langmuir adsorption isotherm (Figure 8).

Table 4 presents the thermodynamic parameters of adsorption derived from the Kads
values using the following relationships [34]:

∆Gads = −RT ln (55.5 Kads) (7)

where ∆Gads is the standard adsorption free energy, R is the universal gas constant, T is the
absolute temperature, and 55.5 represents the molar concentration of water in the solution.
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Figure 8. Langmuir adsorption model for mild steel in 3 wt.% NaCl at 298 K in the presence of
Na2MnP2O7, K2MnP2O7, and Li2MnP2O7.

Table 4. Thermodynamic parameters for the adsorption of the two compounds on mild steel surface
in 3 wt.% NaCl at 298 K.

Medium
(3 wt. % NaCl)

Kads
(L/mol)

∆Gads
(Kj/mol) R2 Slopes

Li2MnP2O7 101.5 103 −38.5 0.999 1.16
K2MnP2O7 315.1 104 −47.0 1 1.15

Na2MnP2O7 412.8 103 −42.0 0.9999 1.14

The ∆Gads values consistently below −40 kJ mol−1 provide compelling evidence for
chemisorption as the dominant adsorption mechanism. This type of adsorption likely
involves charge sharing or electron transfer between the inhibitor molecules and the iron
atoms on the metal surface [35]. For Li2MnP2O7, the calculated ∆Gads values fall within the
range of −20 to −40 kJ mol−1, suggesting that the molecules can interact with the mild steel
surface through both physisorption and chemisorption processes [36,37]. In contrast, the
∆Gads values for K2MnP2O7 and Na2MnP2O7 both exceed −40 kJ mol−1, unequivocally
indicating chemisorption as the primary mechanism for their adsorption onto the mild
steel surface.
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2.3.5. Temperature Effect on the Inhibition Behavior

Temperature plays a crucial role in influencing the behavior of materials in corrosive
environments, including the interactions between metals and inhibitors [38,39]. To investi-
gate the temperature dependence of the inhibition efficiency of Na2MnP2O7, K2MnP2O7,
and Li2MnP2O7, electrochemical measurements were conducted between 298 K and 328 K
at a fixed inhibitor concentration of 10−3 M.

The analysis of the polarization curves in Figure 9 reveals that the addition of A2MnP2O7
(A = Li, Na, K) compounds modifies the electrochemical behavior of mild steel. While the
anodic branches of the curves remain relatively parallel, the cathodic branches exhibit changes
in shape. This observation suggests that the inhibitors primarily affect the corrosion rate
without significantly altering the underlying corrosion mechanism.

Inorganics 2024, 12, x FOR PEER REVIEW 11 of 17 
 

 

metal surface [35]. For Li2MnP2O7, the calculated ΔGads values fall within the range of −20 to 
−40 kJ mol⁻1, suggesting that the molecules can interact with the mild steel surface through 
both physisorption and chemisorption processes [36,37]. In contrast, the ΔGads values for 
K2MnP2O7 and Na2MnP2O7 both exceed −40 kJ mol⁻1, unequivocally indicating chemisorption 
as the primary mechanism for their adsorption onto the mild steel surface. 

2.3.5. Temperature Effect on the Inhibition Behavior 
Temperature plays a crucial role in influencing the behavior of materials in corrosive 

environments, including the interactions between metals and inhibitors [38,39]. To inves-
tigate the temperature dependence of the inhibition efficiency of Na2MnP2O7, K2MnP2O7, 
and Li2MnP2O7, electrochemical measurements were conducted between 298 K and 328 K 
at a fixed inhibitor concentration of 10⁻3 M. 

The analysis of the polarization curves in Figure 9 reveals that the addition of 
A2MnP2O7 (A = Li, Na, K) compounds modifies the electrochemical behavior of mild steel. 
While the anodic branches of the curves remain relatively parallel, the cathodic branches 
exhibit changes in shape. This observation suggests that the inhibitors primarily affect the 
corrosion rate without significantly altering the underlying corrosion mechanism. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Effect of temperature on cathodic and anodic polarization diagrams in 3 wt.% NaCl with 
(a) Li2MnP2O7, (b) K2MnP2O7, (c) Na2MnP2O7, and (d) the blank solution at the optimum concentra-
tions of 10−3 mol/L. 

Table 5 shows a slight increase in corrosion current density (icorr) and a corresponding 
decrease in inhibition efficiency as the temperature is elevated from 298 K to 328 K. This 
trend confirms that the rate of metal dissolution accelerates with increasing temperature, 
likely due to enhanced molecular motion and a potential decrease in the stability of the 
protective inhibitor film. 

Table 5. Polarization parameters of mild steel in 3 wt.% NaCl in the presence and absence of inves-
tigated compounds at 10−3 mol/L at different temperatures. 

Figure 9. Effect of temperature on cathodic and anodic polarization diagrams in 3 wt.% NaCl
with (a) Li2MnP2O7, (b) K2MnP2O7, (c) Na2MnP2O7, and (d) the blank solution at the optimum
concentrations of 10−3 mol/L.

Table 5 shows a slight increase in corrosion current density (icorr) and a corresponding
decrease in inhibition efficiency as the temperature is elevated from 298 K to 328 K. This
trend confirms that the rate of metal dissolution accelerates with increasing temperature,
likely due to enhanced molecular motion and a potential decrease in the stability of the
protective inhibitor film.
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Table 5. Polarization parameters of mild steel in 3 wt.% NaCl in the presence and absence of
investigated compounds at 10−3 mol/L at different temperatures.

Compounds Temp.
(K)

−Ecorr
(mV/SCE)

icorr
(µA cm−2)

η
%

3 wt.% NaCl

298 559 464 -
308 594 758 -
318 664 1353 -
328 696 2170 -

Li2MnP2O7

298 641 62 86.6
308 613 117 84.5
318 653 246 81.8
328 660 468 78.4

K2MnP2O7

298 580 60 87.0
308 644 118 84.4
318 651 245 81.8
328 659 472 78.2

Na2MnP2O7

298 597 54 88.3
308 672 105 86.1
318 733 223 83.5
328 758 412 81.0

2.3.6. Scanning Electron Microscopy

Scanning electron microscopy (SEM) was employed to examine the surface morphol-
ogy of mild steel samples exposed to 3 wt.% NaCl solutions with and without the inhibitors.
The inhibitors K2MnP2O7, Li2MnP2O7, and Na2MnP2O7 exhibited good inhibition efficien-
cies of 87%, 86.6%, and 88.3%, respectively.

Figure 10 reveals significant differences in surface morphology. The mild steel sample
immersed in the solution without inhibitors displays extensive corrosion damage (Figure 10a).
In contrast, the presence of A2MnP2O7 (A = Li, Na, K) (Figure 10b–d) inhibitors results in a
markedly improved surface with reduced signs of corrosion, such as fewer scratches. The
SEM analysis confirms the adsorption of the inhibitors onto the mild steel surface, supporting
the hypothesis that they form a protective layer.

These SEM observations strongly corroborate the findings from the electrochemical
measurements. Together, these results demonstrate that the addition of 10−3 mol/L of
K2MnP2O7, Li2MnP2O7, and Na2MnP2O7 effectively mitigates the corrosion of mild steel
in the 3 wt.% NaCl environment.

The Energy-Dispersive X-ray spectroscopy (EDS) analysis, as depicted in Figure 10,
elucidated the surface chemistry of the metal when subjected to the inhibitor-treated
solution, affirming the emergence of manganese (Mn) ion peaks. This observation is
paramount, as Mn ions are integral to the chemical constitution of A2MnP2O7 compounds,
where A represents Li, Na, or K. Such findings substantiate the successful formation of a
protective film on the surface of the steel, attributable to the unique chemical compositions
of the synthesized compounds.
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3. Materials and Methods
3.1. Materials and Sample Preparation

The aggressive solution used in this study is 3 wt.% NaCl obtained by dissolving an
appropriate amount of NaCl powder in distilled water. A range of concentrations between
10−6 and 10−3 M was prepared as well as the control solution. Samples of mild steel with a
nominal chemical composition of 0.17 wt.% C, 0.37 wt.% manganese, 0.20 wt.% Si, 0.03 wt.%
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S, and 0.01 wt.% P and Fe were used for electrochemical experiments; steel samples were
used with an exposed area of 1.0 cm2 to the corrosive medium. Before use, the substrates
were abraded with different grades of emery papers from 80 to 2000 grit, rinsed with
distilled water, degreased with ethanol, and dried at room temperature.

3.2. Synthesis of A2MnP2O7 Compounds

The synthesis of A2MnP2O7 compounds, where A signifies Li, Na, or K, was ac-
complished through a solid-state reaction approach. The precursor materials comprised
manganese carbonate (MnCO3, 0.5 mol), diammonium hydrogen phosphate ((NH4)2HPO4,
1.0 mol), and A2CO3 (0.5 mol)—with “A” denoting the monovalent cation of interest. These
components were meticulously combined in precise stoichiometric ratios within an agate
mortar to ensure a uniform mixture. The blend underwent a sequential thermal treatment
within alumina crucibles, delineated by several distinct phases: Initially, the mixture was
heated to 250 ◦C for a duration of 10 h to facilitate the removal of water. Subsequently, the
temperature was elevated to 400 ◦C for 3 h to potentially eliminate any residual ammonia
(NH3) and water (H2O). This was followed by an increase in temperature to 600 ◦C, main-
tained for 4 h, aimed at expelling carbon dioxide (CO2). The culmination of the thermal
treatment involved a calcination process, with temperatures ranging from 700 ◦C to 800 ◦C
over 5 h, and ultimately stabilized at 800 ◦C for the final hour. The precise temperature
settings during the final calcination step were adjusted according to the specific monovalent
cation being incorporated into the compound.

3.3. Characterization

X-ray Diffraction (XRD): The structural analysis of the synthesized compounds was
performed using an EXPERT diffractometer (Philips Expert, Amsterdam, the Netherlands)
equipped with a copper anticathode (λkαCu = 1.5406 Å). The analysis was carried out at
Ibn Tofail University, Kenitra, Morocco.

Fourier Transform Infrared Spectroscopy (FTIR): Vibrational modes were investigated
using a BRUKER TENSOR spectrometer (Bruker, Karlsruhe, Germany) with ATR infrared
in the range of 400–1600 cm−1. The analysis was carried out at Ibn Tofail University,
Kenitra, Morocco.

Raman Spectroscopy: Raman spectra were obtained at room temperature using a
BRUKER instrument (Bruker, Karlsruhe, Germany) with an argon ion laser excitation
source (λ = 532 nm). Spectra were recorded within the 1600–200 cm−1 range with a
spectral resolution of 3–5 cm−1. The analysis was carried out at Ibn Tofail University,
Kenitra, Morocco.

Scanning Electron Microscopy (SEM): SEM is a powerful tool for investigating sur-
face morphology at high magnifications. It provides detailed images of surface features,
including cracks, defects, and corrosion damage. SEM utilizes a focused beam of electrons
to scan the surface of a sample. The interaction of electrons with the sample generates
various signals, including secondary electrons, which provide topographical information.
The high resolution and depth of field offered by SEM make it invaluable for analyzing
the effects of corrosion processes, the efficacy of surface treatments, and the distribution
of protective layers. The surface morphology analysis was conducted using a QUATTRO
S-FEG-Thermofisher SEM (CNRST laboratories, Morocco) operating at a 10 kV accelerating
voltage and a 2500× magnification.

3.4. Electrochemical Measurements

The electrochemical characterization involved potentiodynamic polarization and elec-
trochemical impedance spectroscopy (EIS). A three-electrode cell was employed, consisting
of a saturated calomel electrode (SCE) as the reference electrode, a platinum grid as the
counter electrode, and a mild steel working electrode (1 cm2 exposed area). Electrodes
were connected to a VoltaMaster 4 potentiostat/galvanostat. Before the measurements, the
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mild steel working electrode was immersed in the 3 wt.% NaCl test solution (with varying
inhibitor concentrations) for 30 min to establish a steady-state open circuit potential.

Potentiodynamic polarization curves reveal the relationship between applied potential
and corrosion current density. By analyzing these curves, one can determine corrosion rates,
identify inhibition mechanisms (anodic, cathodic, or mixed), and assess the effectiveness
of corrosion inhibitors in mitigating the corrosion process. Potentiodynamic curves were
obtained by applying a continuous potential sweep at a rate of 1 mV/s. The potential range
for the measurements was set between −1200 mV and 200 mV (vs. SCE reference electrode).

Electrochemical impedance spectroscopy (EIS) is a powerful technique for investi-
gating corrosion processes and evaluating corrosion inhibitors. By applying small AC
potential disturbances and measuring the resulting current response, EIS provides insights
into interfacial processes, corrosion rates, and the formation of protective films on metal
surfaces. This non-destructive technique offers valuable information about the kinetics and
mechanisms of corrosion and inhibitor action. Electrochemical impedance measurements
were carried out under the same conditions as the potentiodynamic polarization experi-
ments. Data were acquired within a frequency range of 100 kHz to 100 mHz, applying a
sinusoidal disturbance potential of 10 mV.

4. Conclusions

This study successfully synthesized phosphate-based compounds A2MnP2O7 (A = Li,
Na, K) using a dry method. Comprehensive characterization employing X-ray diffraction
(XRD), Fourier Transform Infrared (FTIR), and Raman spectroscopy provided detailed
insights into their structural features. FTIR and Raman analyses confirmed the presence of
the pyrophosphate group and the non-linearity of the P-O-P bridge. A factor group analysis
further elucidated the vibrational modes, revealing the existence of multiple Raman-active
Ag modes and infrared-active Au modes within each of the synthesized compounds.

Crucially, the synthesized K2MnP2O7, Li2MnP2O7, and Na2MnP2O7 compounds
exhibited significant corrosion inhibition properties for mild steel in a 3 wt.% NaCl solution.
Polarization curves demonstrated their role as mixed-type inhibitors with a pronounced
cathodic effect. A key finding was the direct relationship between inhibitor concentration
and inhibition efficiency, while a rise in temperature led to a decrease in efficiency. Among
the tested compounds, Na2MnP2O7 displayed the highest inhibition efficiency, reaching a
value of 88.3%.

The adsorption behavior of these inhibitors on the mild steel surface was found to
adhere to the Langmuir isotherm model. This suggests the formation of a protective mono-
layer on the metal surface, effectively hindering corrosive interactions. Scanning electron
microscopy (SEM) provided direct visual evidence of this protective effect. SEM images
revealed a notable improvement in surface morphology after the addition of K2MnP2O7,
Li2MnP2O7, and Na2MnP2O7, further supporting their role in mitigating corrosion.

In summary, these findings highlight the potential of the synthesized phosphate-
based compounds as promising corrosion inhibitors for mild steel in saline environments.
Future research will explore their performance in various media and investigate potential
synergistic effects with other corrosion mitigation strategies.
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