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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions
of people worldwide. Early and accurate prediction of AD progression is crucial for early intervention
and personalized treatment planning. Although AD does not yet have a reliable therapy, several
medications help slow down the disease’s progression. However, more study is still needed to develop
reliable methods for detecting AD and its phases. In the recent past, biomarkers associated with AD
have been identified using neuroimaging methods. To uncover biomarkers, deep learning techniques
have quickly emerged as a crucial methodology. A functional molecular imaging technique known
as fluorodeoxyglucose positron emission tomography (18F-FDG-PET) has been shown to be effective
in assisting researchers in understanding the morphological and neurological alterations to the brain
associated with AD. Convolutional neural networks (CNNs) have also long dominated the field of
AD progression and have been the subject of substantial research, while more recent approaches
like vision transformers (ViT) have not yet been fully investigated. In this paper, we present a
self-supervised learning (SSL) method to automatically acquire meaningful AD characteristics using
the ViT architecture by pretraining the feature extractor using the self-distillation with no labels
(DINO) and extreme learning machine (ELM) as classifier models. In this work, we examined a
technique for predicting mild cognitive impairment (MCI) to AD utilizing an SSL model which learns
powerful representations from unlabeled 18F-FDG PET images, thus reducing the need for large-
labeled datasets. In comparison to several earlier approaches, our strategy showed state-of-the-art
classification performance in terms of accuracy (92.31%), specificity (90.21%), and sensitivity (95.50%).
Then, to make the suggested model easier to understand, we highlighted the brain regions that
significantly influence the prediction of MCI development. Our methods offer a precise and efficient
strategy for predicting the transition from MCI to AD. In conclusion, this research presents a novel
Explainable SSL-ViT model that can accurately predict AD progress based on 18F-FDG PET scans.
SSL, attention, and ELM mechanisms are integrated into the model to make it more predictive and
interpretable. Future research will enable the development of viable treatments for neurodegenerative
disorders by combining brain areas contributing to projection with observed anatomical traits.

Keywords: Alzheimer’s disease; vision transformer; ELM; FDG-PET; self-supervised learning; DINO

1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder
that primarily affects memory, cognition, and behavior [1]. It is the most common cause
of dementia among the elderly, accounting for a substantial global health burden [2].
Currently, there are about 90 million people who have been diagnosed with AD, and it is
predicted that by 2050, there will be an estimated 300 million AD patients worldwide [3].
Mild cognitive impairment (MCI), which is a transitional state from normal control (NC) to
AD dementia, is frequently regarded as a clinical precursor of AD [4]. Two variants of MCI
are often recognized: convertible MCI (MCI-c), which will eventually lead to AD, and stable
MCI (MCI-s), which will not. Since there is currently no effective treatment for AD, accurate
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diagnosis and early detection at the prodromal stage are essential for patient care and the
development of future therapies. As a result, patients may begin preventative interventions
to delay or stop the disease’s progression if the conversion process from MCI to AD can
be accurately predicted. Alzheimer’s is characterized by the accumulation of abnormal
protein deposits in the brain, leading to the deterioration and loss of nerve cells [5]. As
the world’s population continues to age, understanding and finding effective treatments
for AD have become pressing challenges in modern healthcare. For the early detection of
diseases in people with mild or no cognitive impairment, AD biomarkers can be used [6,7].
One of the causes of AD, amyloid accumulation in the brain, is known to happen when
an abnormal form of amyloid is deposited in the brain as a result of a metabolic issue [8].
An amyloid biomarker is injected into the body as part of an amyloid positron emission
tomography (PET) test, which produces a brain image and reveals the location and volume
of the deposited amyloid. It serves as an effective functional imaging tool to aid doctors
in the diagnosis of AD. As a result, 18F-FDG-PET brain imaging has become one of the
potent functional biomarkers for AD diagnosis in clinical and computer-assisted diagnosis
(CAD) [9–12]. In order to identify the patterns associated with AD and decode the disease
states for CAD, a number of pattern recognition techniques have been investigated in recent
years for analysis of 18F-FDG-PET brain images [13–17].

As researchers and healthcare professionals strive to improve the early detection and
management of AD [18,19] the integration of cutting-edge artificial intelligence (AI) [20]
techniques has emerged as a promising avenue for advancing diagnostic accuracy and
understanding disease progression [21–23]. In this journal, we explore the potential of
Vision ViTs and 18F-FDG PET in the context of AD research. CNNs have revolutionized
various computer vision tasks, demonstrating exceptional performance in image recog-
nition and classification [24–26]. These deep learning models have shown promise in
medical image analysis [21,27,28], including the interpretation of neuroimaging data, such
as magnetic resonance imaging (MRI) and PET scans, which are crucial for diagnosing and
monitoring AD [23,29–31]. On the other hand, ViT [32,33], a recent breakthrough in deep
learning has also gained attention in the computer vision community. These models rely
on self-attention mechanisms to learn meaningful hierarchical representations from images,
making them effective in handling large-scale image datasets [33]. In the computer vision
domain, the self-attention mechanism has shown promising results in tasks such as image
classification, object detection, and image captioning. By incorporating self-attention into
computer vision models, researchers aim to capture long-range dependencies in images and
improve their ability to understand complex visual patterns. This migration has opened
new possibilities for advancing computer vision research and pushing the boundaries of
what is achievable in visual understanding tasks. Given their strong generalization capabil-
ity and efficient use of computational resources, ViTs may offer promising results and open
new possibilities for improving Alzheimer’s recognition [34]. The AD recognition problem
is approached using a supervised method in all the previously mentioned techniques. To
overcome these limitations, we have explored SSL techniques for AD recognition. SSL
does not require annotated samples and can potentially reduce the cost of data collection.
Additionally, simpler model architectures can be used in unsupervised learning, leading
to faster training and convergence while reducing the number of parameters that need to
be tuned.

This journal investigates the application of ViTs in AD-related tasks, such as early
detection, disease progression prediction, and biomarker identification. We discuss their
strengths and limitations in handling neuroimaging data and explore how combining
the strengths of ViTs may lead to more accurate and interpretable results. Additionally,
we delve into the emerging area of explainable AI in AD research, in which the under-
standing of model decisions becomes paramount for clinical acceptance and integration.
The exploration of ViTs in AD research opens new possibilities for improved diagnostics
and personalized treatment strategies [35–39]. By harnessing the power of AI, we aim
to enhance our understanding of this complex neurodegenerative disorder and pave the
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way for more effective interventions to improve the quality of life for individuals affected
by AD. Traditional methods for predicting the progression from MCI to AD have often
relied on supervised learning techniques, for which labeled data are required to train
algorithms. However, obtaining sufficient labeled data for such complex neurological
conditions can be challenging, time-consuming, and expensive, restricting the development
of accurate and generalized predictive models. In recent years, self-supervised learning has
emerged as a promising alternative [40–43] for harnessing the unlabeled data available and
enabling the extraction of meaningful representations from medical images without the
need for explicit annotations [44,45]. The DINO [43] approach has gained popularity due
to its effectiveness in self-supervised learning. It introduces a novel training framework
that combines both instance discrimination and clustering objectives. By leveraging these
two objectives, DINO achieves state-of-the-art performance on various downstream tasks,
such as image classification and object detection. Additionally, the DINO approach also
demonstrates strong generalization capabilities across different datasets and domains,
making it a promising choice for our research. This discovery suggests that ViTs have
a unique ability to capture meaningful visual representations without relying on hand-
crafted features or explicit supervision. Using the ImageNet image classification dataset,
DINO performed exceptionally well and outperformed earlier CNN-based self-supervised
methods at a much-reduced computational cost. The ViT model, which has an intriguing
feature when compared to CNNs trained in the same manner, serves as the foundation
for this method [43]. Self-supervised learning is a type of unsupervised learning in which
the algorithm formulates tasks that involve predicting certain aspects of the data using its
inherent structure. These tasks effectively generate pseudo-labels or supervise the learning
process implicitly, leading to the development of powerful representations that can later
be fine-tuned for specific downstream tasks, such as predicting disease progression. By
applying self-supervised learning techniques to the study of MCI to AD progression, we
have made significant strides in unraveling the underlying patterns and mechanisms that
govern this complex transition.

Our method leverages the general ViT architecture as a backbone model to learn
valuable Alzheimer’s features from individual 18F-FDG-PET images via the DINO self-
supervised learning. These features can then be fed into an ELM classifier to classify
individuals. We proved the superiority of the approach in terms of algorithm performance
and many medical metrics, including accuracy, specificity, sensitivity, and precision, by
validating the suggested framework using the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. Through this approach, the algorithm learns to discover meaningful
biomarkers, subtle cognitive changes, and other relevant factors that might contribute
to disease progression. The three things that best describe this paper’s contributions are
summarized below:

• A transformer model is suggested for the identification of MCI progression. The
model expands upon the ViT backbone by utilizing 18F-FDG-PET and self-supervised
learning to tackle the issue of MCI progression and disease identification.

• To address the issue of inadequate data in the field of brain imaging, we suggested a
cross-domain transfer learning technique. We used ViT as the backbone with DINO.

• In the MCI recognition, experimental data show that the proposed method can achieve
more competitive outcomes than current models. The model accuracy levels with the
ADNI dataset were 92.31%, which is higher than the baseline’s ViT approach. Finally,
we visualized important metabolic brain regions, which can assist the physician for
proper analysis of MCI.

2. Materials and Methods

Figure 1 depicts the three-step method that makes up this study’s framework. Initially,
we preprocessed the PET data that had been collected, mostly taking care of partial volume
effects (PVE) correction, smoothing, skull-stripping and normalization. In the comparative
experiment, we utilized a self-supervised feature extraction method known as DINO
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with a ViT backbone to learn brain 18F-FDG-PET images. Additionally, we employed
t-SNE (t-distributed stochastic neighbor embedding) feature visualization with a different
classification algorithm called extreme learning machine (ELM), k-nearest neighbors (KNN),
and support vector machine (SVM) to evaluate its effectiveness in classifying MCI-s and
MCI-c. The results of experiments are presented and discussed in the results sections.
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Figure 1. Overall architecture for computer-aided self-supervised Alzheimer’s diagnosis system
using ViT-DINO and ELM model.

2.1. Dataset

Based on a public–private partnership led by Principal Investigator Michael W. Weiner,
MD, the ADNI database (http://adni.loni.usc.edu/ 27 September 2022) provided all the
data. ADNI has made significant contributions to our understanding of the early stages of
Alzheimer’s disease. The study has provided valuable insights into the biomarkers and
cognitive assessments that can help in the early detection and monitoring of MCI and AD.
The main objective of ADNI was to determine whether the progression of early AD and
mild cogMCI could be monitored using a combination of clinical and neuropsychological
assessment, PET, other biological markers, serial magnetic resonance imaging (MRI), and
other analyses. This study is multicenter and longitudinal in nature, involving over
63 participating centers. The website http://www.adni-info.org (27 September 2022) offers
a comprehensive range of resources, including research findings, study protocols, and data
access instructions. Additionally, it serves as a platform for researchers to collaborate and
share their findings in the field of AD and related disorders.

We acquired PET scan data from the ADNI 1, ADNI 2, and ADNI GO cohorts in
the ADNI database for this study, comprising 224 MCI-c and 245 MCI-s. Following a
minimum of 36 months of clinical follow-up, eligible participants with MCI underwent
clinical cognitive evaluations and FDG-PET scanning at baseline. Table 1 displays the
demographic information of the dataset, which includes age, gender, sex, education, and
results from neuropsychological cognitive assessment tests like the dementia rating scale
(CDRSB). It also includes information about the apolipoprotein E (APOE) ε4 genotyping
characteristics. The groups’ ages did not differ much. The MMSE and CDR did, however,
vary across all group pairings (p < 0.05). It revealed that compared to MCI-s, MCI-c patients
had a higher probability of developing AD. Male dominance prevails in all groups, and the
male-to-female ratio is 53:47. Furthermore we also listed the ADNI diagnostic criteria for
MCI-s and MCI-c below which can be found details on ADNI website mentioned above.

MCI-s criteria: MMSE scores between 24–30 (inclusive), a subjective memory concern
reported by subject, informant, or clinician, objective memory loss measured by education-
adjusted scores on delayed recall of one paragraph from Wechsler Memory Scale Logical
Memory II (≥16 years: 9–11; 8–15 years: 5–9; 0–7 years: 3–6), a CDR of 0.5, absence of
significant levels of impairment in other cognitive domains, essentially preserved activities
of daily living, and an absence of dementia.

MCI-c criteria: MMSE scores between 24–30 (inclusive), a subjective memory concern
reported by subject, informant, or clinician, objective memory loss measured by education-
adjusted scores on delayed recall of one paragraph from Wechsler Memory Scale Logical

http://adni.loni.usc.edu/
http://www.adni-info.org
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Memory II (≥16 years: ≤8; 8–15 years: ≤4; 0–7 years: ≤2), a CDR of 0.5, absence of
significant levels of impairment in other cognitive domains, essentially preserved activities
of daily living, and an absence of dementia.

Table 1. Demographic and statistical information regarding clinical assessments at the time data was
collected can be found below.

Groups Gender (M/F) Education Age (Years) MoCA MMSE CDR APOEE4

MCI-s 130/115 # 16.3 ± 2.7 72.3 ± 7.5 * 23.7 ± 2.4 * 28.0 ± 1.7 * 1.1 ± 0.5 * 43.1%
MCI-c 119/105 16.2 ± 2.1 74.1 ± 7.3 21.1 ± 2.7 26.3 ± 2.1 2.3 ± 1.0 74.0%

All data except APOEE4 positive rate were presented as mean ± standard deviation; education; MMSE = mini-
mental state examination; MoCA = Montreal cognitive assessment; CDR = clinical dementia rating. # Group-level
two-sample t-tests are conducted for age, education, MMSE, MoCA, and CDR; * group-level chi-square tests are
conducted for gender.

2.2. FDG-PET Image Acquisition and Preprocessing

The ADNI project’s web page contains comprehensive information about the PET
acquisition procedure. Thirty minutes after injecting 185 ± 18.5 MBq FDG, 469 cases
underwent dynamic 3D scans with six 5 min frames. Each frame was motion-corrected to
the first frame and then summed to produce a single image file.

Individual PET scan preprocessing [46] was carried out using MatlabR2021a and the
statistical parametric mapping (SPM12) [47] program. Prior to applying PVE correction
based on the Muller–Gartner algorithm, PET images were first co-registered with the
matching T1-weighted images [48]. This was done to reduce the PVE on PET measurements.
The images were then spatially normalized to a PET template in the Montreal Neurological
Institute (MNI) brain space using linear and non-linear 3D transformations. The individual
anatomical variations were blurred, and the signal-to-noise ratio was increased for further
analysis by smoothing the normalized PET images using an 8 mm full-width at half-
maximum (FWHM) Gaussian filter over a 3D space. Lastly, the intensity of each PET scan
was normalized to the average brain uptake globally. With a voxel size of 2 × 2 × 2 mm3,
the processed images had a spatial resolution of 91 × 109 × 91. Finally, for the purpose
of pre-training the model later, each three-dimensional PET image was divided into two-
dimensional images by slicing and tiling it to a size of 224 × 224 pixels.

2.3. Self-Supervised Learning

Researchers’ attention has been drawn to self-supervised learning, a new deep learn-
ing paradigm, in recent years. The persistent issue of insufficient data for deep learning
model training is the focus of self-supervised learning. Through pretext learning—in which
one portion of the input data is learned from another portion of the same input—the model
learns without labels when it employs self-supervision. Such self-supervised techniques
as [40,43] are widely available today. With a contrastive loss function, SimCLR [41] em-
ployed contrastive learning by maximizing the similarity between two augmented views
of the same image. Two networks—the target network and the online network—with
identical architectures but distinct weights were used in BYOL [40]. The target network
uses the online network’s exponential moving average to update its weights while the
target network trains the latter. Using instance-level discrimination, each image or its trans-
formation is treated as a distinct class in SwAV [49]. The technique uses contrastive loss
and image augmentation to learn an embedding such that semantically similar images are
clustered closer together in the features space. The label-free knowledge distillation method
is applied in DINO [43]. The teacher gθs and student gθt networks make up the DINO
framework. They have the same architecture, but gθt and gθs, the respective parameters,
differ. The objective of the student network is to align with the teacher network’s probability
distribution. To generate two global views (roughly 50% of the input image) and multiple
local views (less than 50% of the input image) for each input image, the method employs
a multi-crop strategy [49] during training. Local and global views both flow through the
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student network, but the global views flow through the teacher network. The similarity
between the output vectors from the teacher and student networks is measured using
cross-entropy loss. Using stochastic gradient descent, the student parameters θs are learned
by minimizing the cross-entropy loss, and the teacher parameters θt are defined as an
exponential moving average of the student parameters. By doing this, the framework can
progressively pick up valuable characteristics from the input images, discovering the global
to local correspondences between various perspectives on the same image. Additionally,
DINO does not need negative samples, which makes training much easier than it would be
with many SSL methods [41,42]. Figure 2 below depicts the general architecture of DINO
model proposed in [43], which we utilized to predict the AD progression prediction using
18F-FDG-PET in our method.
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2.4. Vision Transformer (ViT)

Although the standard transformer model was designed for natural language pro-
cessing, it was given a one-dimensional sequence of word embeddings as input. When
the transformer model is used for the computer vision task of image classification, on the
other hand, two-dimensional images are used as the input data. It is necessary to divide
the input image—which has dimensions of height H, width W, and number of channels
C—into smaller two-dimensional patches to structure the data in a way that is similar to
how the input is structured in the NLP domain (that is, as a series of individual words) [33].
The outcome is several patches N = HW/P2, each with a resolution of (P, P) pixels. The
subsequent procedures are carried out prior to supplying the data to the transformer:

Each patch of an image is flattened to create a vector XP
n of length P2 × C, where,

n = 1, 2, 3, . . . , N. By using a trainable linear projection to map the flattened patches to
dimensions D, a series of embedded image patches E is produced. Following this, the
series of embedded image patches is appended a learnable class embedding Xclas. The
categorization output y is represented by the value of Xclass. The final step involves adding
one-dimensional positional embeddings Epos to the patch embeddings. This adds positional
information to the input, which is also learnt during training. Following the previously
specified operations, the following array of embedding vectors is produced:

Z0 =
[

Xclass; X1
PE; . . . ; XN

P

]
+ Epos (1)

The sequence of embedding vectors that results from the operations represents the
encoded representation of the image patches. This encoded representation captures both
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spatial and positional information, enabling effective classification and analysis of the
image data. Ultimately, a multilayer perceptron (MLP) model receives the transformer
encoder’s output class token for categorization. We employ the [43] ViT-B model with
patch size 16.

2.5. 18F-FDG-PET Feature Learning with ViT-Dino

Our suggested method involves training the feature extractor as the second phase.
In this work, we address the challenge of learning discriminative MCI characteristics by
proposing to use a self-supervised learning paradigm. We employ the recently suggested
DINO approach [43], which has demonstrated promising performance in a range of com-
puter vision applications, including image retrieval and classification. Figure 2 shows the
construction of the DINO. Initially, DINO creates two global views of 224 × 224 crops
passed via both θt and θs and eight local views of 96 × 96 crops transmitted exclusively
through θs. Furthermore, since DINO was initially trained on ImageNet, we modified the
augmentations applied during training. Specifically, we eliminated most of the image aug-
mentations’ color jitter, Gaussian blur, and solarization and instead used rando horizontal
flip, vertical flip, height shift, and random zoom augmentation because the AD related
18F-FDG-PET brain imaging data did not improve performance with the augmentations.

The cross-domain transfer learning technique is employed in this work as AD datasets
don’t include the substantial quantity of data required to train the ViT model from scratch [32].
After being trained on the ImageNet dataset, the DINO model is adjusted for Alzheimer’s
ADNI data. To generate discriminative features from input brain 18F-FDG-PET for use
in classification later, we suggest utilizing the DINO approach as a feature extractor.
Figure 3 below illustrates the different slices (coronal, sagittal, and axial) view of input
18F-FDG-PET images to extract the MCI features using ViT DINO architecture for further
classification purposes.
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2.6. Classifiers

ELM has gained popularity in various fields such as pattern recognition, image process-
ing, and data mining due to its efficient learning process [50]. Additionally, the analytical
estimation of output layer parameters eliminates the need for iterative optimization algo-
rithms, making ELM computationally efficient. As a result, gradient-based backpropagation
is not needed for the tuning of hidden layer parameters. This makes for incredibly quick
training, which makes it especially well-suited for big data analysis. In comparison to
traditional neural networks and support vector machines (SVM), ELM has a number of
benefits, including quick learning, simple implementation, and little user involvement [51].
Each layer is connected to the layer above it in a feedforward manner, as shown in Figure 4,
and creates a feedforward connection with the layer above it.

The multilayer ELM increases the depth of the network by adding extra layers, result-
ing in improved feature learning capabilities. The multi-layer ELM’s (MLELM) algorithm
can be summarized as follows:
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ELM algorithm:
For each layer l from 1 to L, randomize the input-to-hidden layer weights.
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Calculate the hidden layer output Hl for each layer l between 1 and L using the
Formula (2):

Hl = gl(X × Wl) (2)

where X stands for the input data, gl is the layer l activation function, and Wl represent the
layer l weight matrix.

To get the final hidden layer output H, combine the outputs of every hidden layer.
The following equation represent the output weights:

β = pinv(H)× Y (3)

where pinv(H) represents the Moore-Penrose pseudoinverse of the H output from the
hidden layers.

The MLELM algorithm offers a proficient approach to train deep architectures, capi-
talizing on ELM’s rapid learning capabilities while harnessing the expressive potential of
multiple hidden layers. As a result, MLELM adeptly captures intricate patterns and extracts
high-level features from intricate datasets, thereby bolstering its classification performance.

2.7. Training Setup

Using the official GitHub repository [52], the DINO method was implemented. To
optimize the student and teacher networks, the ImageNet pretrained DINO model check-
point was employed. Only ViT-B models with patch size 8,16, and 32 architecture were
employed in our studies. The remaining DINO model parameters are the same as in the
original publication [43], including global and local crop scales, teacher temperature, and
momentum teacher value.

Using the ADNI 18F-FDG-PET imaging datasets for all experiments, we trained the
DINO models for 300 epochs with a batch size of 32. With a learning rate of 0.0001,
AdamW [53] was the optimizer that was employed. Python 3.9.13 with a computer
equipped with an Nvidia GeForce RTX 3090 GPU and the Windows 10 × 64 operating
system was used for the training. The performance of the MLELM classifier is strongly
influenced by the number of hidden layer nodes used. In this experiment, we generated
extremely accurate performance results using 300 hidden layers. Moreover, we performed
5-fold cross-validation for the robustness of classifier in our models. Since training the
model for a longer period did not increase accuracy, the number of epochs used to train the
DINO model was fixed at 300 epochs. Using steps to the power of 2, the ideal value for the
batch sizes of 32 was found to determine the batch size of models.
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2.8. Evaluation Matrixs

The findings were assessed using specificity, sensitivity, precision, recall, F1 score,
and accuracy; we reported our results in term of mean and standard deviation. These
parameters were expressed mathematically as follows:

Accuracy =
Tn + TP

Tn + Tp + Fn + Fp
(4)

Sensitivity =
Tp

Tp + Fn
(5)

Speci f icity =
Tn

Tn + Fp
(6)

Precission =
Tp

Tp + Fp
(7)

Recall =
Tp

Tp + Fn
(8)

F1 − score = 2 × Precision × recall
Precission + recall

(9)

True negatives, true positives, false negatives, and false positives are represented by
the letters Tn, Tp, Fn, and Fp, respectively. Concurrently, a receiver operating characteristic
(ROC) curve was generated to provide an understandable comparison of the outcomes of
the various methodologies.

3. Results

This study develops and implements a CAD system which is automated for the
diagnosis of AD. The suggested approach was used to distinguish between MCI-s and
MCI-c patients progressing to AD. The simulation made use of the 18F-FDG-PET image,
which was taken from the ADNI database; 469 patients had their 18F-FDG-PET scans taken,
comprising 245 MCI-s patients without conversion within 3 years and 224 MCI-c patients
who converted to AD within 3 years.

3.1. Classification Performance on 18F-FDG-PET

It is crucial to identify AD in a timely manner for patient care. To distinguish MCI-s
from MCI-c, a 2D ViT base DINO model is utilized in this research. The proposed CAD
system’s structure is shown in Figure 1. According to Figure 3, each 3D 18F-FDG-PET
image is split into several 2D images along the coronal, axial and sagittal axis. The first
and last 15 slices are eliminated to remove the skull and other undesirable regions. Table 2,
Figures 4 and 5 display how well 18F-FDG-PET-based ViT performed in predicting the
transition of MCI to AD.

We utilize transfer learning for ViT by initializing the model with weights that were
pre-trained on ImageNet [54] to enhance the model’s performance. However, since the
images in ImageNet differ from brain images, many of the weights may not be relevant.
To address this issue, we employ a self-supervised pre-training target dataset, which
has gained popularity recently due to the lack of a large brain imaging dataset. Our
approach incorporates the DINO self-supervised method, which shares a similar overall
structure with other self-supervised algorithms. The input images are transformed to
generate alternative views, which are then passed through the student and teacher branches.
Subsequently, the resulting features are used to compute a loss. The student and teacher
networks in DINO have identical structures and initial weight parameters, but the teacher
network’s weights are not involved in training and do not have gradients. The parameter
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updates are based on the student network’s parameters. Additionally, the teacher network
includes a phoebe module.

Table 2. Comparison of the proposed model with ViT based studies for predicting the progression of
mild cognitive impairment (MCI).

Model Classifiers ACC %
(mean ± std)

SEN %
(mean ± std)

SPE %
(mean ± std)

PRE %
(mean ± std)

Recall %
(mean ± std)

F1-Score %
(mean ± std)

ViT-S 82.37 ± 1.29 75.51 ± 2.01 88.71 ± 1.03 83.87 ± 1.45 84.33 ± 3.02 83.30 ± 1.05

ViT-B 81.75 ± 2.13 85.38 ± 3.14 79.85 ± 1.71 83.54 ± 2.52 82.47 ± 2.45 82.71 ± 1.71

ViT-L 78.93 ± 1.07 67.83 ± 2.73 90.97 ± 1.07 81.75 ± 2.59 78.83 ± 3.74 79.34 ± 2.15

DINO ViT-B KNN 88.36 ± 1.91 81.71 ± 2.47 95.08 ± 1.32 89.15 ± 3.11 88.31 ± 2.14 88.25 ± 1.72
SVM 85.24 ± 3.73 92.92 ± 1.01 78.06 ± 3.45 86.01 ± 2.47 85.49 ± 1.75 85.21 ± 1.04
ELM 92.31 ± 1.07 90.21 ± 3.37 95.50 ± 2.15 93.10 ± 1.88 92.95 ± 2.31 93.92 ± 1.33

ACC: accuracy; SEN: sensitivity; SPE: specificity; PRE: precision; std: standard deviation.
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Furthermore, we utilized the t-SNE algorithm to reduce the complexity of the features
obtained from the DINO network and projected them onto a two-dimensional space for
visualization purposes. As depicted in Figure 5a, in the MCI conversion prediction, clear
boundaries were observed between the two categories. Additionally, only a small number
of samples from other categories were scattered within each category, suggesting that the
model is more effective at identifying MCI cases without labeling 18F-FDG-PET imaging
data. Similarly, as shown in Figure 5b, the model successfully separated the samples into
two clusters using Euclidean distance for MCI-s and MCI-c classification. Although a few
cases were mixed at the intersection of the two clusters, indicating a transitional stage
from MCI-s to MCI-c, our model was able to extract the features between the two stages
accurately. We can say DINO successfully applies ViT to self-supervised learning and
achieves superior performance compared to baseline ViT for AD dataset. To determine
the appropriate model for classifying MCI-c vs. MCI-s, the performance of several models,
including the baseline ViT variant and the self-supervised ViT model [43], were compared.
The classification results for these models, including accuracy, sensitivity, and specificity,
are summarized in Table 2. Since MCI serves as a transitional stage between AD and
NC, there are numerous factors that complicate the classification task. It is evident that
classifying MCI-s vs. MCI-c is more challenging compared to the other AD classification
tasks mentioned earlier [34]. First, we extracted the glucose metabolic features from 18F-
FDG-PET images using the ViT-DINO model without labeling data. Secondly extracted
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features are fed into the different classifiers, namely ELM, SVM and KNN. Specifically,
the ELM model achieved an accuracy of 92.31%, a sensitivity of 90.21%, a specificity of
95.50%, an AUC of 0.96, and a 93.92% F1-score. Although KNN achieved comparable
specificity of 95.08%, their results were lower in terms of accuracy and sensitivity. Among
these models, ViT-DINO with ELM was found to be the most suitable, as it not only had
the best classification performance in the independent test group but also had a shorter
training time. Therefore, ELM was chosen as the classification model for extracted features
in this research. Furthermore, we also evaluated the ROC curve, which is a mathematical
tool that evaluates how well a classification system can distinguish between positive and
negative cases. It compares the true positive rate to the false positive rate on a ROC chart,
which is determined by adjusting the threshold value. Figure 6 displays the ROC of the
suggested system, with an AUC value of 0.96. The comparison of ROC curves for different
classifiers in the classification of MCI-c and MCI-s can be seen in Figure 6a.
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Bioengineering 2023, 10, 1225 12 of 20

Based on the experimental results, we can say that in our task of early prediction
classification for MCI, the DINO model can be used instead of the baseline ViT. We observed
that when we used the weights obtained from the DINO self-supervised pre-training on
the ADNI dataset, which was initialized by ImageNet, all evaluation metrics of the model
improved. The accuracy increased by 5.99%, and the F1 score increased by 4.95% compared
to the best-performing baseline ViT model. This suggests that self-supervised learning pre-
training enables the ViT model to perform better on a small dataset like ADNI. Furthermore,
by incorporating the ELM, the model’s performance improved even more. Each of the
four metrics showed varying degrees of improvement, with accuracy reaching 92.31% (a
3.95% improvement) F1 score reaching 93.92% (a 5.67% improvement) as compared to KNN
classifiers. This indicates that the ELM classifiers effectively classified the MCI pathology
using features extracted from DINO model that was previously overlooked.

3.2. Ablation Study

We performed an ablation experiment to examine the impact of transformer design
decisions on MCI-to-AD categorization. We investigated the effects of several patch sizes in
the experiment. Three variations of patches size were tested: the patch size of 8, the patch
size of 16, and the patch size of 32. All models were trained using pre-trained weights from
DINO that were included in the Python image model implementation [54]. There were
three options for patch size: 8, 16, and 32. Table 3 presents the outcomes of different patch
sizes on MCI progression prediction. We noted that the greatest classification performance
is provided by the DINO ViT-B, which has a patch size of 16 with 12 attention heads.
According to our analysis, the patch size of 16 may capture the 18F-FDG-PET images’
most useful and instructive glucose metabolic aspects. By separating the brain areas with
similar patch sizes, the proposed model generates predictions. The information gathered
by the model becomes overly generic and loses many specifics with a greater patch size,
which results in underfitting. On the other hand, an image patch size that is too tiny might
obliterate the 18F-FDG-PET scan’s glucose metabolic information. Detailed studies of our
investigation are presented in Table 3 below.

Table 3. Investigation of the efficiency of different patch sizes of DINO ViT-B for predicting the
progression of mild cognitive impairment (MCI).

Model Patch Size Classifiers ACC %
(mean ± std)

SEN %
(mean ± std)

SPE %
(mean ± std)

PRE %
(mean ± std)

Recall %
(mean ± std)

F1-Score %
(mean ± std)

DINO ViT-B 8 KNN 87.49 ± 1.23 95.93 ± 3.11 79.61 ± 2.15 88.45 ± 1.33 87.77 ± 1.04 87.46 ± 1.87
SVM 86.47 ± 1.55 78.16 ± 2.45 94.23 ± 1.07 87.44 ± 1.58 86.2 ± 2.78 86.31 ± 1.95
ELM 91.56 ± 1.03 86.75 ± 1.47 96.06 ± 1.56 91.98 ± 1.19 91.4 ± 1.74 91.51 ± 1.51

16 KNN 88.36 ± 1.91 81.71 ± 2.47 95.08 ± 1.32 89.15 ± 3.11 88.31 ± 2.14 88.25 ± 1.72
SVM 85.24 ± 3.73 92.92 ± 1.01 78.06 ± 3.45 86.01 ± 2.47 85.49 ± 1.75 85.21 ± 1.04
ELM 92.95 ± 1.07 90.21 ± 3.37 95.50 ± 2.15 93.10 ± 1.88 92.95 ± 2.31 93.92 ± 1.33

32 KNN 82.62 ± 3.01 93.52 ± 1.41 72.43 ± 4.75 84.15 ± 2.13 82.98 ± 1.71 82.58 ± 1.37
SVM 81.31 ± 2.45 64.16 ± 5.78 97.33 ± 1.21 85.07 ± 2.04 80.74 ± 3.41 80.58 ± 1.78
ELM 86.84 ± 1.58 75.45 ± 3.71 97.47 ± 1.03 88.74 ± 1.23 86.64 ± 1.59 86.57 ± 1.79

ACC: accuracy; SEN: sensitivity; SPE: specificity; PRE: precision; std: standard deviation.

3.3. Performance Comparison with State-of-Art Methods

In recent times, there has been significant research conducted on the use of machine
learning techniques for predicting MCI stage using brain imaging. Most of these studies
have focused on using structural imaging of the brain, with only a few utilizing functional
imaging, specifically 18F-FDG-PET. In this section, we are comparing our results with recent
findings in the literature from the ADNI database for diagnosing MCI. Some researchers
have attempted to analyze 18F-FDG-PET for AD prediction, but these studies have still
relied on manual and supervised features extraction [55,56]. Table 4 provides an overview
of the latest deep learning methods for predicting AD using neuroimaging techniques.
Most of the methods examined can only distinguish between AD and normal control
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(CN) or mild cognitive impairment (MCI) and CN, whereas our method analyzed the
predictive diagnosis of MCI stage. Furthermore, our experiments utilized self-supervised
learning compared to these methods, demonstrating the superior generalization capability
of our approach.

Table 4. Comparison of the proposed model with ADNI data-based studies for predicting the
progression of mild cognitive impairment (MCI).

Study Modality Method ACC SEN SPE

Nozadi et al. [55] FDG-PET RF 72.5 79.2 69.9

Bae et al. [56] MRI ResNet 86.1 84 74.8

Zhu et al. [28] MRI Dual attention multi-instance deep
learning network 80.2 77.1 82.6

MRI ViT-S 83.27 85.07 81.48
Hoang et al. [34] ViT-B 80.67 79.1 82.22

ViT-L 72.86 74.63 71.11

Duan J et al. [57] FDG-PET CNN - 81.63 85.19

Choi and Jin et al. [58] FDG-PET Deep Learning 84.2 81.0 87.0

Our FDG-PET DINO-ELM 92.95 90.21 95.50

ACC: accuracy; SEN: sensitivity; SPE: specificity.

Specifically, we compare our results with five methods described by Nozadi et al. [55],
Bae et al. [56], Hoang et al. [34], Duan J et al. [57], and Choi and Jin et al. [58] since they
utilized FDG-PET images in their experiments as summarized in Table 4. Nozadi et al. [55]
proposed a traditional machine learning method which compared multiple simple classi-
fiers and performed feature selection simultaneously with FDG-PET parcellation to improve
classification performance. Bae et al. [56] proposed a CNN with ResNet backbone deep
learning, generated in the 3D- space of each subject, to extract regional glucose metabolic
area. Hoang et al. [34] extracted mild sagittal-slice-based features of sMRI neuroimages
using ViT models for stage of MCI classification. Choi and Jin et al. [58] proposed deep
learning achieved an accuracy rate of 84.2% with AUC of 0.89. These methods involve
supervised features and voxel-wise feature extraction and traditional classification on
FDG-PET and sMRI images from the ADNI database. However, Hoang et al. utilized the
latest ViT-based deep learning models in supervised manner. Therefore, most of the state-
of-art methods rely on the supervised learning methods for MCI diagnostic classification.
To address this issue, we implemented fully automated self-supervised learning in deep
learning to identify the MCI stage, which is crucial for timely AD identifications without
human intervention. Tables 2 and 3 and Figure 7 display the results of our FDG-PET-based
vision transformers to predict MCI-to-AD progression in a fully automated manner. Table 4
presents our findings as well as those from other studies, including the methodology used
and the performance measures. We introduced a self-supervised version of vision trans-
formers along with ELM. Our method consistently outperforms previous studies in three
classification performance indicators: sensitivity, specificity, and accuracy. ELM achieves
accuracies of 92.31% and 6.05% improvement in comparison to highest-performing Bae
et al. [56] study in terms of accuracy. KNN also demonstrates a significant enhancement in
specificity with 95.08%. Although their results achieved similar accuracy, their results are
lower in specificity and sensitivity. Figure 6 illustrates the confusion matrix of our model,
which yields the best result among our methods, with an AUC of 0.96. Ultimately, our
proposed method is highly efficient compared to the latest neuroimaging-based research
for the predictive diagnosis of MCI.
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3.4. Pathological Attention Regions on FDG-PET by ViT DINO

For computer-aided diagnosis, identifying the brain area most closely associated with
the deep learning model prediction is crucial. Observing the structural change in the brain
is one of the most important factors in the clinical diagnosis of AD and the progression
of MCI to AD. We study the potential diseased brain area associated with the prediction
of our method as a predictive brain region. To categorize MCI-c and MCI-s classes, we
employ self-attention visualization [43] to look at which brain regions attention layers see
and focus on (Figure 7), which demonstrates glucose metabolic regions in axial, coronal,
and sagittal slices that were found using our suggested strategy. The highlighted regions
display the corresponding glucose metabolic activities of FDG-PET. Our findings reveal
that the thalamus, medial frontal, hippocampus, posterior temporal lobe, parietal lobe,
posterior cingulate gyrus, left Para hippocampal gyrus, and occipital regions are the most
informative for our model’s prediction. These marked regions align with previous studies
on AD diagnosis [34,59–61], which supports the reliability of our proposed model.
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4. Discussion

As the population ages, the number of patients with Alzheimer’s disease continues
to rise. However, progress in finding a cure for AD has been slow, leading researchers
to focus on early diagnosis to delay the progression of the disease through preventive
measures. Nevertheless, identifying patients in the prodromal stage of AD remains a
difficult task. A neural-network-based model has shown promise in accurately identifying
patients with AD at different stages, surpassing the performance of professional radiol-
ogists in terms of sensitivity and specificity. Previous studies have identified a specific
pattern of reduced brain metabolism in 18F-FDG-PET scans of AD patients, particularly in
the bilateral temporo-parietal regions. As the disease advances, reduced FDG uptake is
also observed in the frontal, parietal, and lateral temporal lobes. However, 18F-FDG-PET
alone is not a definitive biomarker for AD and MCI. While previous attempts to develop
CAD diagnostic methods for AD using other imaging modalities have been made, few
studies have focused on using machine learning approaches to classify AD patients based
on 18F-FDG-PET scans alone. In addition to predicting AD, our model can accurately
classify patients with MCI-s and MCI-c, achieving high sensitivity and specificity. The
advantages of our model include its ability to dynamically update without retraining
from scratch when new imaging studies are added as well as its superior performance in
identifying the early stage of AD. Effective and accurate prediction of MCI transitioning
into AD holds utmost importance in facilitating timely intervention and disease manage-
ment. Consequently, numerous studies undertake endeavors to investigate and enhance
the predictive capabilities for MCI progression. In this investigation, a comprehensive
comparative analysis was conducted to assess the predictive capabilities of DINO-ELM
in utilizing 18F-FDG-PET data from the ADNI. Notably, our proposed method exhibited
superior performance when compared to the prevailing state-of-the-art MRI-based studies
pertaining to MCI progression diagnosis. With an accuracy rate of 92.31%, specificity rate of
95.50%, and sensitivity rate of 90.21% along with 0.96 AUC, our findings demonstrate the
potential of employing vision transformers equipped with attention mechanisms with SSL
without any human intervention to achieve heightened classification accuracy in contrast
to prevailing CNN architectures. This improvement may be attributed to the attention
mechanism within vision transformers effectively highlighting distinctions within the brain
regions between MCI-c and MCI-s classes.

Additionally, we have also examined the brain regions that impact the prediction of
our proposed method. Discovering these regions will facilitate the future advancement
of deep learning models, enhancing their classification performance. Furthermore, it
will aid doctors in effortlessly identifying the regions of interest for diagnosis. We have
identified primary regions with the highest attention score: the thalamus, medial frontal,
hippocampus, posterior temporal lobe, parietal lobe, posterior cingulate gyrus, left Para
hippocampal gyrus, and occipital. Notably, 18F-FDG-PET scans have revealed brain
atrophy in these regions. Figure 7 illustrates examples of 18F-FDG-PET scans for MCI-c
cases. The thalamus serves as the primary relay for sensorimotor information in the brain
and is believed to be vital for memory processing, early affected by AD [60]. The medial
frontal area also plays a crucial role in various cognitive functions, including attention,
spatial perception, and long-term memory [61]. The occipital region, responsible for visual
perception encompassing color, form, and motion, experiences volume reduction due
to AD [62]. The posterior cingulate gyrus and left parahippocampal gyrus also exhibit
consistent involvement [59,63]. These findings imply informative regions for future feature
extraction to enhance our proposed method by allocating more attention to these locations.
Additionally, these marked brain regions, crucial for the method’s prediction, offer valuable
insights for doctors in clinical diagnosis.

Our model has some limitations. Firstly, the training process is complex and needs to
be completed in two stages. Additionally, our current method does not utilize a full 3D scan
model, instead, it only extracts slices from the brain. This approach may result in missing
global anatomical information from other brain regions, which could affect the accuracy



Bioengineering 2023, 10, 1225 17 of 20

of our predictions. The quality of feature extraction in the attention layer also affects the
performance of the self-supervised model in the second stage. However, in real clinical
scenarios, the causes of hypometabolism observed in 18F-FDG-PET may be more complex.
Other types of dementia, such as dementia with Lewy bodies (DLB) or frontotemporal
dementia (FTD), can also lead to similar pathological changes such as AD. Further studies
on more complex data can provide more reliable clinical aids for the diagnosis of AD. In
this work, our study only focuses on MCI to AD progression. In future studies, we should
focus on other diagnostic groups, including healthy control, MCI, and AD. Therefore,
future studies will focus on incorporating multimodal brain data, including functional MRI
(fMRI), structural magnetic resonance imaging (sMRI), and other modalities to identify
different diagnostic groups. By integrating multiple imaging modalities, researchers aim to
enhance the discriminative power of the models and achieve even better performance in
the classification of brain-related conditions.

5. Conclusions

In summary, utilizing brain 18F-FDG-PET, our study has created a ViT-DINO-based
features extractor network along with an ELM classifier for diagnostic prediction of MCI.
Features were extracted by decomposing the 18F-FDG-PET images into 2D slices. The slices
were then arranged at a few intervals without overlapping. The ADNI dataset verified the
suggested CAD system. This integrated approach demonstrates strong performance in
the MCI classification task following pre-training through DINO self-supervised learning.
Additionally, results of the simulations clearly showed that the utilization of ELM enables
the vision transformer to achieve enhanced performance in AD tasks with superior clas-
sification accuracy and resilience. Furthermore, our approach primarily had a profound
effect on specific brain regions that were visually portrayed. The thalamus, medial frontal,
hippocampus, and occipital regions of 18F-FDG-PET emerged as the pivotal components
within our proposed framework. These discoveries highlight the potential for early identi-
fication and classification of individuals with MCI, utilizing patterns of functional atrophy
as reliable indicators, prior to subjecting them to interventional clinical studies. Future
research will concentrate on expanding the recommended CAD system to include data
from additional sources to increase the classification accuracy. Several different samples
will be used to assess the overall performance of the proposed CAD system.
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