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Abstract: Rare earth elements (REEs) are a new type of material resource which have attracted
significant attention in recent years. REEs have emerged as essential metals in modern-day technology
due to their unique functions. The long-term, large-scale mining and utilization of rare earths has
caused serious environmental pollution and constitutes a global health issue, which has raised
concerns regarding the safety of human health. However, the toxicity profile of suspended particulate
matter in REEs in the environment, which interacts with the human body, remains largely unknown.
Studies have shown that REEs can enter the human body through a variety of pathways, leading to a
variety of organ and system dysfunctions through changes in genetics, epigenetics, and signaling
pathways. Through an extensive literature search and critical analysis, we provide a comprehensive
overview of the available evidence, identify knowledge gaps, and make recommendations for future
research directions.
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1. Introduction

REEs refer to a series of elements which includes lanthanides, Sc, and Y, which is
made up of seventeen metallic elements in the periodic table [1]. REEs are usually divided
into two groups based on their different structures and characteristics. La, Ce, Pr, Nd,
Pm, Sm, and Eu are referred to as light rare earth elements (LREEs), while Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu, Sc, and Y are referred to as heavy rare earth elements (HREEs) [2].
Major REE mining areas around the world include Bayan Obo in China, Mountain Pass
in the United States, Mount Weld in Australia, REE deposits in eastern Canada, and ion-
adsorption deposits in several Chinese southern provinces [3,4]. Over the last few decades,
REEs have been synthesized and used in various industries due to their characteristics [5].
However, numerous studies have shown that the long-term, large-scale exploitation and
utilization of REE minerals may lead to excessive REE content in atmospheric particulate
matter [6]. Epidemiological studies have suggested that Baiyan Obo in China and Nunavik
in Canada are areas with severe REE pollution in the environment [7,8]. Among them, the
polluted areas of REEs are mainly located near high-polluting factories related to mining,
nearby residential areas, and junctions in cities with heavy traffic [9–11]. People in areas
contaminated with REEs can be exposed to significant amounts of REEs through their skin
and inhalation. REE accumulation has been detected in human blood, urine, and hair,
suggesting that long-term exposure to REEs has potential risks to human health [12,13].
Meanwhile, excessive REE levels in food can also be ingested and can lead to REE accumu-
lation in the digestive tract [14–16]. In addition, REE exposure is not limited to the vicinity
of mining sites. With the rapid development of the medical industry, iatrogenic exposure
has also become an important route for REE exposure [17,18].

REEs can enter the human body through multiple exposure routes and accumulate
in different tissues or organs, ultimately posing a threat to human health [19]. The afore-
mentioned findings clearly show that REE exposure is a public health issue of global
importance. However, there has been relatively little exploration of the toxicological effects
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and mechanisms of REEs’ effects on human health [20]. Therefore, the main purpose of
this review is to focus on the current literature to provide an overview and discuss the
hazardous effects of REE exposure on human health.

2. Materials and Methods
2.1. Search Strategy

We conducted a literature review using the PubMed and Web of Science databases to
identify articles on the toxicity of rare earth exposure to health published up to December
14, 2023. The retrieval strategy was as follows:

#1: (Earth Metals, Rare) OR (Rare Earth Metals) OR (Rare Earth Metal) OR (Earth
Metal, Rare) OR (Metal, Rare Earth) OR (Lanthanoid Series Elements) OR (Cerium) OR
(Dysprosium) OR (Erbium) OR (Europium) OR (Gadolinium) OR (Holmium) OR (Lan-
thanum) OR (Lutetium) OR (Neodymium) OR (Praseodymium) OR (Promethium) OR
(Samarium) OR (Terbium) OR (Thulium) OR (Ytterbium) OR (Scandium).

#2: (Health) OR (Individual Health) OR (Health, Individual) OR (Occupational Health)
OR (Adolescent Health) OR (Child Health) OR (Maternal Health) OR (Infant Health) OR
(Men’s Health) OR (Women’s Health) OR (Sexual Health) OR (Population Health) OR
(Public Health) OR (Reproductive Health).

#3: #1 AND #2.
Additionally, the studies identified through the aforementioned search strategy

were examined.

2.2. Inclusion Criteria

Studies were included if they involved (1) epidemiological studies on the effects of
REEs on human health, to explore the relationship between REEs and adverse outcomes
such as respiratory and cardiopulmonary diseases; (2) research delving into the toxicity
and underlying mechanisms of REEs utilizing in vivo and in vitro models with commonly
utilized laboratory materials (e.g., mice, zebrafish, and human tissue cells); or (3) the
comprehensive analysis of the mechanisms of REE-induced human body damage, including
genetics, epigenetics, and abnormal changes in signaling pathways.

2.3. Exclusion Criteria

The studies were excluded if they were (1) not written in English or (2) if original data
about in vivo and in vitro experiments were not available.

3. Rare Earth Exposure

Inhalation exposure is the most common exposure route of exposure to atmospheric
particulates [21]. A study of airborne particulate matter in Baotou City estimated that
the average daily intake of REEs through PM2.5 inhalation ranged from 5.09 × 10−7 to
2.25 × 10−5 mg kg−1 d−1 [22]. In particular, the daily intake of REEs by residents in mining
areas was found to be much higher than that of residents in non-mining areas [23]. An
epidemiological investigation showed that the average dose of REEs inhaled by residents of a
mining area was as high as 101.03 to 430.83 µSvyear−1 [24]. Long-term exposure to inhaled
REE particles can lead to significant REE deposition in the lungs [25,26]. REE particles can also
enter the human body through hair follicles and sweat glands, causing bodily damage [27]. In
long-term exposure to an environment with excessive REE content, REEs can also cross the
placental barrier and cause intrauterine damage to a fetus through accumulation [28]. Recent
studies have shown that the production of global waste of electrical and electronic equipment
(WEEE) rich in REEs has increased significantly, further driving environmental pollution and
creating threats to human health caused by REEs [29]. This is due to these new pollutants
having nondegradable components and having long half-lives [30–32]. The oral inhalation of
REE can lead to long-term deposition in humans and produce chronic toxic effects [33]. In
addition, WEEE is spread through the air and in other ways, which also means exposure to
rare earth elements is no longer limited to residents in mining areas [34]. Meanwhile, since
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intravascular gadolinium contrast agents are used as substitutes for iodine contrast agents,
the potential toxicity of REEs to the human body through iatrogenic exposure cannot be
ignored [18]. In conclusion, the multiple exposure pathways of REEs and their consequent
health risks have attracted our attention.

4. Rare Earth Toxicity

By searching for and summarizing relevant studies published in recent years, we found
that exposure to REEs in the environment can harm human health [35]. Toxicological effects
due to the bioaccumulation of REEs have been extensively evaluated in a large number
of in vivo and in vitro models [20,36]. However, the current understanding of REEs is
relatively limited, and these studies have only briefly explored the interaction between
the toxic effects of certain REEs and human health. We further systematically explored
and integrated toxicity studies of REE exposure that explored respiratory, cardiovascular,
neurological, reproductive, and other unclassified systems. Table 1 provides a summary of
REEs associated with human health hazards.

Table 1. Summary of REE-associated toxicological studies.

Element Section Studied Toxicity Outcome Reference

Respiratory system Y Endotracheal Dyspnea and pulmonary edema, pleural effusions [21]

Ce Environmental exposure,
skin contact

Extrapulmonary translocation, interstitial lung disease,
pulmonary fibrosis, pneumoconiosis, cytotoxicity [37]

La Environmental exposure Phosphate deposition, pulmonary fibrosis [38]

Ce Occupational exposure,
environmental exposure

Cytotoxicity, genotoxicity, lung cancer, inflammation,
granulomas, mobilization [39]

Dy Endotracheal instillation Lung injury, oxidative stress, inflammatory response [40]
Sm Endotracheal Lung injury, inflammatory response, pulmonary fibrosis [41]

Th Environmental exposure,
skin contact Dyspnea, pneumoconiosis, lung cancer [42]

Nervous system Gd Iatrogenic exposure Deposits in the brain, brain damage [43]

Nd Environmental exposure,
food chain Fetal neural tube defects [44]

La Environmental exposure,
skin contact, food chain

Learning and memory impairment, decreased spatial
discrimination, cytotoxicity, memory disorders [45]

Cardiovascular
system Ce Environmental exposure, The hemoglobin level is reduced, anemia [46]

Gd Endotracheal instillation Cytotoxicity, hematopoietic destruction [47]
La Occupational exposure Deposition in blood vessels [41]

Nd Environmental exposure,
skin contact, food chain

DNA damage, cytotoxicity, abnormal cardiovascular and
cerebrovascular development [48]

Reproductive system Ce Environmental exposure,
oral administration

Oxidative stress, placental dysfunction,
fetal abortion, growth restriction [49]

Gd Iatrogenic exposure Inflammatory or invasive skin diseases,
stillbirth, neonatal death [50]

Skeleton Gd Iatrogenic exposure Bone deposits, osteoporosis [51]
Y Iatrogenic exposure Bone deposits [52]

Nd Occupational exposure,
environmental exposure

Disorders of bone metabolism,
decreased bone mineral density [53]

La Environmental exposure,
food chain

Abnormal metabolism of calcium and phosphorus,
decreased bone mineral density [54]

Note: REE, rare earth element; Y, yttrium; Ce, cerium; Dy, dysprosium; La, lanthanum; Nd, neodymium; Gd,
gadolinium; Sm, samarium; Th, thorium; Yb, ytterbium.

4.1. Respiratory System

Although atmospheric particles can be cleared by the immune mechanism of the human
body, some REEs remain in the respiratory tract and produce toxic effects [55]. A number of
observational studies on exposed populations have pointed out that workers who inhaled
REE particles have a significantly increased incidence of airway and interstitial lung diseases,
such as inflammation, granulomatous degeneration, pulmonary fibrosis, pneumoconiosis, and
even cancer [37,38,56], which may be caused by the accumulation and irritation of REEs. Based
on epidemiological results, numerous animal experiments simulating exposure levels of REEs
have found that REEs can indeed cause severe lung damage. For example, Snow et al. showed
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that REE particles can be deposited in the lung through respiration, activating oxidative stress
and inducing pulmonary inflammation in mice [57–59]. In vivo experiment, granulomatous
changes appeared in the lung tissue of rats when the concentration of cerium nitrate was
increased to 75 mg/kg body weight/day [60,61]. Respiratory function disruption caused by
the long-term intratracheal instillation of REEs led to restricted ventilation dysfunction in mice
and eventually transformed into interstitial pulmonary fibrosis [39,62]. In addition, in vitro
experiments further confirmed that REEs could enter lung cells and lead to decreased cell
viability and enhanced apoptotic ability through reactive oxygen species (ROS) production and
DNA damage effects [63]. Notably, the adverse effects of REEs on lung cells are influenced by
environmental factors, particle size, exposure dose, and duration [20,64,65]. In particular, long-
term exposure to nanoscale REE particles can cause more serious damage to the lungs [40].

4.2. Nervous System

REEs can cross the blood–brain barrier and deposit in the brain, which underlies their
neurotoxicity [66,67]. Epidemiological investigations of residents living in mining areas
have shown that long-term exposure to REEs can cause neurological diseases, such as
motor and sensory impairments, neurodegeneration, or neurosis [43,68]. Observational
studies in special populations, such as children and pregnant women in mining areas,
have shown that REEs can lead to reduced intelligence and motor ability in children, can
deposit in the fetal brain, and can affect neural tube development [44,69]. These studies
have shown that REEs can be deposited in the brain, impair the development of the central
nervous system, and even pass through the placental barrier to generate passage or trans-
generational inheritance. A series of in vivo studies of neurological disorders associated
with REE exposure have been reported by several groups. REEs were found to be able to
deposit in the cerebral cortex and hippocampus, causing a significant reduction in plasma
neurotransmitter levels and the number of neurons in mice, leading to impaired motor
ability, spatial recognition, and memory [45,70,71]. Xu et al. found in Caenorhabditis ele-
gans that REEs can cause neurodegenerative changes by inducing damage to dopaminergic
and GABAergic neurons [72]. In addition, REEs can cause depression, anxiety, and sample
behavior in mice, confirming that REE exposure can cause severe neurosis [73]. In vitro
studies have also shown that REEs are deposited in human neurons and exert effects on
neuron cell viability, morphology, apoptosis, and mitochondrial respiratory function [74],
further revealing that REE exposure is associated with nervous system damage.

4.3. Cardiovascular System

Studies have shown that long-term exposure to REEs can cause leukopenia, increase
telomerase activity in human peripheral blood monocytes, and even lead to lymphoma and
leukemia [75,76]. The results of a cross-sectional study showed that children and adolescents in
mining areas had lower blood levels of trace elements and hemoglobin, resulting in an increased
probability of anemia [46]. These results indicate that REEs can be deposited in the blood and
affect the number and classification of cells in the blood, causing harm to human health. The
toxicological effects of REEs on the cardiovascular system were evaluated in animal models.
REEs can be deposited in mice, reduce the number of blood cells, and induce inflammatory
cell aggregation and the release of pro-inflammatory factors, leading to hematopoietic function
and vasoconstriction disorders [47,77,78]. Zhao et al. also reported pathological changes in
zebrafish after REE exposure, such as pericardial edema, cardiac contraction disorders, and
myocardial hypertrophy [41], suggesting that REEs have adverse effects on the structure and
function of the cardiovascular system. REEs induce abnormal vascular development in zebrafish
by activating the apoptotic pathway [48]. In addition, Gojova et al. found that as markers of
inflammation, intercellular cell adhesion molecule-1, interleukin-8, and monocyte chemotactic
protein-1 were significantly increased in human aortic endothelial cells that internalized REE
particles, suggesting that REEs can induce inflammation in vascular endothelial cells [79]. REEs
can activate oxidative stress, induce inflammatory responses, and damage endothelial cells,
leading to atherosclerosis [80,81].
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4.4. Reproductive System

The adverse effects of REEs on reproductive health have been a controversial topic.
Studies have shown that the effects of REEs on male reproduction include impaired spermato-
genesis, reduced sperm quality, and testicular tissue damage [42,82]. Animal experiments
confirmed that there was a significant positive correlation between the deposition of REEs in
the testes of mice after long-term exposure to 0, 20, and 40 mg/kg REEs and the degree of
sperm DNA damage and exposure dose [49]. This may be related to inflammation, oxidative
stress, and disruption of the blood–testis barrier. Similarly, increased REE levels in women’s
serum may adversely affect the outcome of in vitro fertilization–embryo transfer and increase
the risk of spontaneous abortion [83]. Numerous animal studies have found that REEs can
be deposited in the placental trophoblastic layer of mice exposed to REEs, potentially lead-
ing to adverse pregnancy outcomes including placental dysfunction, fetal loss, or growth
restriction [84]. In addition, there is an association between REE exposure and severe fetal and
neonatal injury. REE exposure during pregnancy can lead to fetal cleft lip and palate and an
increased risk of stillbirth or neonatal death [50,85]. Studies on pregnant mice exposed to REEs
found that the number of primary follicles in newborn mice was significantly suppressed,
suggesting that REEs may cause reproductive toxicity in the passage [86].

4.5. Other Systems

In addition to the above systems, the potential toxicity of REEs to the human body
involves other systems. After long-term exposure to REEs, REE deposition can be detected
in bone tissue, which reduces bone density and interferes with bone metabolism, leading
to osteoporosis and bone and joint injury [51–53]. This is because the influence of REEs
can directly replace Ca2+ calcium phosphorus metabolism or can indirectly regulate the
osteoclast combination of Ca2+ receptor-induced osteoporosis [54,87]. Large deposits of
REEs were also detected in patients with liver injuries in a mining area, and there was
a U-shaped relationship between serum REE levels and oral cancer risk, indicating that
large doses of REE exposure can cause gastrointestinal injury [88,89]. Hao et al. pointed
out that REEs can increase the burden of renal clearance of metabolites and cause damage
to the urinary system [90]. REEs can also induce increased thyrotropin secretion, leading
to histopathological changes and thyroid dysfunction [91]. In vivo experiments further
confirmed that luteinizing hormone, follicle-stimulating hormone, and prolactin were
significantly decreased in mice after the oral administration of REEs [92], suggesting that
REEs have endocrine-disrupting effects. In addition, Martin-Aguilar et al. found a strong
association between an increased number of brain MRI gadolinium enhancement lesions
and multiple sclerosis recurrence, suggesting that REE exposure may lead to immune
system impairment [93]. Taken together, these studies highlight the potential toxicity of
REEs in various systems with adverse consequences on human health, and they contribute
to the further exploration of the role of REEs in toxicology to minimize the corresponding
health risks.

5. Toxicity Mechanisms

Although the mechanism of REE toxicity has been reported in several studies, research
in this field still needs to be improved [94,95]. Many studies have indicated multiple
regulatory effects in addition to oxidative damage and apoptosis. Therefore, this review
mainly explores the mechanism of REE toxicity from the following aspects: genetics,
epigenetics, and alterations in signaling pathways.

5.1. Genetics

Firstly, DNA damage in the form of gene mutations, chromosome damage, or number
change is considered to be the basic change in genetic damage, which can lead to apoptosis
or necrosis. Epidemiological studies on exposed cohorts have shown that REE exposure can
lead to an increase in urinary 8-OHdG, suggesting that DNA oxidative stress damage is a
potential mechanism of health hazards caused by REEs [75]. A large number of in vitro and
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in vivo experiments have confirmed that REE exposure can directly or indirectly activate
oxidative stress, induce the cleavage of DNA repair protein Poly ADP-ribose polymerase
(PARP), prevent chromosome agglutination, and lead to DNA damage [96–99]. In addition,
cell experiments with internalized REE particles showed an increase in DNA double-strand
break marker proteins, γ-H2AX, and a decrease in DNA repair proteins such as p-53 and
PARP, confirming that REEs can induce genetic changes and cause DNA damage [100,101].

5.2. Epigenetics

Secondly, with the intensive study of epigenetics in disease development, research into
non-coding RNA (ncRNA) as a molecular target has become a hot topic. High-throughput
sequencing results showed that REE-induced damage was related to abnormal changes in
ncRNA expression profiles [102]. For example, in a human bronchial epithelial cell model ex-
posed to nanoparticles of neodymium oxide (NPs-Nd2O3), 1915 circRNAs (1025 up-regulated
and 890 down-regulated) were abnormally expressed, inducing tissue dysfunction through
sponge miRNAs [103]. The abnormal expression of lncRNAs can activate NF-κ B and induce
inflammation [104]. Moreover, Let-7a miRNA and miR-34a have also been confirmed to be
abnormally increased in REE-exposed cervical cancer cells [105]. In addition to this, methyla-
tion is also crucial in epigenetic modification. The results of a recent study have shown that
DNA methylation levels are reduced in human fibroblast cell lines exposed to REEs, which
abnormally affect cell morphology and viability [106]. REE exposure can also enhance the
methylation modification of histone H3, increase the binding of the MLL1 complex in the
NRF2 promoter region, and induce genotoxicity in cells [107].

5.3. Altered Signaling Pathways

In addition to the above mechanisms, classical pathways including inflammatory
response, immune response, and endocrine signaling are significantly affected by REE
exposure, such as abnormal changes in the Nrf2, MAPK, and Toll-like receptor (TLR)
signaling pathways [108–110]. A cross-sectional study of e-waste site residents showed that
REE exposure led to increased biomarkers of oxidative stress, suggesting that REE exposure
caused endocrine diseases through increased oxidative stress, leading to hormonal changes
in the hypothalamic–pituitary–thyroid axis (HPT) [91]. Similarly, REEs deposited in animals
can increase intracellular ROS levels and trigger an increase in Nrf2 gene expression, which
further activates the Nrf2 endogenous antioxidant pathway and induces vascular injury
in mice [111]. In addition, in vitro and in vivo experiments have confirmed that REE
particles can directly or indirectly activate the NF-κ B signaling pathway, promote the
synthesis and release of inflammatory chemokines, enhance immune cytotoxicity, and
induce inflammation [108,112,113]. Table 2 briefly summarizes the mechanisms of REE
toxicity based on the results of current in vitro and in vivo studies.

Table 2. Summary of related toxicological mechanisms of rare earth elements.

Type Sample REE Exposure Toxicity Reference

Genetic In vivo C57-ras 12.5, 25, and 50 mg/kg
lanthanum nitrate for 180 d Rare earth deposition causes direct damage [66]

In vitro SH-SY5Y 10, 25, 50, and 100 µg/mL
Gd2O3 for 24 and 48 h

Apoptosis is regulated by bcl-2/bax
protein expression [98]

In vivo Rat 1 mg/kg CeO2 for 6 d Oxidative stress, inflammation, DNA damage [111]

Epigenetic In vitro 16HBE
0, 5, 10, 20, 40, and 80

µg/mL Nd2O3 for 6, 12, 24,
48, and 72 h

circ_009773 regulates DNA damage [103]

In vitro 16HBE 10 µg/mL NPs-Nd2O3 for
48 h

Promotes NF-κ B activation and promotes
cellular inflammation by negatively regulating

adiponectin receptor 1 expression
[104]

In vitro Human
fibroblast cell

0.05 to 1.6 mg/mL of
Tb-MOF for 48 h

Altered gene methylation, induced
genetic damage [106]
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Table 2. Cont.

Type Sample REE Exposure Toxicity Reference

Signaling
pathways In vivo Rat 0 and 1 mg/kg CeO2

nanoparticles for 6 d
Activation of oxidative stress and Nrf2

signaling pathways [111]

In vivo Rat
0, 1.56, 3.125, 6.25, 12.5, 25,
50, and 100 µg/mL Nd2O3

for 24 h

Activating the NF-κ B and caspase-3 signaling
pathways, promoting the synthesis and release

of inflammatory chemokine
[112]

In vivo C57BL/6J mice Long-term exposure to
cerium nanoparticles

Activation of the NF-κ B signaling pathway can
increase the cytotoxic activity of immune cells [113]

Note: REE, rare earth element; La, lanthanum; Gd, gadolinium; Ce, cerium; Nd, neodymium; Tb, terbium.

6. Conclusions

Due to the widespread distribution and persistence of REEs in the environment, there
is an urgent need to fully understand the harmful effects and mechanisms of REE particles
on human health. By comprehensively summarizing current knowledge, we found that the
human body can be exposed to REEs through various pathways such as inhalation, ingestion,
dermal contact, and iatrogenic exposure, and this causes deposition, which in turn destroys the
structure and function of various organs of the human body and induces multi-system diseases
(e.g., respiratory, nervous, cardiovascular, reproductive, and immune systems). Notably, the
adverse effects of REEs on various tissues and organs are also affected by environmental
factors, particle size, and exposure dose and duration. Numerous in vitro and in vivo studies
have shown that REEs exert these adverse effects mainly by affecting genetics and epigenetics,
altering the activation of signaling pathways (Figure 1). Although epigenetics is a promising
molecular target for early diagnosis and prevention, the specific mechanisms by which REEs
damage organisms are not fully understood. Through the evidence presented in this review,
the correlation between exposure risk and potential health hazards of REEs was identified,
which could contribute to their future development. However, the current information on
the toxicological assessment of REEs is still insufficient, and there are still some challenges in
finding the critical standard for human health hazards caused by REE exposure.
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7. Challenges and Perspectives

Although REEs have become a hot spot in toxicology research in recent years, limited
by the synergistic toxic effects of various REEs in the actual environment, imperfect detec-
tion indicators, and dynamic metabolic differences in different individuals, the hazards
of REEs to human health are still largely unknown. Further exploration of the interaction
between them is helpful to emphasize the causal relationship between toxicant exposure
and pathological state, explore the detection standard and safety limit of REE exposure,
and develop new molecular markers for organ damage caused by REEs. Several important
issues associated with this challenge need to be addressed in this review: (1) Current
studies on the interaction between REEs and health hazards are mostly limited to cell and
animal models. In order to further verify the toxic effect of REE exposure on the human
body, long-term epidemiological cohort studies will become the next direction of close
research. (2) The safety threshold of REE exposure should be established, especially the
criteria for rare earth pneumoconiosis. Moreover, REE exposure doses in daily security
standards are crucial. (3) In most epidemiological studies on REE exposure, the population
is made up of few subjects, meaning it is difficult to tease out the toxic effects of individual
REEs in complex mixtures in human biomonitoring studies. Therefore, the time–dose–
response relationship between REEs and human health hazards still needs to be further
explored. Increasing the understanding of REE exposure will further elucidate the toxic
effects and mechanisms of REEs and its compounds and promote the development of future
toxicological-related research fields. Ultimately, this will contribute to the development
of diagnostic and therapeutic measures for REE-related diseases and provide regulatory
guidance for hazard assessment and exposure thresholds for REEs.
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