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Abstract: Hydroponic cultivation of lettuce is an increasingly popular sustainable agricultural
technique. However, Escherichia coli, a prevalent bacterium, poses significant concerns for the quality
and safety of hydroponically grown lettuce. This study aimed to develop a growth model for E. coli
and background microflora in hydroponically grown lettuce. The experiment involved inoculating
hydroponically grown lettuce with E. coli and incubated at 4, 10, 15, 25, 30, 36 ◦C. Growth models
for E. coli and background microflora were then developed using Origin 2022 (9.9) and IPMP 2013
software and validated at 5 ◦C and 20 ◦C by calculating root mean square errors (RMSEs). The result
showed that E. coli was unable to grow at 4 ◦C and the SGompertz model was determined as the
most appropriate primary model. From this primary model, the Ratkowsky square root model and
polynomial model were derived as secondary models for E. coli-R168 and background microflora,
respectively. These secondary models determined that the minimum temperature (Tmin) required
for the growth of E. coli and background microflora in hydroponically grown lettuce was 6.1 ◦C and
8.7 ◦C, respectively. Moreover, the RMSE values ranged from 0.11 to 0.24 CFU/g, indicating that the
models and their associated kinetic parameters accurately represented the proliferation of E. coli and
background microflora in hydroponically grown lettuce.

Keywords: growth model; hydroponically grown lettuce; Escherichia coli; background microflora

1. Introduction

Hydroponic agriculture, notable for its enhanced yield per acre and diminished con-
sumption of resources, is gaining recognition as a sustainable alternative to conventional
soil-based farming, offering a solution to pressing challenges of global food security [1].
In 2022, the Food and Agriculture Organization of the United Nations (FAO) published a
report supporting the cultivation of vegetables through hydroponics methods, predicting
that hydroponically grown lettuce would become one of the leading green leafy vegetables
in terms of sales [2]. However, while hydroponic greenhouses facilitate year-round pro-
duction by controlling environmental conditions such as temperature and humidity, they
inadvertently create an environment that is conducive to the persistence and transmission
of foodborne pathogens, thereby posing potential health risks.

The incidence of infections resulting from the contamination of hydroponically grown
produce with foodborne pathogens has been documented. A deadly outbreak of Es-
cherichia coli O104 occurred in Germany in 2011, where hydroponically grown fenugreek
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sprouts served as the vehicle of transmission, resulting in more than 4000 infections and
53 deaths [3]. In 2014, the United States encountered outbreaks of illness attributable to the
contamination of hydroponic sprouts with E. coli O157, followed by numerous outbreaks
of Salmonella infections associated with hydroponically cultivated lettuce in 2021 [4]. These
incidents highlighted the persistent risks associated with hydroponic leafy greens. More-
over, since 2006, it has been estimated that around 7000 individuals in the United States fall
ill annually due to the consumption of lettuce contaminated with E. coli, a Gram-negative
bacterium that significantly compromises the safety and quality of this produce [5–7].

E. coli is recognized for specific serotypes that can pose serious health risks to humans.
Owing to the challenges in detecting pathogenic serotypes, the enumeration method for
E. coli is widely employed in food products as an indicator of sanitary quality. This approach
focuses on the assessment of product safety based on concentration levels of E. coli, rather
than identifying the pathogenicity of specific E. coli strains. Furthermore, E. coli serves
as a crucial hygienic indicator in the risk assessment of foodborne pathogens. The risk
associated with a particular pathogen can be gauged by comparing its contamination ratio
to that of E. coli [8–10].

Models that predict the proliferation of microorganisms in food play a pivotal role in
evaluating and managing both food quantity and public health risks. Although numerous
studies have focused on formulating growth models for E. coli in fresh-cut lettuce, the
applicability of these models to lettuce cultivated hydroponically may be limited [11,12].
Firstly, the existing models were developed using sterilized samples of fresh-cut leaf,
neglecting the influence of background microflora and the integrity of the leaf on E. coli
growth. Secondly, these models are predicated on lettuce grown in soil, disregarding
the fact that the nutritional quality characteristics of lettuce grown hydroponically could
influence the growth of microorganisms, including E. coli [13]. In the processing of lettuce,
maintaining the hygiene of natural lettuce is crucial for ensuring the quality and safety of
the product [11]. Therefore, the development of predictive models for the growth of E. coli
in hydroponically grown lettuce under natural conditions is valuable for predicting shelf
life and conducting quantitative risk assessments of E. coli. Nevertheless, research focusing
on uncut leaves of lettuce remains scarce.

In this study, the growth kinetics of E. coli was investigated using leafy greens in their
natural state. The objective of this study was to develop models capable of delineating the
growth patterns of E. coli in lettuce cultivated hydroponically under different temperature
conditions. The models derived from this research are anticipated to offer valuable insights
for mitigating the proliferation of E. coli in hydroponically grown lettuce and facilitating
risk assessment processes.

2. Materials and Methods
2.1. Bacterial Cultures and Preparation

A strain of E. coli, designated as E. coli-R168, possesses resistance to rifampicin (rif,
Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) and was used in this study.
The original strain was isolated from lettuce and was artificially induced in our laboratory
to develop resistance against 100 mg/L rifampicin. Bacterial cultures with 15% glycerin
were stored at −80 ◦C. The frozen cultures were activated and propagated in tryptone
soya broth (TSB, Termo Fisher Scientific, Waltham, MA, USA) plates supplemented with
100 mg/L rifampicin (TSB/R) by aerobic incubation at 37 ◦C for about 12 h. A single
representative colony was inoculated into 10 mL TSB containing 100 mg/L rifampicin.
The strain was incubated at 37 ◦C (190 rpm) for approximately 12–13 h to achieve the
stationary phase. Then, it was centrifuged (8000 rpm, 10 min at 4 ◦C), the supernatant was
discarded, and sterile buffer peptone water (BPW, Termo Fisher Scientific, Waltham, MA,
USA) was added.
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2.2. Sample Preparation and Inoculation

The hydroponically grown lettuce samples were obtained from Shanghai Green Cube
Agricultural Development Co., Ltd., Shanghai, China. Fresh and intact leaves were chosen,
with each portion weighing 10 g, and then placed in sterile homogeneous bags (BKMAM®,
200 mm × 270 mm, Changde BKMAM Biotechnology Co., Ltd., Changde, China). The
non-homogenized samples were transferred to a biological safety cabinet, where 500 µL
aliquots of the cultures were spread on the surface of each lettuce sample uniformly
using a micropipette and a spreader, resulting in an initial inoculum level of around
10–100 CFU/g [14]. Following inoculation, the samples are dried aseptically for 15 min
before sealing the homogenized bags.

2.3. Growth Studies

The inoculated samples were incubated in incubators maintained at constant tem-
peratures (4, 10, 15, 20, 25, 30, and 36 ◦C). To determine the bacterial populations for
constructing growth curves, samples were withdrawn from incubators at different time
intervals according to the varying temperatures. To each sample, 90 mL of BPW was
added and subjected to pulsation for 2 min at the highest speed in a stomacher (Model
BagMixer® 400 W, Interscience Co., Saint Nom, France). An aliquot (0.1 mL) of the
liquid portion was withdrawn and plated onto TSB or TSB/R agar plates after proper
serial dilution with BPW. After incubation at 37 ◦C for 24 or 48 ± 2 h, the colonies of
E. coli and background microflora on each agar were counted. The difference in colony
counts between the TSB and TSB/R plates was considered as the count of background
microflora. All experiments were repeated independently twice, with each dilution
performed in triplicate.

2.4. Primary Model Development

The growth kinetic parameters of microorganisms in lettuce were calculated using four
primary models based on the temperature-dependent growth of E. coli and background
microflora. The models employed were: SGompertz, Huang, Berenyi, and SLogistic [15–17].
The SGompertz and SLogistic models were from Origin 2022 software, while the Huang and
Berenyi models were obtained from IPMP 2013 software [18]. These models were utilized
to describe the growth curves, yielding the maximum growth rate (µmax, Log CFU/g/h)
and lag phase duration (λ, h).

2.5. Secondary Model Development

The secondary models show the effect of temperature changes on the parameters (µmax,
λ) of E. coli and background microflora in samples, respectively. These models were built
using the Ratkowsky square root model (Equation (1)), polynomial model (Equation (2)),
and the inverse second order polynomial model (Equation (3)) [19–21].

√
µmax = a ∗ (T − Tmin) (1)

µmax = a + bT + cT2 (2)

µmax = a + b(1/T) + c(1/T)2 (3)

where T is the storage temperature (◦C), Tmin is the theoretical lowest bacterial growth
temperature (◦C), µmax is the maximum specific bacterial growth rate (h−1), a, b, c are the
regression coefficients.
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For the lag time, a linear regression equation was used to analyze λ as a function of
µmax; a and b are regression coefficients [22].

Ln(λ) = a − b ∗ Ln(µmax) (4)

2.6. Validation of Predictive Models

The validity of the growth prediction model was confirmed by calculating the root
mean square error (RMSE). This validation process involved comparing the parameters
derived from the secondary model to the parameters through the conventional growth
measurement method (not using temperature for model development) (5 ◦C and 20 ◦C).
The E. coli growth data we obtained from ComBase are specific to fresh-cut lettuce leaves at
temperatures of 5 ◦C and 20 ◦C.

3. Results and Discussion
3.1. The Primary Model of E. coli-R168 and Background Microflora
3.1.1. The Primary Model of E. coli-R168

Hydroponically grown lettuce was inoculated with E. coli-R168 and incubated
at temperatures ranging from 4 to 36 ◦C. While studies have indicated that E. coli
does not proliferate in soya bean products and ground chicken meat at 4 ◦C, there is
potential variability in the minimum growth temperature of microorganisms in different
food substrates [23,24]. Considering that 4 ◦C is a common refrigeration temperature,
we initiated our investigation on E. coli growth from this temperature. The results
revealed that E. coli also did not exhibit growth in hydroponic lettuce at 4 ◦C (Figure 1).
Subsequently, the temperature was increased, and predictive models were developed
to describe the growth of E. coli-R168 at 10, 15, 25, 30, and 36 ◦C. The results illustrated
in Figure 2A exhibit a concurrence between the observed values and the predictions of
the SGompertz, Huang, Baranyi, and SLogistic models, indicating that these models
successfully describe the growth pattern of E. coli-R168 growth on leaf of lettuce. To
compare the accuracy of the models, three key parameters were analyzed for each
model: Akaike information criterion (AIC), RMSE, and coefficient of determination (R2).
Although the R2 values for all four models exceeded 0.9, the SGompertz model exhibited
the smallest AIC and RMSE parameters, which ranged from −23.206 to −0.60484 and
0.053 to 0.109, respectively. Lower AIC values indicate superior model quality [25], while
a lower RMSE value closer to 0 signifies better alignment between model predictions and
experimental data [26]. The R2 value, ranging from 0 to 1, serves as an overall measure
of prediction accuracy, with a value of 1 indicating optimal model performance [27]
(Table 1). Consequently, the SGompertz model was identified as the most suitable growth
model for E. coli-R168 in this experiment.

The study revealed that the maximum growth rates (µmax) of E. coli-R168 in the
SGompertz model at 10, 15, 20, 25, 30, and 36 ◦C were 0.020, 0.060, 0.382, 0.586, and
0.875 Log CFU/g/h, respectively (Table 1). As the temperature increased, the growth
rate of E. coli-R168 also increased, while the lag period decreased, aligning with previous
research below 42 ◦C from Katipoglu-Yazan, T etc. [28] (Figure 2A and Table 1). When
comparing the specific growth rates reported by Kim, Y. J [29] and de Oliveira Elias, S. [30]
for fresh-cut lettuce at 5–42 ◦C (Figure 3), the growth rate of E. coli-R168 in this study was
found to be higher, which might be attributed to the influence of background microflora
and the type of lettuce used [31].
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Figure 1. Growth of E. coli-R168 (E. coli) and background microflora (BK.) in hydroponically grown
lettuce at 4 ◦C.

3.1.2. The Primary Model of Background Microflora

The background microflora exhibited an irregular and slow growth trend at 4 ◦C
(Figure 1). It has been shown that the bacterial communities residing on the leaves of
hydroponically grown lettuce are intricately complex. Low temperatures have significant
impacts on the biological structure, which in turn affects the growth of these bacterial
colonies [32]. Hence, data collected at 10, 15, 25, 30, and 36 ◦C were utilized to develop
the primary growth model of background microflora in hydroponically grown lettuce
(Figure 2B). The Huang, Baranyi, and SGompertz models exhibited superior fit to the
growth data of background microflora in comparison to the SLogistic model. A comprehen-
sive evaluation using the parameters of AIC, RMSE, and R2 as presented in Table 1 revealed
that the SGompertz model outperformed the others with the lowest AIC values (−12.278
to −42.200) and RMSE values (0.111 to 0.216 CFU/g), coupled with an acceptable R2 value.
On this basis, the SGompertz model was selected as the primary model for describing the
growth kinetics of background microflora in hydroponically grown lettuce. The maximum
growth rates (µmax) of background microflora, as described by the SGompertz model at
temperatures of 10, 15, 20, 25, 30, and 36 ◦C, were 0.020, 0.086, 0.282, 0.274, and 0.432 h−1

(Table 1), respectively.
In this study, the growth rates of background microflora in hydroponically grown

lettuce increased at a slower rate compared to E. coli when temperatures rose (Figure 3).
This phenomenon could be due to the complex composition of local microbes and their
interactions within the hydroponically grown lettuce environment [33]. Moreover, other
research has shown that in raw ground pork, the growth rate of the background microflora
is higher than that of E. coli, highlighting the impact of varying nutritional compositions
of food matrices on microbial growth [32]. Overall, the results of this study revealed that
the growth of E. coli in hydroponically grown lettuce was not significantly inhibited by the
presence of background microflora.
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Table 1. Fitting parameters of four primary kinetic models of E. coli-R168 and background microflora
in hydroponically grown lettuce.

Temperature/◦C Model µmax/h−1 λ/h AIC RMSE R2

E. coli-R168

10

SGompertz 0.020 35.682 −56.906 0.053 0.999
Huang 0.036 12.267 −30.439 0.150 0.999
Baranyi 0.036 9.667 −25.072 0.187 0.998

SLogistic 0.022 49.551 −35.939 0.126 0.991

15

SGompertz 0.060 8.889 −60.484 0.109 0.993
Huang 0.117 4.601 −20.644 0.180 0.998
Baranyi 0.117 2.385 −15.890 0.224 0.997

SLogistic 0.065 13.274 −27.890 0.479 0.983

25

SGompertz 0.382 2.337 −42.701 0.095 0.997
Huang 0.758 1.706 −17.101 0.261 0.997
Baranyi 0.798 1.930 −16.681 0.266 0.997

SLogistic 0.423 3.229 −34.905 0.132 0.993

30

SGompertz 0.586 1.682 −23.206 0.077 0.998
Huang 1.047 0.891 −15.886 0.167 0.999
Baranyi 1.088 1.070 −15.410 0.171 0.999

SLogistic 0.612 2.395 −12.564 0.132 0.995

36

SGompertz 0.875 1.112 −56.148 0.103 0.997
Huang 1.688 0.620 −17.423 0.383 0.996
Baranyi 1.763 0.768 −18.130 0.374 0.996

SLogistic 0.989 1.669 −40.384 0.174 0.993

Background microflora

10

SGompertz 0.020 38.403 −34.609 0.181 0.993
Huang 0.038 23.825 −5.286 0.427 0.987
Baranyi 0.038 20.763 −3.102 0.468 0.997

SLogistic 0.027 63.579 −9.191 0.531 0.982

15

SGompertz 0.086 10.400 −33.632 0.111 0.992
Huang 0.152 4.672 −2.169 0.418 0.988
Baranyi 0.191 11.267 −5.597 0.358 0.991

SLogistic 0.096 13.529 −12.122 0.296 0.994

25

SGompertz 0.282 2.864 −23.037 0.216 0.973
Huang 0.595 2.512 3.213 0.609 0.976
Baranyi 0.637 2.733 4.975 0.655 0.972

SLogistic 0.321 3.824 −19.458 0.251 0.963

30

SGompertz 0.274 1.985 −12.278 0.133 0.987
Huang 0.560 1.534 2.982 0.429 0.987
Baranyi 0.575 1.473 4.043 0.453 0.985

SLogistic 0.038 3.069 −6.472 0.178 0.977

36

SGompertz 0.432 1.937 −42.200 0.164 0.980
Huang 0.864 1.449 −14.170 0.427 0.982
Baranyi 0.956 1.765 −10.791 0.478 0.978

SLogistic 0.514 2.708 −36.513 0.198 0.970
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Figure 3. Effect of temperature on specific growth rate and lag times of E. coil-R168 and background
microflora in hydroponically lettuce and comparison with data from fresh-cut lettuce. Data sources:
A = Kim, Y. J. [27]; B = de Oliveira Elias, S. [28]; E. coil-R168 (C) and background microflora (D) used
in this study.

3.2. Secondary Model of E. coli-R168 and Background Microflora

To investigate the impact of temperature on the growth parameters of E. coli-R168 and
background microflora, three models were analyzed to determine the optimal secondary
model based on the accuracy factor (Af), bias factor (Bf), RMSE, and R2 values [34]. The
results from Table 2 indicate that the Ratkowsky square root model offers a superior fit for
the growth rate of E. coli, with parameter values of Af = 1.144, Bf = 0.989, RMSE = 0.018,
and R2 = 0.995. In comparison, other models did not perform as well. Additionally, the
polynomial model effectively described the relationship between the growth rate and
temperature for background microflora, with Af = 1.091, Bf = 1.000, RMSE = 0.028, and
R2 = 0.963. According to the established criteria, Af and Bf values within the range of
0.9–1.05 are considered ideal, while values from 1.06–1.15 are also deemed acceptable.
Values outside this range are considered unacceptable [35]. Therefore, the Ratkowsky
square root model and polynomial model were chosen as the secondary models for
E. coli-R168 and background microflora, respectively. The secondary model revealed
that the minimum growth temperature of E. coli-R168 in hydroponically grown lettuce was
6.1 ◦C, which differed by 1–2 ◦C compared to other foods like raw beef and ground chicken
in various media [24,36]. The growth of E. coli-R168 was inhibited at a storage temperature
lower than 6 ◦C, and the retardation period was as long as 600 h. At a temperature of 25 ◦C,
after 3.3 h the E. coli-R168 growth increases, posing a higher risk of foodborne illness. A
linear relationship was observed between Ln µmax of E. coli-R168 in hydroponically grown
lettuce and Ln λ, where higher growth rates corresponded to shorter lag periods. Therefore,
controlling the lag period through temperature regulation is crucial.

Compared to E. coli-R168, the minimum growth temperature of the background
microflora in hydroponically grown lettuce was 8.7 ◦C (Figure 4B), which was higher than
that of E. coli-R168. The linear relationship between the growth rate and the lag period of
background microflora was also similar to that of E. coli (Figure 4B). The lag phase duration
of the background microflora decreased gradually with an increase in the growth rate.
This study, combined with the minimum growth temperature of E. coli-R168, posits that
maintaining hydroponically grown lettuce storage temperatures below 6 ◦C can effectively
inhibit the growth of E. coli as well as native microbial populations, thereby reducing the
risk of foodborne diseases.



Foods 2024, 13, 1359 9 of 13

Table 2. Secondary modeling for growth parameters of E. coli-R168 and background microflora in
hydroponically grown lettuce.

Bacteria Secondary Model Equation Af Bf RMSE R2

E. coli-R168
Ratkowsky square root model

√
µmax = 0.0317 ∗ (T − 6.101) 1.144 0.989 0.018 0.995

Polynomial µmax = 0.243 − 0.266 ∗ T + 0.0877 ∗ T2 172.629 172.629 60.475 0.963
Inverse second order µmax = 1.9062 + 48.019 ∗ (1/T) + 292.91 ∗ (1/T)2 1.832 0.737 0.057 0.969

Background
microflora

Ratkowsky square root model
√

µmax = 0.0191 ∗ (T − 0.675) 1.236 1.051 0.002 0.954
Polynomial µmax = −0.1217 + 0.0138 ∗ T + 0.00003 ∗ T2 1.091 1.000 0.028 0.963

Inverse second order µmax = 0.785 − 16.55 ∗ (1/T) + 89.145 ∗ (1/T)2 1.117 1.014 0.032 0.952
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3.3. Model Validation

The secondary model revealed that the minimum growth temperature for E. coli-R168
is 6.101 ◦C. To validate the growth of E. coli-R168 in hydroponically grown lettuce at low
temperatures, data from the ComBase database were used for external verification to confirm
the growth of E. coli-R168 at 5 ◦C. The model’s predictions were consistent with the database’s
recording, showing no significant growth of E. coli-R168 at 5 ◦C (Figure 5). Studies have
indicated that transportation temperatures exceeding 5 ◦C can increase the risk of spoilage
in agricultural products, potentially leading to disease [37,38]. Therefore, it is crucial to
maintain temperatures below 5 ◦C. In addition, considering the temperature of lettuce at
farmers’ markets, an internal verification temperature of 20 ◦C was chosen, which was
not included in the modeling process. The comparison between predicted and observed
growth curves is illustrated in Figure 5. The disparity between observed values and the
model’s predictions is quantified by the RMSE, with values closer to 0 indicating a more
precise alignment between the model’s predictions and actual results. The performance of the
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E. coli-R168 models is documented in Table 3, with RMSE values of 0.1145 at 5 ◦C and 0.239 at
20 ◦C. RMSE values ranging from 0.2 and 0.5 are generally considered as normal experimental
error [39,40], suggesting that the predictive model constructed in this study is accurate.
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Table 3. Validation for the performance of developed models in hydroponically grown lettuce stored
at 5 and 20 ◦C.

Bacteria Temperature/◦C RMSE Equation

E. coli-R168
5 0.115

√
µmax = 0.0317 ∗ (T − 6.101)

20 0.239 Ln(λ) = −0.0339 − 1.1316 ∗ Ln(µmax)

Background
microflora

20 0.145
µmax = −0.1217 + 0.0138 ∗ T + 0.00003 ∗ T2

Ln(λ) = −0.3562 − 0.9517 ∗ Ln(µmax)

Due to variations in the background microflora composition among species, there are
no corresponding microbial growth data available in the ComBase database. Therefore,
the growth model for background microflora was solely validated at 20 ◦C (Figure 5).
The RMSE for background microflora at 20 ◦C, as listed in Table 3, was 0.145, indicating
that the developed model effectively describes the growth of background microflora in
hydroponically grown lettuce.

4. Conclusions

This study has successfully developed and validated predictive growth models for
E. coli-R168 and background microflora in hydroponically grown lettuce, offering significant
insights into the microbial safety of such produce. The SGompertz model emerged as the
most suitable primary model for describing the growth of E. coli-R168, with the Ratkowsky
square root model and polynomial model serving effectively as secondary models for
E. coli-R168 and background microflora, respectively. The primary prediction model in-
dicated that, within the temperature range of 10–36 ◦C, the hysteresis periods for E. coli
and the background microflora varied from 35.7 to 1.1 h and 38.4 to 1.9 h, respectively.
The secondary models have elucidated the minimum growth temperatures for E. coli-R168
and background microflora to be 6.1 ◦C and 8.7 ◦C, respectively. These models provide a
valuable tool for predicting the shelf life of hydroponically grown lettuce and contributing
to quantitative microbial risk assessment.

However, it is important to acknowledge the study’s limitations. The focus on a single
strain of E. coli and the exclusion of other pathogens that might affect hydroponically grown
lettuce could limit the broader applicability of our findings. Future research should aim to
include a wider range of pathogens to provide a more comprehensive understanding of
microbial risks in hydroponic agriculture. Additionally, while the models were validated
at specific temperatures, extending this validation across a broader range of real-world
storage and transportation conditions could enhance the practical utility of our findings.
The study, which selected an E. coli isolate from lettuce for modeling in order to minimize
the impact of strain heterogeneity on model accuracy, would benefit from further validation
using different types of E. coli to enhance the model’s precision.

In conclusion, while our study provides important insights into the growth patterns
of E. coli and background microflora in hydroponically grown lettuce, it also highlights the
need for further research to broaden the scope, validation, and applicability of our findings.
By addressing these limitations, future studies can contribute to the development of more
comprehensive strategies for ensuring the microbial safety of hydroponically grown pro-
duce, thereby supporting the sustainability and public health goals of modern agriculture.
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