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Abstract: In this study, a novel systematic analysis was conducted to explore the impact of various pa-
rameters, including acceptor density (NA), individual layer thickness, defect density, interface defect
density, and the metal electrode work function, on efficiency within the FTO/ZnO/CsSnI3/NiOx/Au
perovskite solar cell structure through the SCAPS-1D (Solar Cell Capacitance Simulator in 1 Di-
mension) simulation. ZnO served as the electron transport layer (ETL), CsSnI3 as the perovskite
absorption layer (PAL), and NiOx as the hole transport layer (HTL), all contributing to the opti-
mization of device performance. To achieve the optimal power conversion efficiency (PCE), we
determined the ideal PAL acceptor density (NA) to be 2 × 1019 cm−3 and the optimal thicknesses
to be 20 nm for the ETL (ZnO), 700 nm for the PAL (CsSnI3), and 10 nm for the HTL (NiOx), with
the metal electrode remaining as Au. As a result of the optimization process, efficiency increased
from 11.89% to 23.84%. These results are expected to contribute to the performance enhancement of
eco-friendly, lead-free inorganic hybrid solar cells with Sn-based perovskite as the PAL.

Keywords: perovskite; photovoltaic solar cell; Pb-free; CsSnI3; SCAPS

1. Introduction

Because of environmental concerns and resource scarcity, it is considered difficult
for energy production based on fossil fuels to be sustainable [1,2]. Solar energy has
emerged as a promising alternative over the past few decades, offering a solution to these
challenges [3,4]. In particular, perovskites, with their superior properties, have gained
attention as a leading contender for next-generation solar cells [5,6]. The chemical formula
of perovskite is ABX3, where A comprises large cations (Cs+, NH2CH3NH2

+, CH3NH3
+),

B comprises divalent cations (Pb2+, Sn2+), and X comprises monatomic halogen anions
(I−, Br−, Cl−) [7,8]. Due to their long diffusion lengths and high absorption coefficients
(104 cm−1), along with the benefits of flexibility, lightweight, and transparency, these mate-
rials hold economic advantages, spurring extensive research in the field [9–11].

PSCs have demonstrated rapid performance improvement, achieving efficiencies
comparable to conventional solar cells, with a remarkable efficiency of 26.1% reported in
2023 [12]. Moreover, the parameters of the maximum theoretical limit (SQ-limit) employ-
ing the CH3NH3PbI3-xCLx absorber (Eg~1.55 eV) have been reported as follows: current
density (JSC) is 27.20 mA/cm2, open-circuit voltage (VOC) is 1.28 V, fill factor (FF), and
power conversion efficiency (PCE) is 90.2% and 31.4%, respectively [13,14]. This demon-
strates the potential for the further advancement of perovskite solar cells, indicating a
promising future.

However, several challenges remain unresolved for PSCs, including the development
of commercially feasible next-generation perovskite materials and advancements in manu-
facturing technology [15,16]. Additionally, hybrid perovskites, such as methylammonium
lead triiodide (MAPbI3) and formamidinium lead triiodide (FAPbI3), which have been

Inorganics 2024, 12, 123. https://doi.org/10.3390/inorganics12040123 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics12040123
https://doi.org/10.3390/inorganics12040123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0000-0002-1248-751X
https://doi.org/10.3390/inorganics12040123
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics12040123?type=check_update&version=1


Inorganics 2024, 12, 123 2 of 16

extensively studied, exhibit poor stability against heat and moisture [17,18]. As a result, the
fabrication of hybrid PSCs requires careful environmental control, such as glove boxes or
drying chambers [19,20]. Currently, due to these drawbacks of organic-based perovskites,
there is an increasing amount of research being conducted on photovoltaic solar cells that
utilize inorganic perovskites [21–23].

Therefore, in this study, we selected an inorganic perovskite material to fabricate an
all-inorganic PSC. Among them, one of the primary concerns in all-inorganic perovskites
is the use of lead (Pb) in the PAL of most high-efficiency photovoltaic cells (PVs) [24–26].
Lead-based perovskites produce harmful by-products like PbI2 when decomposed, which
can cause oxidative stress when exposed to the human body, potentially harming the
nervous, reproductive, blood, and kidney systems [27,28]. As an alternative to solving
these issues, research into tin-based (Sn-based) perovskites has emerged as a new area
of focus [29]. This tin-based inorganic perovskite (CsSnX3) provides benefits such as a
bandgap close to 1.4 eV, high mobility, and a high absorption coefficient (greater than
105 cm−1) [30,31].

In particular, CsSnI3 has a bandgap of 1.3–1.4 eV and exhibits a high absorption
coefficient of 104 cm−1 in the visible range [32]. Additionally, its low exciton binding energy
(10–20 meV) facilitates easier carrier separation compared to typical organic absorbers [33].
In addition, it has the advantage of superior thermal stability with a melting point of
451 ◦C, which is higher than that of conventional perovskites such as MASnI3 and FASnI3,
which have a melting point of 200 ◦C [34]. Because of these characteristics, CsSnI3 has
demonstrated the highest experimental efficiency of 10.1% among reported Pb-free Sn-
based perovskite materials [35].

As for ZnO, used as the electron transport layer (ETL) material, it is environmentally
friendly and exhibits high carrier mobility [36]. With a wide bandgap (3.3 eV) and a
significant exciton binding energy, ZnO is being studied as one of the most interesting ETL
materials [37,38]. Especially for ZnO single nanowires, they feature electron mobility of up
to ~1000 cm2/V·s and can be doped with both n-type and p-type materials [39].

Regarding NiOx, which serves as the hole transport layer (HTL) material, it exhibits
a large bandgap (>3.5 eV) with superior transparency in the visible range [40]. This
characteristic can minimize losses such as charge recombination, enhance charge transport,
and provide optimal energy-level alignment with various photoactive absorbers due to its
sufficient conductivity and chemical stability [38,41].

Based on these properties, we selected CsSnI3 as PAL, ZnO as ETL, NiOx as HTL and
constructed an environmentally friendly Sn-based Pb-free PSC device (FTO/ZnO/CsSnI3/
NiOx/Au). However, there are few studies systematically analyzing the influence of each
parameter (such as acceptor density, layer thickness, interface defect density, and metal
electrode work function) in the FTO/ZnO/CsSnI3/NiOx/Au structure [42].

Therefore, in this study, based on the consideration of each parameter, we system-
atically analyzed the effect of key parameters, such as acceptor density, layer thickness,
defect density, interfacial defect density, and metal electrode work function, on the per-
formance of photovoltaic solar cells and proposed an optimized solar cell structure,
FTO/ZnO/CsSnI3/NiOx/Au, which is a completely inorganic device architecture.

Of course, practically, in the experimental phase, controlling interface defects is crucial
due to their significant impact on device performance. Such defects can arise from material
inhomogeneity, varying process conditions, and the nature of surface treatments [43,44].
Notably, material inhomogeneity, particularly the intrinsic surface defects of zinc oxide,
can lead to severe carrier recombination, as highlighted in reference [45]. Therefore, for
the scope of this simulation research, we are concentrating on the alteration of specific
parameters—the density of interface defects and overall defect density—to determine
their impact on the power conversion efficiency (PCE) of the device. These parameters
need to be closely studied and adjusted as necessary before we proceed with full-scale
practical experiments.
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2. Results and Discussion
2.1. Simulation under Initial Conditions

The device performance was analyzed based on key parameters such as open-circuit
voltage (VOC), short-circuit current density (JSC), fill factor (FF), and power conversion
efficiency (PCE). Importantly, the FF was calculated using Equation (1), as reported in
references [46,47].

FF =
JmaxVmax

JSCVOC
(1)

The parameter for power conversion efficiency (PCE) was determined by the following
in Equation (2):

PCE =
ISC·VOC·FF

Pin
(2)

where ISC is the short-circuit photocurrent, and Pin is the input power. The quantum
efficiency (QE) is the ratio of the number of charge carriers collected by the solar cell to
the number of incident photons at a specific energy, which is calculated as follows in
Equation (3) [48].

QE(%) =
number of reacted electrons
number of incident photons

× 100% (3)

The initial simulation results for the current density–voltage (J–V) plot and the quan-
tum efficiency (QE) curve for FTO/ZnO/CsSnI3/NiOx/Au PSC are depicted in Figure 1a,b,
respectively. The parameters for the current density–voltage (J–V) characteristics, including
VOC, JSC, FF, and PCE, were 1.01 V, 15.55 mA/cm2, 75.78%, and 11.89%, respectively. The
initial efficiency obtained was low at 11.89%, and accordingly, the levels of parameters
were adjusted to investigate the effects of VOC, JSC, and FF on PCE for the optimization of
this perovskite solar cell device.
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Figure 1. (a) Simulated initial J–V curve of PSC cell; (b) simulated initial QE curve of PSC cell.

2.2. Efficiency Variation Depending on Acceptor Density (NA) of PAL

Figure 2 illustrates the variation in VOC, JSC, FF, and PCE with PAL acceptor density
(NA) within the range of 2 × 1019 to 1021 cm−3. The initial setting value was 1 × 1020 cm−3,
referenced to the optimal value determined in a prior study, while 2 × 1019 cm−3 represents
the minimum NA providing a certain PV response [49,50]. The PCE exhibited an overall
decreasing trend as NA increased, with a PCE of 22.05% when NA was 2 × 1019 cm−3, in
contrast to a PCE of 0.53% when NA was 1 × 1021 cm−3, indicating the significant impact
of NA on PCE. JSC and FF exhibited similar trends to PCE, while VOC increased up to
7 × 1019 cm−3 before decreasing. This increase in VOC is attributed to the fermi level (Ef)
approaching the valence band (VB) due to increased acceptor doping [51]. Subsequently, the
increase in charge carriers led to a decrease in VOC. Two predominant factors contributed
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to the efficiency decrement with increasing NA; firstly, this included the increase in sheet
resistance [52,53]. With the increase in doping density, the sheet resistance of PAL for
NA in p-type perovskite materials increases, impeding hole mobility to HTL, accelerating
the recombination of photo-generated carriers, decreasing the generation of electron-hole
pairs, and resulting in a decrease in efficiency owing to a reduction in the minority carrier
concentration, mobility, and diffusion length. Equation (4) describes the decrement in
saturation current (IO) with increasing NA [54].

IO = Aqn2
i

(
De

LeNA
+

Dh
LhND

)
(4)

where IO is the saturation current, ni is the intrinsic concentration, A is the diode quality
factor, q is the elementary charge, NA and ND are the acceptor and donor charge concen-
trations, Le and Lh are the electron and hole diffusion length, and De and Dh are diffusion
coefficient, respectively.
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The secondary causative factor is the incidence of Auger recombination due to high
doping concentrations [55,56]. In devices where the concentration exceeds 1018 cm−3,
dopants trigger Auger recombination, ultimately leading to a reduction in the performance
parameters of the photovoltaic device.

Consequently, by setting the optimal NA value of 2 × 1019 cm−3 for the PAL, JSC, and
PCE achieved a notable enhancement from 15.55 mA/cm2 to 27.58 mA/cm2 and from
11.89% to 22.05%, respectively. The other parameters were maintained consistent with
previous settings. According to a previously published paper, the optimal NA value of
2 × 1019 cm−3 aligns with CsSnI3, typically exhibiting a maximum p-type doping con-
centration of 1019 to 1020 cm−3 even in the undoped case at room temperature, and the
addition of Sn can increase the NA value [57]. This occurrence is ascribed to the presence
of hydrogen anions in Sn-rich environments, facilitating a shift in the Fermi level (Ef)
towards the valence band maximum (VBM) and considerably increasing the doped hole
concentration [58]. The NA value of 2 × 1019 cm−3 selected in this study aligns with the
optimal values previously reported at 1019 and 7 × 1019 cm−3 [59,60].
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2.3. Optimization of Each Layer’s Thickness

Each layer of the PSC serves a distinctive role in the performance of the cell, so
it is important to adjust the thickness of each layer for optimal cell performance. The
optimization of layer thickness was executed by preserving the uniform thickness for two
layers and varying the thickness of the residual layers.

2.3.1. Optimization of ZnO Thickness

ZnO is employed as an electron transport layer (ETL) material in the n-i-p structure
as the initial substance to be exposed to incoming light. For the initial device fabrication,
optimizing the thickness of ZnO is important. Thus, referencing the 16 nm and 20 nm ZnO
coating thicknesses fabricated using spin-coating in papers [61,62], our study conducted
optimization within the range of 10 to 500 nm for ZnO coating. The graph in Figure 3
describes the impact of ZnO thickness on VOC, JSC, FF, and PCE. As the thickness of ZnO
increased from 10 nm to 20 nm, PCE increased from 22.05% to 22.32%. The low PCE at a
ZnO thickness of 10 nm can be attributed to insufficient layer thickness for effective electron
extraction and transport, leading to inefficiencies in charge collection, resulting in lower
FF and PCE [63,64]. In the thickness range of 20 nm to 50 nm, the FF value exhibited an
overall decrease followed by an increase thereafter. This phenomenon was ascribed to the
relatively small decrease in JSC compared to VOC at this thickness. Similar observations
were reported in a previous study [65]. Furthermore, the decrease in PCE with increasing
thickness is associated with the acceleration of electron-hole pair recombination due to the
surface roughness with thicker layers [66]. This precipitates an increase in series resistance,
causing a reduction in JSC and VOC. Therefore, we derived the conclusion that a thinner
ETL thickness leads to an increase in efficiency. Based on this conclusion, we set the optimal
thickness to 20 nm.
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2.3.2. Optimization of PAL Thickness

Upon light incidence on the absorption stratum of a solar cell, electron-hole pairs are
generated. For effective operation of the solar cell, it is important that these pairs reach
each electrode without recombination [67]. To achieve this, optimizing the thickness of the
perovskite absorption layer (PAL) is essential. When the PAL thickness is excessively thick,
it increases the time required for the absorption and conversion of light energy, leading to
recombination [68]. Conversely, an excessively thinner PAL can impede light absorption,
decreasing the current density [69]. To find the optimum thickness, optimization was
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performed in the range of 100 to 1200 nm. The graph in Figure 4 illustrates the influence
of PAL thickness on VOC, JSC, FF, and PCE. VOC, JSC, and PCE predominantly exhibited
an overall increasing trend, while FF increased in the range of 100 to 200 nm and then
decreased from 200 to 1200 nm. The initial increase in FF was attributed to the efficient
charge transport with increasing thickness, while the subsequent decrease was due to a
reduction in shunt resistance and an increase in series resistance [70]. Furthermore, PCE
increased in the range of 100 to 700 nm, reaching its highest efficiency of 22.64% at a
thickness of 700 nm. This was due to the substantial photon absorption by PAL, resulting
in the generation of the most electron-hole pairs [71]. However, from 700 to 1200 nm, PCE
decreased due to the resistance caused by recombination [72,73].
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Equation (5) depicts the mathematical relation between the thickness and absolute
absorption rate of the absorber [74]. By employing this equation, the absolute absorption
rate of the absorber can be computed, facilitating the determination of the optimal thickness
of PAL.

Rabsorber =
pt
A2 (5)

Here, Rabsorber is the absorber resistance, p is the resistance of the PAL, t is the thickness
of PAL, and A is the cross-sectional area. This results in Equation (5); as the PAL thickness
increases, the absorber resistance rises. This phenomenon generally leads to an increase
in VOC, JSC, and FF values. However, the increase in absorber thickness also enhances
the photon energy absorption rate [75]. Considering these electrical and optical property
changes, an optimal PCE at 22.64% was achieved when the absorber thickness was 700 nm.

2.3.3. Optimization of NiOx Thickness

The hole transport layer (HTL) serves a crucial role in enhancing the transport of
charge carriers (holes) and prevents direct contact between the PAL and anode through
capping [76,77]. Figure 5a illustrates the influence of NiOx thickness within the range of
10 to 500 nm on VOC, JSC, FF, and PCE. The peak efficiency of 22.76% was achieved at the
smallest thickness of 10 nm, while PCE decreased as the thickness increased, reaching its
lowest efficiency of 19.1% at the maximum thickness of 500 nm. This result was primarily
attributed to the increase in HTL thickness, causing an increase in the series resistance
of the solar cell [78]. Consequently, it became challenging for holes to reach the anode,
resulting in recombination and causing a decrease in VOC, JSC, FF, and overall PCE.
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Following NiOx thickness optimization, the optimal thickness for ZnO and CsSnI3
were determined to be 20 nm and 700 nm, respectively. As shown in Figure 5b, the
corresponding values for VOC, JSC, FF, and PCE were 1.01 V, 28.02 mA/cm2, 80.5%, and
22.76%, respectively. The PCE graphs based on the thickness of each layer demonstrated
that the thickness of each layer had a substantial impact on the performance of the PSC.

2.4. Optimization of PAL Defect Density and Interface Defect Density

The defect density typically increases the recombination of photogenerated carriers at
both the bulk material and interface defects, leading to an increase in the quasi-saturation
current density (J0) and consequently reducing both JSC and VOC [79,80]. Therefore, to
investigate the effect of defect density on Jsc, Voc, FF, and PCE, simulations were conducted
for the defect density of the PAL. Figure 6a demonstrates the influence of the PAL defect
density varying from 1011 to 1018 cm−3 on VOC, JSC, FF, and PCE.
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The efficiency remained stable within the initial defect density range of 1011~1015 cm−3;
however, a sharp decrease in efficiency was observed from 1016 cm−3 onwards. This phe-
nomenon can be attributed to the increase in defect density, which leads to an increase in
recombination current and accelerated carrier recombination [81].

As described in Figure 6b, the graph of bulk recombination current density caused
by the PAL defect density confirmed the increase in the recombination current at a defect
density of 1016 cm−3. Ultimately, the lowest efficiency of 19.24% was observed at the
maximum value of 1018 cm−3. This was attributed to a degradation in film quality due
to the surge in defect density, leading to an accelerated recombination rate and shortened
carrier lifetime, and consequently leading to decreased efficiency [82,83]. Based on these
results, the optimal defect density was adjusted to the conventional value of 1014 cm−3,
thereby maintaining the original efficiency of 22.76%. These results also exhibited a similar
tendency as those reported in previously conducted research [84,85].

The performance of the device significantly varies depending on the defect density
of the interface layer, as shown in Figure 7a,b. Figure 7a,b illustrate the impact of defect
density on VOC, JSC, FF, and PCE for the ZnO/PAL interface and PAL/NiOx interface,
respectively, in the range of 108 to 1020 cm−3.
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As the defect density increases at both interfaces, the PCE initially remains stable
without significant changes. However, for the ZnO/PAL interface, the PCE begins to
gradually decrease, starting from 1011 cm−3 in Figure 7a. In contrast, in the case of the
PAL/NiOx interface, efficiency remained within the range of 108 to 1015 cm−3

, but it began
to decrease sharply, starting from 1016 cm−3 in Figure 7b. This decrease in efficiency is
attributed to defects acting as recombination centers, leading to a reduction in charge carrier
density as the defect density increases [86]. The sharp decrease at a certain interface defect
density is attributed to a rapid decline in photon absorption when exceeding a specific
Nt value at each interface [87]. As a result, PCE was enhanced from 22.76% to 23.84% by
setting the optimal interface defect density for both interfaces at 108 cm−3.

2.5. Optimization of Metal Electrode Work Function

For the design of high-performing solar cells, the choice of suitable electrodes is critical.
For this part, experiments were carried out using metal electrode materials such as Al
(4.2 eV), Cu (4.6 eV), Ag (4.7 eV), Fe (4.8 eV), and Au (5.1 eV) [88]. Figure 8 illustrates the
influence of metal electrode work functions on VOC, JSC, FF, and PCE. As the work function
increased, all parameters exhibited a tendency to increase proportionally. As a result, PCE
was lowest at 4.17% for Al, which had the lowest work function of 4.2 eV, while Au, with
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the highest work function of 5.1 eV, achieved an optimal efficiency of 23.84%. A reason
for the decrease in efficiency as the work function of the metal electrodes decreased was
due to the increased Schottky barrier impeding hole transport, leading to a decrease in
FF [89]. Furthermore, regarding higher work functions mentioned in Ref. [90], such as W
(5.22 eV), Ni (5.5 eV), Pt (5.7 eV), Se (5.9 eV), PCE shows saturated behavior indicating the
absence of additional chemical interactions between the PAL and these metals (W, Ni, Pt,
Se). Based on these results, this study utilized Au as the optimal metal electrode. These
findings concur with various simulation results [91,92].
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3. Materials and Methods
3.1. Numerical Modeling

The numerical simulations performed in this study were based on the SCAPS-1D (Solar
Cell Capacitance Simulation in 1 Dimension) (ver. 3.3.11) simulator. This computational
tool, developed by Dr. M. Burgelman of the University of Gent in Belgium, enables the
design and simulation of up to seven heterojunction layers [93]. The simulations were
based on Poisson’s Equation (6) and the continuity Equations (7) and (8) for each electron
and hole, respectively [94,95].

d
dx

(
−ε(x)

dψ

dx

)
= q

[
p(x)− n(x) + N+

d(x)− N−
a(x) + pt(x)− nt(x)

]
(6)

dpn

dt
= Gp −

Pn − Pn0

τp
− Pnµp

dE
dx

− µpE
dpn

dx
+ Dp

d2 pn

dx2 (7)

dnp

dt
= Gn −

np − np0

τn
+ npµn

dE
dx

+ µnE
dnp

dx
+ Dn

d2np

dx2 (8)

In this equation, ε is the dielectric constant, q is the charge of an electron, G is the
generation rate, D is the diffusion coefficient, ψ is the electrostatic potential, E is the
electric field, and p(x), n(x), pt(x), and nt(x) are free holes, free electrons, trapped holes, and
trapped electrons, respectively. N+

d refers to doping concentration-like ionized donors,
N−

a represents doping concentration-like ionized acceptors, and x is the direction along the
thickness. In this study, following the standard test conditions (STC), the spectrum used in
all simulations was the AM1.5G spectrum, the incident light power was set at 1000 W/m2,
the operating point voltage set to 0 V, and the temperature was set at 300 K [96].
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3.2. Device Structure

Figure 9a illustrates a solid-state planar heterojunction p-i-n structure device com-
posed of FTO/ZnO/CsSnI3/NiOx/Au. In this device, the perovskite material (CsSnI3) is
sandwiched between the n-type hole transport layer (HTL) NiOx and the p-type electron
transport layer (ETL) ZnO, with Au serving as the metal electrode. Figure 9b presents a
simplified flat band energy diagram of the PSC. The work functions of FTO and Au are
4.4 eV and 5.1 eV, respectively [97,98]. The highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) levels for ZnO, CsSnI3, and NiOx were
4.0 eV and 7.3 eV, 3.6 eV and 5.0 eV, and 1.8 eV and 5.4 eV, respectively [99–101]. Upon
light irradiation, weakly bounded excitons were generated in the PAL of this device. These
excitons undergo a dissociation process, rapidly separating into electrons and holes prior
to recombination, promoting effective carrier transport within the device [102]. The energy
structure depicted in the band diagram in Figure 9b facilitates the efficient movement
of electrons and holes in the conduction and valence bands, respectively, significantly
influencing the overall performance of the device.
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Figure 9. (a) The basic schematic diagram of the FTO/ZnO/CsSnI3/NiOx/Au perovskite solar cell
device structure; (b) the energy band diagram of the PSC layers.

Table 1 presents the initial parameters of each material used in the FTO/ZnO/CsSnI3/
NiOx/Au PSC simulations. The initial thicknesses of FTO, ZnO, CsSnI3, and NiOx were
500 nm, 100 nm, 1000 nm, and 30 nm, respectively [103–105]. The bandgap and electron
affinity for each material are given as follows: FTO (3.2 eV, 4.4 eV), ZnO (3.3 eV, 4.0 eV),
CsSnI3 (1.4 eV, 3.6 eV), and NiOx (3.6 eV, 1.8 eV) [106–109]. For the perovskite absorption
layer (PAL), the band-to-band recombination model was maintained at a radiative recom-
bination coefficient of 3 × 10−11 cm3 and an Auger capture rate of 1 × 10−29 cm6/s for
both carriers (electrons and holes) [110,111]. The dielectric permittivity values for each
material were 9, 8.656, 9.93, and 10.7, respectively. The thermal velocity of charge carriers
(electrons and holes) in all layers was maintained at 107 cm/s. For interfacial layers, the
defect type was set as neutral, with a Gaussian energy distribution, and the reference energy
level for defect (Et) was set above EV. The capture cross-section for both types of charge
carriers (electrons and holes) was 10−19 cm−3, and the total charge carrier density was set
at 1.0 × 1011 cm−3. The variations in the parameters are listed in Table 2. Additionally, the
band-to-band recombination model was maintained at zero for FTO, ETL, and HTL layers.
Furthermore, the tunneling effect was not considered in the simulation.
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Table 1. The initial parameters of each material used in the FTO/ZnO/CsSnI3/NiOx/Au PSC
simulations.

Parameter FTO [106] ZnO [107] CsSnI3 [108] NiOx [109]

Thickness (nm) 500 100 1000 30
Bandgap (eV) 3.2 3.3 1.4 3.6

Electron affinity (eV) 4.4 4.0 3.6 1.8
Dielectric permittivity (relative) 9 8.656 9.93 10.7

CB effective density of states (cm−3) 2.2 × 1018 2.2 × 1018 1.0 × 1018 2.8 × 1019

VB effective density of states (cm−3) 1.8 × 1019 1.8 × 1019 1.0 × 1019 1.8 × 1019

Electron thermal velocity (cm/s) 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Hole thermal velocity (cm/s) 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Electron mobility (cm2/Vs) 20 100 1500 12
Hole mobility (cm2/Vs) 10 25 585 2.8

Shallow uniform donor density ND (cm−3) 1.0 × 1018 1.0 × 1018 - -
Shallow uniform acceptor density NA (cm−3) - - 1.0 × 1020 1.0 × 1015

Defect density Nt (cm−3) 1.0 × 1015 1.0 × 1015 1.0 × 1015 1.0 × 1015

Table 2. The initial parameters of interfacial layers.

Parameter ETL/PAL PAL/HTL

Defect density Neutral Neutral
Capture cross-section for electrons (cm−3) 10−19 10−19

Capture cross-section for holes (cm−3) 10−19 10−19

Reference for the defect energy level Et EV EV
Energetic distribution Gaussian Gaussian
Total density (cm−3) 1.0 × 1011 1.0 × 1011

4. Conclusions

In this study, in the device structure of FTO/ZnO/CsSnI3/NiOx/Au, various pa-
rameters, including the acceptor density (NA) of the perovskite absorber layer (PAL), the
thickness of each material layer, the defect density of PAL, the interface defect density, and
work function of the metal electrode, were optimized. The parameters were optimized
such that the NA of the PAL was 2 × 1019 cm−3, the thicknesses of the ETL (ZnO), PAL
(CsSnI3), and HTL (NiOx) were 20 nm, 700 nm, and 10 nm, respectively, the PAL defect
density was 1014 cm−3, and interface defect density for ZnO/PAL and PAL/NiOx was
108 cm−3. As a result, the performance of the device was enhanced, with VOC, JSC, FF, and
PCE improving from 1.01 to 1.05 V, 15.55 to 28.02 mA/cm2, 75.78 to 81.22%, and 11.89
to 23.84%, respectively. This emphasizes the potential for the high-efficiency design of
environmentally friendly, lead-free perovskite solar cells based on CsSnI3.
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