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Abstract: Oral biofilms are considered the principal etiological agent in the development of peri-
odontitis. Novel species that may contribute to periodontitis and dysbiosis have been identified
recently. The study aims to evaluate the presence of F. alocis and D. pneumosintes in healthy and
diseased patients and their association with clinical parameters and with red complex bacteria. The
study included 60 subjects, with 30 patients each in the healthy and periodontitis groups. The clinical
parameters were noted, and samples were subjected to DNA extraction followed by a polymerase
chain reaction. Statistical analysis was performed using the Graph Pad Prism software. Results:
F. alocis and D. pneumosintes were detected at a significantly higher percentage in the periodontitis
group compared to the healthy group (p < 0.05). D. pneumosintes was significantly associated with
T. forsythia in the periodontitis group (p < 0.05). Both of these organisms were present in sites with
higher clinical attachment loss (p < 0.05). This study demonstrated that both F. alocis and D. pneu-
mosintes were detected at a significantly higher percentage in periodontitis subjects and were detected
more frequently in sites with a greater clinical attachment loss. It was also evident that both F. alocis
and D. pneumosintes can be present independently of other putative periodontal pathogens.

Keywords: attachment loss; biofilm; dental plaque; periodontitis

1. Introduction

Microbial biofilms are considered to be the primary etiological agent for the initia-
tion and progression of periodontitis, among other multiple contributing factors [1]. The
biofilm is composed of both health-associated and pathogenic microorganisms [2–4]. Den-
tal plaque is a biofilm that forms over the teeth, gingiva, and mucosa and can be composed
of bacteria, fungi, and algae [5,6]. Socransky et al. elucidated that the bacteria in dental
plaque form different complexes, of which the red complex bacteria consisting of Porphy-
romonas gingivalis (P. gingivalis), Treponema denticola (T. denticola), and Tannerella forsythia
(T. forsythia) along with the orange complex bacteria are considered to be the most putative
periodontal pathogens [7]. Currently, open-ended microbial identification techniques and
next-generation sequencing techniques have greatly increased the understanding of micro-
bial diversity and newer species existing in dental plaque [8,9]. This knowledge has helped
us to understand the microorganisms that are involved in the dysbiosis that occurs as part
of periodontal disease.

Paster et al., in 2001, pointed out the presence of novel species that could play a part in
dysbiosis and periodontitis [10]. Recent studies and systematic reviews have found further
proof of these new species and their putative role in periodontal pathogenesis [8,9,11].
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Some of the newly discovered pathogens belong to the phyla Bacteroidetes, Firmicutes,
Proteobacteria, Spirochaetes, Synergistetes, and Candidatus saccharibacteria [11]. According to
a cross-sectional study, Filifactor alocis (F. alocis) was identified as one of the novel species
(among the 39 other species) showing strong evidence as a periodontal pathogen [9]. F.
alocis has unique virulence properties, which are evidenced by factors like extracellular
vesicles, lipoteichoic acid, oxidative stress resistance, and protease secretion, which together
trigger a pro-inflammatory cytokine response from the periodontal tissues [12–14]. F. alocis
and P. gingivalis have been demonstrated to co-exist symbiotically, and this association
intensifies the virulence properties of F. alocis [15–17]. F. alocis also has the ability to
invade epithelial cells, similarly to P. gingivalis, using filapodial projections or vesicle-
mediated internalization [16,17] and has been found in individuals with different grades of
periodontitis [18]. F. alocis, being an obligate anaerobe, prefers to colonize deeper sites and
is often found in the middle third and apical third of the pockets [19], which provide an
ideal anaerobic environment [20]. Similar to F. alocis, Dialister pneumosintes (D. pneumosintes)
is an obligate anaerobic bacterium that was first isolated from the nasopharynx during
the flu epidemic [21]. D. pneumosintes has been isolated from the oral biofilm and is
known to cause gingivitis, periodontitis, and other local infections [22–26]. Among the
virulence characteristics, lipopolysaccharides in the cell wall of D. pneumosintes may be
the most important as they trigger the release of proinflammatory cytokines and matrix
metalloproteinases, leading to periodontal tissue and alveolar bone destruction [27]. The
relationship between D. pneumosintes occurrence and the development of oral disease,
its detection in young males and patients with severe periodontitis, its correlation with
the pocket depth, clinical attachment loss, and active disease sites, suggests its role in
the etiopathogenesis of periodontal disease [22–25,28]. D. pneumosintes’s association with
other putative periodontal pathogens, such as Aggregatibacter actinomycetemcomitans and P.
gingivalis, has also been correlated with the prevalence of severe periodontitis [29]. Recent
genomic studies have increased our understanding of oral microbiota, emphasizing the
need to investigate novel periodontal pathogens [9]. To the best of our understanding,
this is the first study to establish the association of F. alocis and D. pneumosintes with red
complex bacteria and with periodontitis disease severity in the Indian population.

The current study primarily aims to evaluate the presence of F. alocis and D. pneu-
mosintes in periodontal health and disease, and its correlation with clinical parameters.
The secondary aim is to evaluate if these novel species and the red complex bacteria
are more frequently detected simultaneously or can exist independently in moderate to
severe periodontitis.

2. Materials and Methods

The initial screening of this cross-sectional study consisted of one hundred eighty-five
subjects aged between 18 and 70 years conducted between January 2016 and January 2017.
The study group consisted of 87 subjects with a suspected diagnosis of moderate to severe
periodontitis and 98 subjects periodontally healthy from the outpatient department. The
institutional ethics review board approved the study (Certificate number: 2015-16/1118).
All study participants were interviewed according to a standardized protocol, and a written
informed consent was obtained from all subjects before the examination. All selected
subjects who met the inclusion–exclusion criteria were divided into a healthy group (H
group), consisting of subjects with a healthy periodontium, and a periodontitis group (P
group) based on the periodontal parameters [27].

The sample size was estimated based on a previous paper [19] with a significance
level of p = 0.05 and a power of 95% using a conservative two-tailed testing approach.
The power analysis was accomplished using G*Power 3.1 [30]. Subjects were excluded
from the study if they underwent periodontal therapy or had antimicrobial therapy in the
previous 3 months, had a history of any systemic diseases/conditions, were pregnant and
lactating women, and smoked or consumed smokeless tobacco. The subjects who matched
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the inclusion–exclusion criteria were included in the study (Figure 1). This manuscript was
prepared according to the STROBE cross-sectional study checklist [31] (Supplement File).
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Figure 1. Flow diagram showing the selection of patients with periodontitis (P group) and healthy
periodontium (H group), according to the inclusion and exclusion criteria.

2.1. Clinical Examination and Subgingival Plaque Sample Collection

A comprehensive periodontal examination was carried out, and the clinical parameters
recorded included plaque index (PI) [32], gingival index (GI) [33], bleeding index (BI) [34],
PD, and CAL. The inclusion criteria for the H group were subjects with minimal signs
of gingival inflammation or bleeding on probing (BOP) (BOP < 10%), absence of clinical
attachment loss (CAL), and probing depth (PD) ≤ 3 mm. The P group included subjects
with gingival inflammation with the presence of BOP, PD ≥ 5 mm, and CAL ≥ 3 mm
(moderate to severe periodontitis). All participants needed to have a minimum of 20 teeth.
Subgingival plaque samples were collected under strict asepsis using a sterile Gracey
curette. In the P group, plaque samples were harvested from the three deepest sites with
a probing depth of ≥5 mm, and in the H group, plaque samples were collected from the
normal healthy gingival sulcus. The selected sites were isolated with sterile cotton rolls
and air-dried, and supragingival plaque and calculus were removed. The plaque sample
was then transferred into a 2 mL plastic vial containing the transport medium Tris-EDTA
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buffer (T.E.) and was then processed for DNA extraction. A single examiner did the clinical
examination and sample collection.

2.2. DNA Extraction and Polymerase Chain Reaction

The DNA extraction for the plaque samples was carried out using a modified pro-
teinase K method, as previously described [35]. Following the DNA extraction, a poly-
merase chain reaction (PCR) was carried out using the Ampliqon RED 2X master mix
and specific primers to identify F. alocis, D. pneumosintes, P. gingivalis, T. denticola, and T.
forsythia. Two multiplex PCR reactions were performed. One contained 16S rRNA primers
specific for F. alocis and D. pneumosintes [36]. The other PCR reaction utilized 16S rRNA
primers specific for P. gingivalis, T. denticola, and T. forsythia [37]. The primer sequences are
presented in Table 1.

Table 1. Primer sequences used in the study with their specific amplification length in base pairs.

Target Primer Sequence (5′-3′) a Amplification Length (bp)

Filifactor alocis CAGGTGGTTTAACAAGTTAGTGG
CTAAGTTGTCCTTAGCTGTCTCG 594 [36]

Dialister pneumosintes TTCTAAGCATCGCATGGTGC
GATTTCGCTTCTCTTTGTTG 1105 [36]

Porphyromonas gingivalis AGGCAGCTTGCCATACTGCG
ACTGTTAGCAACTACCGATGT 404 [37]

Treponema denticola TAATACCGAATGTGCTCATTTACAT
TCAAAGAAGCATTCCCTCTTCTTCTTA 316 [37]

Tannerella forsythia GCGTATGTAACCTGCCCGCA
TGCTTCAGTGTCAGTTATACCT 641 [37]

The PCR cycling conditions for the amplification of D. pneumosintes and F. alocis
included an initial denaturation step at 95 ◦C for 5 min, followed by 36 cycles of a denatura-
tion step at 94 ◦C for 30 s, primer annealing step at 55 ◦C for 1 min, and extension at 72 ◦C
for 2 min. The thermal cycling conditions for the amplification of red complex bacteria
encompassed an initial denaturation step at 95 ◦C for 5 min followed by 40 cycles of a
denaturation step at 94 ◦C, primer annealing at 60 ◦C for 1 min, and an extension at 72 ◦C
for 1 min. The final extension step was performed at 72 ◦C for 10 min.

The amplified products were separated on 2% agarose gel and subjected to elec-
trophoresis in 1X Tris-Acetate EDTA buffer. The gel was stained using 0.5 µg/mL ethidium
bromide and visualized using a Gel documentation system (Major Science, Saratoga, CA,
USA). A 100 bp DNA ladder simultaneously loaded on the gel was used as a marker.
The specific band size corresponding to each bacterium was identified and recorded as
positive amplification.

2.3. Statistical Analysis

The demographic data and clinical parameters (GI, PI, BI, PD, and CAL) were com-
pared using chi-squared test, Student’s t-test, and Mann–Whitney U test. The detection of
F. alocis, D. pneumosintes and red complex bacteria in each group and the association of red
complex bacteria with the presence of F. alocis and D. pneumosintes were analyzed using a
Fisher’s exact test. The association of F. alocis and D. pneumosintes with CAL was analyzed
using the Freeman–Halton extension of the Fisher’s exact test. Any p-value ≤ 0.05 was
considered to be statistically significant. All calculations were performed using the Graph
Pad Prism software (Version 5; GraphPad Software Inc., La Jolla, CA, USA).

3. Results

This current study consisted of 60 participants, with 30 individuals each in the H
group and the P group. The H group consisted of 18 females and 12 males, with a mean
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age of 44.03 ± 10.11 years, and the P group consisted of 17 females and 13 males, with a
mean age of 42.07 ± 10.60 years, with no statistical difference seen between the groups. All
other clinical parameters recorded showed statistical differences between the H group and
the P group (Table 2).

Table 2. Comparison of the demographic and clinical parameters in the healthy and periodonti-
tis groups.

Parameter H Group P Group p-Value

Gender
(Male/Female) 12/18 13/17 0.7934 *

Age (years) 44.03 ± 10.11 42.07 ± 10.60 0.465 #

GI 0.100 ± 0.043 2.09 ± 0.188 <0.0001 γ

PI 0.094 ± 0.040 2.23 ± 0.193 <0.0001 γ

BI 3.098 ± 2.191 93.30 ± 6.517 <0.0001 γ

PD 1.465 ± 0.333 5.361 ± 0.252 <0.0001 γ

CAL 0.000 ± 0.000 5.014 ± 0.566 <0.0001 γ

* Chi-squared test; # T-test; γ Mann–Whitney U test. GI: gingival index, PI: plaque index, BI: bleeding index,
PD: probing depth, CAL: clinical attachment loss, H group: healthy group, P group: periodontitis group.

The comparison of the detection frequency of F. alocis, D. pneumosintes, and the red
complex bacteria between the healthy and P groups was performed. F. alocis was detected
in 20% of samples in the H group and 53.3% of samples in the P group, and the comparison
was statistically significant (p < 0.05) (Table 3). The detection of D. pneumosintes was 20%
and 66.67% in H and P groups, respectively, and the difference was significant (p < 0.05)
(Table 3). Among the red complex bacteria, T. denticola was detected in 20% and 53.3% in
the H and P groups, and the difference was significant (p < 0.05), while the detection of P.
gingivalis and T. forsythia between the groups was non-significant (Table 3).

Table 3. Comparison of the healthy and periodontitis groups for the occurrence of F. alocis, D.
pneumosintes, and red complex bacteria by Fisher’s exact test.

Organisms Negative/
Positive H Group P Group Total Fisher’s Exact Test

p-Value

F. alocis
Negative 24 (80%) 14 (46.7) 38 (63.3%)

0.015 *
Positive 6 (20%) 16 (53.3%) 22 (36.7%)

D. pneumosintes
Negative 24 (80%) 10 (33.33%) 34 (56.67)

0.0006 *
Positive 6 (20%) 20 (66.67%) 26 (43.33)

P. gingivalis
Negative 24 (80%) 17 (56.67) 41 (68.33)

0.09
Positive 6 (20%) 13 (43.33) 19 (31.67)

T. denticola
Negative 24 (80%) 14 (46.7) 38 (63.3%)

0.015 *
Positive 6 (20%) 16 (53.3%) 22 (36.7%)

T. forsythia
Negative 22 (73.33) 21 (70.00) 43 (71.67)

1.0
Positive 8 (26.67) 9 (30.00) 17 (28.33)

H group: healthy group, P group: periodontitis group. Statistical analysis is based on the comparison of the
positive sites of the H and P groups only. * has been added to only the signifcant data sets.

The presence of F. alocis was not significantly associated with the presence of any red
complex bacteria (Table 4). However, D. pneumosintes showed a significant association with
the co-presence of T. forsythia in the P group (p < 0.05) (Table 5). Both P. gingivalis and T.
denticola did not show any association with the presence of D. pneumosintes (Table 5). The
presence of F. alocis and D. pneumosintes at different clinical attachment loss levels showed
that both of these organisms were detected at a higher frequency in sites with a greater
attachment loss (p < 0.05) (Table 6).
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Table 4. Correlation of F. alocis with red complex bacteria in the healthy and periodontitis groups by
Fisher’s exact test.

Group Red Complex
Bacteria

F. alocis
Total

Fisher’s Exact Test
p-ValueNegative Positive

H group (N = 30)

P. gingivalis
Negative 19 (79.2%) 5 (20.8%) 24 (100.0%)

1.0
Positive 5 (83.3%) 1 (16.7%) 6 (100.0%)

T. denticola
Negative 20 (83.3%) 4 (16.7%) 24 (100.0%

0.5705
Positive 4 (66.7%) 2 (33.3%) 6 (100.0%)

T. forsythia
Negative 16 (72.7%) 6 (27.3%) 22 (100.0%)

0.1550
Positive 8 (100.0%) 0 (0%) 8 (100.0%)

P group (N = 30)

P. gingivalis
Negative 6 (35.3%) 11 (64.7%) 17 (100.0%)

0.2685
Positive 8 (61.5%) 5 (38.5%) 13 (100.0%)

T. denticola
Negative 9 (64.3%) 5 (35.7%) 14 (100.0%)

0.1414
Positive 5(31.3%) 11 (68.8%) 16 (100.0%)

T. forsythia
Negative 12 (57.1%) 9 (42.9%) 21(100.0%)

0.1184
Positive 2 (22.2%) 7 (77.8%) 9 (100.0%)

H group: healthy group, P group: periodontitis group. Statistical analysis is based on the comparison of the
positive sites of the H and P groups only.

Table 5. Correlation of D. pneumosintes with red complex bacteria in the healthy and periodontitis
groups by Fisher’s exact test.

Group Red Complex
Bacteria

D. pneumosintes
Total

Fisher’s Exact Test
p-ValueNegative Positive

H group (N = 30)

P. gingivalis
Negative 20 (83.33%) 4 (16.67%) 24 (100.0%)

0.5705
Positive 4 (66.67%) 2 (33.33%) 6 (100.0%)

T. denticola
Negative 19 (79.17%) 5 (20.83%) 24 (100.0%

1.0000
Positive 5 (83.33%) 1 (16.67%) 6 (100.0%)

T. forsythia
Negative 17 (77.27%) 5 (22.73%) 22 (100.0%)

1.0000
Positive 7 (87.50%) 1 (12.50%) 8 (100.0%)

P group (N = 30)

P. gingivalis
Negative 4 (23.53%) 13 (76.47%) 17 (100.0%)

0.2553
Positive 6 (46.15%) 7 (53.85%) 13 (100.0%)

T. denticola
Negative 6 (42.86%) 8 (57.14%) 14 (100.0%)

0.4421
Positive 4 (25.00%) 12 (75.00%) 16 (100.0%)

T. forsythia
Negative 10 (47.62%) 11 (52.38%) 21(100.0%)

0.0134 *
Positive 0 (0.00%) 9 (100%) 9 (100.0%)

H group: healthy group, P group: periodontitis group. Statistical analysis is based on the comparison of the
positive sites of the H and P groups only. * has been added to only the signifcant data sets.

Table 6. Comparison of clinical attachment loss with F. alocis- and D. pneumosintes-positive and
-negative cases by Fisher’s exact test.

Clinical Attachment Loss
F. alocis Fisher’s Exact Test

p-Value
D. pneumosintes Fisher’s Exact Test

p-ValueNegative Positive Negative Positive

<3 mm 24
(80.0%)

6
(20.0%)

0.024 *

24
(80%)

6
(20%)

0.0007 *3–5 mm 8 (44.4%) 10 (55.6%) 5
(27.77%)

13
(72.23%)

>5 mm 6 (50.0%) 6 (50.0%) 5
(41.66%)

7
(58.34%)

* has been added to only the signifcant data sets.



Dent. J. 2024, 12, 105 7 of 11

4. Discussion

Periodontal infections are polymicrobial, and red complex and orange complex bac-
teria are frequently considered major periodontal pathogens [7]. Open-ended molecular
approaches have been able to identify previously unidentified novel pathogens to be
associated with periodontitis. The current study investigated the presence of F. alocis
and D. pneumosintes in subgingival dental plaque in healthy gums and periodontitis and
additionally their association with red complex bacteria in moderate to severe periodontitis.

This study demonstrated that both F. alocis and D. pneumosintes were detected at a
significantly higher percentage in periodontitis subjects compared to healthy subjects. F.
alocis and D. pneumosintes did not show a significant association with both P. gingivalis
and T. denticola of the red complex bacteria. However, only D. pneumosintes demonstrated
a significant association with T. forsythia in the P group. The detection of F. alocis and D.
pneumosintes was significant at a higher CAL.

The demographic parameters were found to be comparable between the groups and
the baseline clinical characteristics of the H and P groups were significantly different
(p < 0.05). The P group demonstrated a higher occurrence of F. alocis compared to the
H group (p < 0.05). This finding of our study is similar to those of previous studies
that found periodontitis had an increased frequency and a higher number of F. alocis
compared to healthy sites [38–45]. In 2021, Neelakandan et al. reported higher average
counts of F. alocis in chronic periodontitis cases compared to healthy controls [46]. The
evidence from an association and elimination study found a strong evidence of F. alocis
being associated with periodontitis [9]. Similarly, another Brazilian study found F. alocis
to be significantly increased in advanced periodontitis patients [29] (26). In our study, D.
pneumosintes was detected more frequently in P subjects than in H subjects (p-value < 0.001).
The results of our study are aligned with evidence from previous investigations of D.
pneumosintes being associated with the oral microbiota of young adults and with advanced
periodontal destruction [23–25]. A study by Ayala Herrera et al., in 2019, found that
both F. alocis and D. pneumosintes were detected at higher frequencies (80% and 66.66%,
respectively) in the Mexican population [47]. Ferraro et al. [22,48], in their study, found that
periodontitis patients had a significantly greater mean prevalence of D. pneumosintes (62.1%)
than periodontally healthy individuals (43.5%). In a recent study, D. pneumosintes was
significantly more prevalent in periodontitis than in healthy individuals [29]. Nishiyama
et al. did not detect D. pneumosintes in healthy samples but found this organism in 45.8%
of the periodontitis samples [49]. In contrast, the association and elimination study using
genomics demonstrated no specific association of D. pneumosintes with periodontitis [9].
This variation in the association of D. pneumosintes in different studies could also indicate
that its prevalence varies among different populations. There is a need for more studies
among these different populations to be able to determine the prevalence and role of D.
pneumosintes in periodontitis.

The high incidence of F. alocis and D. pneumosintes in periodontitis patients, as seen
in this study, could be because of their virulence traits. The unique virulence attributes
of F. alocis include its tolerance to oxidative stress and its participation in periodontal
biofilms that secrete different proteases to activate the host response. This host immune
response then leads to the production of inflammatory mediators, like IL-1β, IL-6, and
TNF-α, causing chronic inflammation and working synergistically with other periodontal
pathogens [19,50]. On the other hand, D. pneumosintes is known to colonize both healthy
sites and periodontitis sites, which along with its ability to interact with other organisms
and known virulence factors can explain its high prevalence [22,27,28].

In the present study, an association of F. alocis with red complex bacteria in periodon-
tally healthy and periodontitis subjects showed no significant difference. In a previous
publication by our group, we found that F. alocis was positively correlated with T. forsythia
in type 2 diabetes mellitus subjects with and without periodontitis [51]. A study by Chen
et al. demonstrated that F. alocis was strongly correlated with P. gingivalis, T. forsythia,
and five other bacteria in periodontitis subjects [52]. The results of the current study do
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not align with those of the previous studies, and this difference could be attributed to
differences in techniques used to collect or process samples, periodontal disease status, and
the population studied.

The study noted that both D. pneumosintes bacteria and T. Forsythia were detected more
frequently in periodontitis. This finding is of great interest since, previously, T. forsythia is
known to co-exist with Fusobacterium nucleatum [53], and this allows T. forsythia to obtain
external N-acetylmuramic acid or other by-products from Fusobacterium nucleatum [54].
According to Ghayoumi et al. [55], T. forsythia may acquire growth factors from D. pneu-
mosintes, or vice versa. Additionally, they outlined that some other organisms may provide
growth factors to both T. forsythia and D. pneumosintes.

Among the clinical parameters, a higher clinical attachment loss has been associated
with a greater severity of periodontal disease [1]. This study observed a significant associa-
tion between clinical attachment loss and the presence of F. alocis and D. pneumosintes. The
results of the study confirm the data from previous studies that have reported an increased
prevalence of these bacteria with increased probing depths, higher clinical attachment loss,
and increased disease severity [22,25,29,46,55–57]. The F. alocis genotype, which has an en-
hanced virulence, is found to be significantly associated with increased probing depths and
progressive attachment loss [56,58]. The association of D. pneumosintes with periodontal
inflammation and its probable interaction with the herpes virus have been associated with
alveolar bone loss and attachment loss [22,28].

One main limitation of the current study was the small sample size, and therefore,
caution must be exercised when interpreting the results. Secondly, a quantitative assessment
of F. alocis and D. pneumosintes was not conducted because this investigation employed
conventional PCR, which is a study limitation. The conventional PCR falls short because it
cannot provide quantitative data. It would be intriguing to investigate how these bacteria’s
different virulence factors contribute to the onset of inflammatory responses and their
interaction with other microbial species in the oral ecological niche.

In conclusion, this study demonstrates that both F. alocis and D. pneumosintes are
detected at a significantly higher percentage in periodontitis subjects compared to healthy
subjects. Both F. alocis and D. pneumosintes had a higher frequency of being detected in
sites with increased clinical attachment loss (moderate to severe periodontal disease). It
was also evident that both F. alocis and D. pneumosintes can be present independently of
other putative periodontal pathogens. Further studies are required to elucidate the role
of these periodontal pathogens in the etiopathogenesis of periodontitis. There are limited
data about the presence of these novel species in peri-implantitis, and further studies are
required to fill this gap.
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DNA Deoxyribonucleic acid
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P group Periodontitis group
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PCR Polymerase chain reaction
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IL-6 Interleukin-6
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