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Abstract: Previous epitope-based cancer vaccines have focused on analyzing a limited number of
mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively
few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts
are required to diversify the selection of mutated epitopes tailored to cancers with different genetic
signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI
software, capable of generating safe and immunogenic epitopes from missense mutations in any
oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking
method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell
assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and
running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting
missense mutations found in the proto-oncogene PIK3CA, which encodes the p110
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Abstract: Previous epitope-based cancer vaccines have focused on analyzing a limited number of 
mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively 
few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts 
are required to diversify the selection of mutated epitopes tailored to cancers with different genetic 
signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI 
software, capable of generating safe and immunogenic epitopes from missense mutations in any 
oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking 
method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell 
assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and 
running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting 
missense mutations found in the proto-oncogene PIK3CA, which encodes the p110ɑ catalytic subu-
nit of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread preva-
lence as an oncokinase across various cancer types and its lack of presence as a gene target in clinical 
trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I 
epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, 
we identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes 
targeting 11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we 
employed PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine 
population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 
81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further 
construct 3D models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope 
binding potential and TCR interactions. Future studies could aim to validate AutoEpiCollect’s vac-
cine design in murine models affected by PIK3CA-mutated or other mutated tumor cells located in 
various tissue types. AutoEpiCollect streamlines the preclinical vaccine development process, sav-
ing time for thorough testing of vaccinations in experimental trials. 
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catalytic subunit
of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread prevalence
as an oncokinase across various cancer types and its lack of presence as a gene target in clinical
trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I
epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, we
identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes targeting
11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we employed
PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine population
coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 81.81% for
MHC Class II data. We used three of our predicted immunogenic epitopes to further construct 3D
models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope binding potential
and TCR interactions. Future studies could aim to validate AutoEpiCollect’s vaccine design in murine
models affected by PIK3CA-mutated or other mutated tumor cells located in various tissue types.
AutoEpiCollect streamlines the preclinical vaccine development process, saving time for thorough
testing of vaccinations in experimental trials.

Keywords: epitope-based cancer vaccines; new GUI software; cancer vaccine design

1. Introduction

In silico vaccine designs provide a cost-effective method for identifying potential
immunogenic epitopes prior to clinical testing. The development of these vaccine designs
has been steadily increasing due to the ability of vaccines to safely boost the immune
system’s innate defense mechanisms against a broad number of diseases and pathogens.
Some of the latest findings involving in silico vaccine designs include potential methods
of protection against different viruses, bacteria, and some single-celled organisms [1–5].
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However, there is a lack of powerful in silico epitope vaccine designs specifically targeting
cancer. Furthermore, there is a demand for user-friendly graphical software to encourage
clinical researchers in adopting in silico methods for cancer vaccine clinical trials. Some of
our current methods, alongside other recent studies, manually filter a large set of epitope
data using a set of strict exclusion criteria [6–10]. While these cancer vaccine designs
identify immunogenic epitopes with favorable characteristics, much time is spent on data
collection and epitope sorting. This limits the time available for further epitope analysis
or preclinical testing. In one of our previous studies, we aimed to combat this issue by
integrating multiple deep learning tools into a machine learning-based multivalent vaccine
design called IntegralVac [11]. This comprehensive method reduces the time spent on data
collection and drastically improves immunogenicity and binding affinity predictions [11].
In contrast, a study by Stranzl et al. focused on a different approach to MHC Class I
epitope prediction. They introduced a ranking model named NetCTL, which is trained on
known Class I ligands [12]. NetCTL ranks epitopes based on proteasomal cleavage and
other epitope characteristics, offering a more efficient way to prioritize epitopes for further
analysis. However, this model is limited in the number of characteristics it considers and
cannot be used to predict MHC Class II epitopes.

We developed AutoEpiCollect, an automated epitope selection software that integrates
a novel machine learning-based epitope ranking model with individual variable filtration.
AutoEpiCollect features a user-friendly graphical user interface (GUI) designed to identify
potential MHC Class I and II T-cell eliciting epitopes, specifically tailored for peptide-based
cancer vaccines. The software requires only two inputs: the name of the target oncogene
and a list of point mutations associated with prevalent cancer subtypes affected by the
mutated gene. AutoEpiCollect then gathers mutated epitope characteristics and employs a
machine learning model to rank epitopes based on their immunogenic potential. To ensure
the selection of safe and stable epitopes, we incorporated individual variable filtration
using exclusion criteria. Additionally, we used our PCOptim and PCOptim-CD programs
to optimize the final list of epitopes before evaluating the population coverage of a vaccine
containing the predicted top epitopes [6,7]. In this study, we applied AutoEpiCollect’s
vaccine design process to develop a pan-cancer epitope-based vaccine targeting PIK3CA-
mutated cancers.

Pan-cancer epitope vaccines target epitopes from multiple cancer types. Epitopes taken
from tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs) are delivered
via vaccination, where antigen-presenting cells (APCs) uptake them. The epitopes are
presented on major histocompatibility complex molecules as markers for T-cells to activate.
As a result, cytokines are released and regulate immune responses towards the epitopes [13].
While a pan-cancer epitope vaccine targeting various PIK3CA gene mutations has not been
developed yet, an in vitro study focused on the H1047R point mutation, using PBMCs from
healthy individuals, induced T-cell responses [14]. Specifically, 27mers peptides from the
PIK3CA H1047R point mutation stimulated CD4+ and CD8+ T-cell responses in 16% and
4.0% of donors, despite the study’s limited sample size.

However, this study focused on a few epitopes due to the extended duration required
to obtain epitopes from an extensive set of point mutations in the PI3KCA gene. Pan-cancer
vaccines target a greater number of mutations, thereby increasing the number of epitopes in-
volved. Furthermore, they facilitate safer, more precise immune responses against mutated
epitopes. Cafri et al. designed an mRNA cancer vaccine containing mutated sequences
from TP53, KRAS, and PIK3CA genes, among others [15]. This vaccine was capable of
eliciting T-cell responses against selected neoantigens in metastatic gastrointestinal cancer
patients. No significant clinical responses were observed in the patients treated with the
vaccine during the trial; however, Cafri et al. were able to identify T-cell responses against
in silico predicted neoantigens [15]. This study highlights the immunogenic potential of a
cancer vaccine consisting of virtually predicted epitopes targeting missense mutations in
PIK3CA. Based on the studies discussed above, we decided to research common PIK3CA
point mutations in an effort to develop a pan-cancer vaccine with in silico tools [9,10].
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Prevalent PIK3CA missense mutations found in colorectal adenocarcinoma (CRC),
breast cancer (BC), endometrial carcinoma (EC), glioblastoma multiforme (GBM), and
meningioma are primarily seen in exons 9 and 20 [16–22]. These mutations affect the
helical and kinase domains of the p110
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protein, leading to increased cell proliferation and
tumor metastasis [17]. Current treatment options aiming to prevent metastatic recurrence
include endocrine therapy for HR+ tumors, aromatase inhibitors, tamoxifen (associated
with a 50% reduced recurrence rate), and chemotherapy for the unfavorable prognosis
of triple-negative BC [23]. Several small-molecule inhibitors targeting the PI3K protein
have also demonstrated efficacy in inducing tumor regression in cells harboring PIK3CA
mutations. In a study by Janku et al., the FDA-approved drug Alpelisib was used to target
PIK3CA-mutated BC, resulting in improved clinical responses among patients receiving
the inhibitors [24]. Despite these promising outcomes, small molecule inhibitors are charac-
terized by their limited pathway targeting, potentially leading to restricted effectiveness.
Furthermore, they may induce off-target cytotoxic effects, further complicating their use in
clinical settings [25].

Due to the limited success of PIK3CA-directed treatments, patients with the cancers
discussed above could potentially experience improved clinical outcomes through a pan-
cancer epitope vaccine targeting prevalent PIK3CA point mutations. Our study considered
various clinical variables based on prior studies that served as primary benchmarks when
developing our novel epitope selection process [6,7,26,27]. These variables confirmed that
AutoEpiCollect’s top predicted epitopes were immunogenic, safe, and stable. Our auto-
mated AutoEpiCollect GUI software is the first machine learning-based epitope selection
method to target PIK3CA missense mutations. With its ability to streamline a significant
portion of the preclinical vaccine development process, AutoEpiCollect has the potential to
reduce days of preclinical epitope selection procedures to just a few hours.

2. Materials and Methods
2.1. MHC Class I and II Epitopes and Variable Collection Using AutoEpiCollect

AutoEpiCollect is a graphical user interface (GUI) software designed to automatically
gather information on mutated epitopes, ultimately creating an extensive list of potential
immunogenic epitopes for a pan-cancer epitope vaccine. AutoEpiCollect utilizes a combi-
nation of online and downloadable in silico tools, the IEDB-API, and our novel probabilistic
logistic regression model scoring function to collect, rank, and filter epitope data. The GUI
version of AutoEpiCollect is implemented in Python using PyQt5 and spans approximately
1800 lines of Python code. For detailed instructions on installation and how to run the
software, refer to the documentation website found in the link provided under the ‘About
this project’ section on https://github.com/mvsamudrala/AutoEpiCollect (accessed on
2 February 2024).

AutoEpiCollect obtains wild-type genes from UniProt and generates FASTA-formatted
mutant sequences [28] to initiate the vaccine design process. It then inputs the mutant
sequences into the IEDB-API and receives binding affinities of 9 and 10mers epitopes to
the 27-allele HLA Class I reference set, as well as binding affinities of 15mers epitopes to
the 27-allele HLA Class II reference set [29]. The 27-allele HLA Class I and II reference sets
are located in Table 1. The binding predictions are performed using NetMHCpan-4.1 and
NetMHCIIpan-4.1, which are neural networks trained on large datasets of MHC Class I and
II epitope binding affinity data [30]. AutoEpiCollect automatically filters out unmutated
epitopes from the dataset.

The remaining mutated epitopes and their corresponding binding affinities are cate-
gorized into four groups: “STRONG”, “NORMAL”, “WEAK”, or “N/A”, based on their
binding affinity scores. Epitopes with scores less than or equal to 50 nM are labeled as
“STRONG”, epitopes with scores ranging between 50 nM and 500 nM, inclusive of 500 nM,
are classified as “NORMAL”, and epitopes with scores between 500 nM and 5000 nM,
inclusive of 5000 nM, are considered “WEAK”. Any scores exceeding 5000 nM receive the
“N/A” label. Table 2 shows the labeling scheme used for the epitope binding affinities. We

https://github.com/mvsamudrala/AutoEpiCollect
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established these designations after prior literature recommendations describing epitopes’
binding strength to MHC molecules based on their IC50 values [31].

After labeling binding affinity data, AutoEpiCollect employs a variety of in silico tools
to gather epitope characteristic data for ranking. These specific MHC Class I and II epitope
characteristics and their corresponding in silico tools are highlighted in Figure 1.

Table 1. 27-Allele HLA Class I and II allele references sets.

HLA Class I Allele
Reference Set

HLA-A*30:01, HLA-B*40:01, HLA-A*11:01, HLA-A*68:02, HLA-A*02:06, HLA-A*31:01, HLA-A*02:03,
HLA-B*44:03, HLA-A*02:01, HLA-A*01:01, HLA-A*33:01, HLA-A*23:01, HLA-B*35:01, HLA-B*08:01,
HLA-B*15:01, HLA-B*07:02, HLA-B*53:01, HLA-A*26:01, HLA-A*68:01, HLA-B*57:01, HLA-A*30:02,

HLA-A*24:02, HLA-B*51:01, HLA-B*44:02, HLA-A*32:01, HLA-A*03:01, HLA-B*58:01

HLA Class II Allele
Reference Set

HLA-DRB4*01:01, HLA-DQA1*01:01/DQB1*05:01, HLA-DRB1*03:01,
HLA-DQA1*01:02/DQB1*06:02, HLA-DRB1*13:02, HLA-DRB1*04:05,

HLA-DQA1*05:01/DQB1*02:01, HLA-DRB1*15:01, HLA-DRB1*04:01, HLA-DRB3*02:02,
HLA-DPA1*03:01/DPB1*04:02, HLA-DRB1*07:01, HLA-DQA1*05:01/DQB1*03:01, HLA-DRB1*12:01,
HLA-DRB5*01:01, HLA-DRB1*08:02, HLA-DPA1*02:01/DPB1*01:01, HLA-DQA1*03:01/DQB1*03:02,

HLA-DRB1*11:01, HLA-DRB1*09:01, HLA-DPA1*02:01/DPB1*05:01, HLA-DRB1*01:01,
HLA-DPA1*02:01/DPB1*14:01, HLA-DPA1*01:03/DPB1*04:01, HLA-DRB3*01:01,

HLA-DPA1*01:03/DPB1*02:01, HLA-DQA1*04:01/DQB1*04:02

Table 2. Binding affinity labeling scheme.

Binding Affinity (nM) Label

BA ≤ 50 STRONG

50 < BA ≤ 500 NORMAL

500 < BA ≤ 5000 WEAK

BA > 5000 N/A
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Figure 1. AutoEpiCollect follows a specific workflow of tools and collection steps to gather important
epitope characteristics. To start, two distinct tools are used to collect immunogenicity data for MHC
Class I and II epitopes, both sourced from the IEDB [32,33]. Subsequently, VaxiJen v2.0 is used to
obtain antigenicity data for both MHC Class I and II epitopes [34]. This is followed by allergenicity
predictions using AlgPred2.0 and NetAllergen1.0 for Class I and II epitopes, respectively [35,36]. After
the compilation of these four epitope characteristics required for epitope ranking, AutoEpiCollect
begins to collect additional characteristics for individual variable filtration. Instability indexes, half-
lives, aliphatic indexes, GRAVY scores, and isoelectric points of MHC Class I and II epitopes are
obtained using ProtParam on the ExPASy server [37]. The final in silico tools employed for gathering
epitope characteristics are ToxinPred for epitope toxicity and IFNepitope for IFN-γ release data, both
for Class I and II epitopes [38,39]. Additional information about each tool can be accessed by referring
to the respective manuscripts cited.
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2.2. Developing Scoring Functions to Rank MHC Class I and II Epitopes

Using the epitope characteristics discussed above, we initially aimed only to apply
individual filters to construct a vaccine containing epitopes that met all the essential criteria.
However, this process prematurely emphasized characteristics like allergenicity, resulting
in the exclusion of nearly all epitopes with strong binding affinity and good immunogenic
potential. We developed a machine learning algorithm to rank epitopes to address this issue
and achieve a balanced selection of epitopes that can elicit a robust immunogenic response
while maintaining normal physiological function. Since our model needed to work as
a ranking algorithm, we evaluated the performances of two types of models: a linear
regression model and a probabilistic logistic regression model. The symbolic equations
representing these regression models, Equations (1)–(3), show how AutoEpiCollect uses
the optimal weights assigned to each characteristic—binding affinity, immunogenicity,
antigenicity, and allergenicity—and outputs a probability, indicating if a given epitope is
likely to induce an immunogenic response.

Y = β0 + β1
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Figure 1. AutoEpiCollect follows a specific workflow of tools and collection steps to gather im-
portant epitope characteristics. To start, two distinct tools are used to collect immunogenicity data 
for MHC Class I and II epitopes, both sourced from the IEDB [32,33]. Subsequently, VaxiJen v2.0 is 
used to obtain antigenicity data for both MHC Class I and II epitopes [34]. This is followed by aller-
genicity predictions using AlgPred2.0 and NetAllergen1.0 for Class I and II epitopes, respectively 
[35,36]. After the compilation of these four epitope characteristics required for epitope ranking, Au-
toEpiCollect begins to collect additional characteristics for individual variable filtration. Instability 
indexes, half-lives, aliphatic indexes, GRAVY scores, and isoelectric points of MHC Class I and II 
epitopes are obtained using ProtParam on the ExPASy server [37]. The final in silico tools employed 
for gathering epitope characteristics are ToxinPred for epitope toxicity and IFNepitope for IFN-γ 
release data, both for Class I and II epitopes [38,39]. Additional information about each tool can be 
accessed by referring to the respective manuscripts cited. 

2.2. Developing Scoring Functions to Rank MHC Class I and II Epitopes 
Using the epitope characteristics discussed above, we initially aimed only to apply 

individual filters to construct a vaccine containing epitopes that met all the essential crite-
ria. However, this process prematurely emphasized characteristics like allergenicity, re-
sulting in the exclusion of nearly all epitopes with strong binding affinity and good im-
munogenic potential. We developed a machine learning algorithm to rank epitopes to ad-
dress this issue and achieve a balanced selection of epitopes that can elicit a robust immu-
nogenic response while maintaining normal physiological function. Since our model 
needed to work as a ranking algorithm, we evaluated the performances of two types of 
models: a linear regression model and a probabilistic logistic regression model. The sym-
bolic equations representing these regression models, Equations (1)–(3), show how Au-
toEpiCollect uses the optimal weights assigned to each characteristic—binding affinity, 
immunogenicity, antigenicity, and allergenicity—and outputs a probability, indicating if 
a given epitope is likely to induce an immunogenic response.  Y = β + β ɑ + β Ɣ + β δ + β ε  (1) 

In the linear regression model above, Y represents the probability of an epitope elic-
iting a positive T-cell response. ɑ, Ɣ, δ, and ε represent an epitope’s predicted immuno-
genicity, antigenicity, allergenicity, and binding affinity scores, respectively. The beta (β0, 
β1, β2, β3, β4) represents the weights to be determined after training the linear regression 
model on experimental data. The sign of each beta indicates whether the corresponding 
explanatory variable is expected to positively or negatively influence the probability of an 
epitope being immunogenic. The magnitude of each beta shows the relative strength of 
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In the linear regression model above, Y represents the probability of an epitope eliciting
a positive T-cell response.
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portant epitope characteristics. To start, two distinct tools are used to collect immunogenicity data 
for MHC Class I and II epitopes, both sourced from the IEDB [32,33]. Subsequently, VaxiJen v2.0 is 
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toEpiCollect begins to collect additional characteristics for individual variable filtration. Instability 
indexes, half-lives, aliphatic indexes, GRAVY scores, and isoelectric points of MHC Class I and II 
epitopes are obtained using ProtParam on the ExPASy server [37]. The final in silico tools employed 
for gathering epitope characteristics are ToxinPred for epitope toxicity and IFNepitope for IFN-γ 
release data, both for Class I and II epitopes [38,39]. Additional information about each tool can be 
accessed by referring to the respective manuscripts cited. 
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nogenic response while maintaining normal physiological function. Since our model 
needed to work as a ranking algorithm, we evaluated the performances of two types of 
models: a linear regression model and a probabilistic logistic regression model. The sym-
bolic equations representing these regression models, Equations (1)–(3), show how Au-
toEpiCollect uses the optimal weights assigned to each characteristic—binding affinity, 
immunogenicity, antigenicity, and allergenicity—and outputs a probability, indicating if 
a given epitope is likely to induce an immunogenic response.  Y = β + β ɑ + β Ɣ + β δ + β ε  (1) 
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In the logistic regression model above,

π∗ = ln(π/1 − π) = ln(P(Y = 1)/P(Y = 0)) (3)

where π∗ represents the log-odds of a successful epitope. π and P(Y = 1) are both defined
as the probability of an epitope successfully inducing an immunogenic response. P(Y = 0)
represents the probability of an epitope unsuccessfully inducing an immunogenic response.
Similar to Equation (1),
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Figure 1. AutoEpiCollect follows a specific workflow of tools and collection steps to gather im-
portant epitope characteristics. To start, two distinct tools are used to collect immunogenicity data 
for MHC Class I and II epitopes, both sourced from the IEDB [32,33]. Subsequently, VaxiJen v2.0 is 
used to obtain antigenicity data for both MHC Class I and II epitopes [34]. This is followed by aller-
genicity predictions using AlgPred2.0 and NetAllergen1.0 for Class I and II epitopes, respectively 
[35,36]. After the compilation of these four epitope characteristics required for epitope ranking, Au-
toEpiCollect begins to collect additional characteristics for individual variable filtration. Instability 
indexes, half-lives, aliphatic indexes, GRAVY scores, and isoelectric points of MHC Class I and II 
epitopes are obtained using ProtParam on the ExPASy server [37]. The final in silico tools employed 
for gathering epitope characteristics are ToxinPred for epitope toxicity and IFNepitope for IFN-γ 
release data, both for Class I and II epitopes [38,39]. Additional information about each tool can be 
accessed by referring to the respective manuscripts cited. 
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sulting in the exclusion of nearly all epitopes with strong binding affinity and good im-
munogenic potential. We developed a machine learning algorithm to rank epitopes to ad-
dress this issue and achieve a balanced selection of epitopes that can elicit a robust immu-
nogenic response while maintaining normal physiological function. Since our model 
needed to work as a ranking algorithm, we evaluated the performances of two types of 
models: a linear regression model and a probabilistic logistic regression model. The sym-
bolic equations representing these regression models, Equations (1)–(3), show how Au-
toEpiCollect uses the optimal weights assigned to each characteristic—binding affinity, 
immunogenicity, antigenicity, and allergenicity—and outputs a probability, indicating if 
a given epitope is likely to induce an immunogenic response.  Y = β + β ɑ + β Ɣ + β δ + β ε  (1) 

In the linear regression model above, Y represents the probability of an epitope elic-
iting a positive T-cell response. ɑ, Ɣ, δ, and ε represent an epitope’s predicted immuno-
genicity, antigenicity, allergenicity, and binding affinity scores, respectively. The beta (β0, 
β1, β2, β3, β4) represents the weights to be determined after training the linear regression 
model on experimental data. The sign of each beta indicates whether the corresponding 
explanatory variable is expected to positively or negatively influence the probability of an 
epitope being immunogenic. The magnitude of each beta shows the relative strength of 

, δ, and ε represent an epitope’s predicted immunogenicity,
antigenicity, allergenicity, and binding affinity scores, respectively. The beta (β0, β1, β2,
β3, β4) represents the weights to be determined after training the probabilistic logistic
regression model on experimental data. The sign of each beta indicates whether the
corresponding explanatory variable is expected to positively or negatively influence the
log-odds of an epitope being immunogenic. The magnitude of each beta shows the relative
strength of association between each predictor variable and the log-odds of an epitope
being immunogenic.

Based on the models shown in Equations (1)–(3), we developed two scoring functions
per regression model, one for MHC Class I epitopes and one for MHC Class II epitopes,
resulting in four final scoring functions. We first created the training datasets for the linear
regression models by incorporating a beta–binomial distribution to derive an epitope’s
immunogenic potential from the amount of successful and unsuccessful experimental T-cell
assay trials. The experimental T-cell assay data used to train these models were taken
from the IEDB for both Class I and II epitopes [24]. We gathered data on the number of
T-cell assay trials performed and the number of trials that succeeded in eliciting a positive
response. These two pieces of data were labeled as “Tested” and “Responded” in the
training datasets, respectively. Training data epitopes that had more positive T-cell assay
results compared to negative were assigned higher potentials, while epitopes that had
no positive or mostly negative results were assigned lower potentials on a scale from
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0 to 1 using the beta–binomial distribution. This method, further explained by Deep-
Immuno, allowed us to create a continuous dependent variable for our epitope training
data, known as the “Potential” [40]. This variable, represented by “Y” in Equation (1),
represents the probability of an epitope eliciting a positive T-cell response. We aimed to
prioritize mutated epitopes that shared similar characteristics with training data epitopes
demonstrating high potentials.

We employed slightly different methods than described above to collect training
data for the MHC Class I and II probabilistic logistic regression models. We collected
experimental T-cell assay data from NEPdb for Class I epitopes and IEDB for Class II
epitopes [29,41]. The training data epitopes were customized to align closely with the
parameters of the mutated epitopes in our study. Thus, on NEPdb, we searched for only
HLA-A and HLA-B epitopes with both positive and negative responses and all tumor types.
The search parameters on IEDB included linear epitopes, both positive and negative T-cell
assay data, MHC Class II epitopes, and human hosts. Before the data cleaning process,
we kept three key characteristics for each epitope: peptide sequence, T-cell assay results
(positive or negative), and MHC allele restriction. Unlike the linear regression model
training datasets, the T-cell assay results were used as a binary dependent variable for
training our probabilistic logistic models.

Following the training data retrieval for both the linear regression and logistic regres-
sion models, a thorough cleaning process was conducted. For MHC Class I epitopes, only
9 and 10mers were retained, whereas Class II epitopes were filtered to keep 15mers. Any
peptide sequences that exceeded 15 amino acids were truncated to the first 15 amino acids.
Furthermore, sequences were examined to ensure that they comprised only the 20 standard
amino acid letter codes. Only epitopes that had MHC restrictions as part of the 27-allele
HLA reference set were included. As mentioned above, this process was undertaken to
align the training data as closely as possible to our mutated epitope data, ensuring precisely
calculated weights for our final scoring functions.

Next, we collected binding affinity, immunogenicity, antigenicity, and allergenicity
values as the input variables for each epitope in the training datasets using the tools
described in Section 2.1. After obtaining all of the required characteristics for each epitope,
we normalized all values to reduce the impact of outliers and ensure consistent data
ranges among the variables. We performed this process because the discrepancy in data
ranges would significantly compromise the accuracy of the weights and resulting score
potential. For instance, the predicted immunogenicity of MHC Class I epitopes produced
a decimal number ranging from approximately −0.3 to 0.4, while the binding affinity
values could span from 10 nM to 50,000 nM. The difference in these ranges would have
drastically decreased the model’s overall accuracy. For the immunogenicity, antigenicity,
and allergenicity of epitopes, we took the z-score of all the values and then performed a min–
max normalization on the data to keep the ranges between 0 and 1. Class II immunogenicity
scores and all allergenicity scores depicting non-allergens were characterized by lower
values. Given our preference for non-allergenic epitopes, we modified the normalization
process to align with this preference: lower scores were assigned values closer to 1, while
higher scores were assigned values closer to 0. To normalize the binding affinity values,
we used a natural log transformation of the data to create a more normal distribution and
limit the range. The final normalized training datasets for the linear and logistic regression
models are included in Supplementary Tables S1–S4.

To derive the weights of Class I and II scoring functions for both the linear and logistic
regression models, we trained Equations (1) and (2) on the final training datasets using
functions from the sklearn library. We analyzed the performance of all the scoring functions
through a 5-fold cross-validation technique with a 70:30 training to test set split. After
comparing the performance of the linear regression scoring functions to the probabilistic
logistic regression functions, we observed that the Class I and II linear regression functions
exhibited low R2 values, while the Class I and II logistic regression functions performed at
moderately high accuracies. As a result, AutoEpiCollect uses only the MHC Class I & II
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probabilistic logistic regression scoring functions to rank the probability of each mutated
epitope eliciting a positive T-cell response. Only the epitopes that rank within the top 20
for each point mutation undergo the next steps of individual variable filtration.

2.3. Individual Variable Filtration Using AutoEpiCollect

After data collection and ranking for all the desired epitope characteristics are com-
plete, AutoEpiCollect places individual filters on the mutated epitopes based on instability,
half-life, toxicity, and IFN-γ release criteria. The exclusion criteria for the individual
parameters are shown in Table 3.

Table 3. Exclusion criteria determined for each parameter after ranking.

Parameter Tool Name Tool Link Threshold

Instability Index ProtParam https://web.expasy.org/protparam/ (accessed on 2 February 2024) <40

Half-Life ProtParam https://web.expasy.org/protparam/ (accessed on 2 February 2024) >1 h

Aliphatic Index ProtParam https://web.expasy.org/protparam/ (accessed on 2 February 2024) N/A

GRAVY Score ProtParam https://web.expasy.org/protparam/ (accessed on 2 February 2024) N/A

Isoelectric Point ProtParam https://web.expasy.org/protparam/ (accessed on 2 February 2024) N/A

Toxicity ToxinPred https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.php
(accessed on 2 February 2024) Non-Toxin

IFN-γ release IFNepitope https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
(accessed on 2 February 2024) Positive

A threshold of less than 40 is used for filtering the instability index, as this aligns with
ProtParam’s approach [37]. Additionally, we set a minimum half-life of 1 h for filtration, as
this duration corresponds with the minimum half-life of amino acids observed in mammals,
typically ranging from 0.8 to 1 h [6]. While filtering, the aliphatic index, GRAVY score,
and isoelectric point are not considered; however, it is essential to acknowledge that these
physical properties are important factors to consider when designing experiments involving
immune responses to selected epitopes. IFN-γ results are considered for only MHC Class
II epitopes, since IFNepitope is trained on only Class II epitope data [39].

2.4. Obtaining Population Coverage with AutoEpiCollect and PCOptim/PCOptim-CD

The selected top epitopes from each point mutation and cancer type, which success-
fully pass the ranking and individual variable filtration processes above, undergo further
analysis using IEDB’s downloadable Population Coverage Epitope Analysis Tool [42].
Using this tool, AutoEpiCollect facilitates the calculation of MHC Class I and II vaccine
coverages for top-filtered epitopes on world and regional populations. Since HLA allele
representation varies across different ethnicities and geographical regions, a higher pop-
ulation coverage implies that our pan-cancer vaccine has the potential to impact a larger
number of individuals, making it more applicable.

To optimize our datasets by minimizing the number of alleles while maximizing pop-
ulation coverage, AutoEpiCollect uses our PCOptim and PCOptim-CD programs for Class
I and Class II epitopes, respectively [6,7]. However, IEDB’s population coverage tool has
limitations concerning a restricted set of MHC Class II alleles, as shown in Table 4 [42].
Consequently, before submitting the top MHC Class II epitopes into PCOptim-CD, Au-
toEpiCollect excludes certain epitopes with alleles unsupported by the population coverage
tool. After obtaining the optimal epitope/HLA allele combinations from PCOptim and
PCOptim-CD, AutoEpiCollect inputs these data into IEDB’s Population Coverage Tool to
calculate the optimized vaccine population coverage and average allele hit for the world
population and major regions.

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.php
https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
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Table 4. Unaccounted HLA alleles in population coverage analysis.

MHC Class II Alleles

HLA-DQA1*05:01/DQB1*02:01, HLA-DRB5*01:01, HLA-DRB3*01:01,
HLA-DQA1*04:01/DQB1*04:02, HLA-DQA1*01:02/DQB1*06:02, HLA-DPA1*03:01/DPB1*04:02,

HLA-DPA1*02:01/DPB1*01:01, HLA-DPA1*02:01/DPB1*14:01, HLA-DRB3*02:02,
HLA-DPA1*02:01/DPB1*05:01, HLA-DQA*03:01/DQB1*03:02, HLA-DQA1*01:01/DQB1*05:01,

HLA-DEB4*01:01, HLA-DPA1*01:03/DPB1*02:01, HLA-DPA1*01:03/DPB1*04:01,
HLA-DQA1*05:01/HLA-DQB1*03:01

2.5. Determining Cancer-Specific PIK3CA Point Mutations

After developing AutoEpiCollect’s novel pan-cancer vaccine design software, we
applied its design by targeting cancer subtypes susceptible to PIK3CA mutations. Common
cancer-causing mutations on the PIK3CA gene are clustered on exon 9 of the helical domain
and exon 20 of the kinase domain [17]. The most prevalent point mutations leading to
cancer are mutations E542K, E545K, and H1047R [17]. We selected point mutations for this
study based on prior studies reporting clinical data on PIK3CA mutations observed in CRC,
meningioma, BC, EC, and GBM tissue samples [16–22]. Figure 2 shows the p110
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protein
encoded by the PIK3CA gene, with its domains highlighted and common point mutations
annotated in red. The pdb 3D model of this protein is located in the PDB Models folder
within the Supplementary Files. Table 5 lists all PIK3CA gene point mutations used in this
study, each associated with one or more cancer types. The gene name, common cancer
subtypes, and prevalent point mutations of PIK3CA were all entered into AutoEpiCollect.
In return, we received .xlsx files of the top predicted immunogenic PIK3CA MHC Class I
and II epitopes and optimized epitope lists with population coverage results.
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protein consists of five different protein domains that regulate the kinase
activity of the protein: adapter-binding domain (ABD), Ras-binding domain (RBD), C2 domain,
helical domain, and kinase domain [43]. The unlabeled gray areas represent linker residues that
join domains together. All mutated residues used in this study are highlighted in red on their
corresponding domains [16–22]. The most frequently observed mutations associated with cancer are
specifically labeled to indicate their affected domains. Out of the five domains, the RBD holds no
common sites of mutation. The C2 domain and the ABD are equally susceptible to point mutations,
with mutations commonly occurring around residues 110 and 453 [43]. However, most of the PIK3CA
hotspot mutations are located on the kinase and helical domains and generate gain-of-function
mutations, leading to unregulated phosphorylation and cell signaling [38].
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Table 5. Cancer types associated with all PIK3CA point mutations used in study.

Cancer Point Mutations

Colorectal Adenocarcinoma R38H, R88Q, G106V, C420R, E453Q, E542K, E545K, R1023Q, M1043I, H1047R

Meningioma R108H, E110K, Y165H, N345K, I391M, E453K, E545K, G914R, H1047R

Breast Cancer E81K, K111E, G118D, N345K, S405P, C420R, E453K, E542K, E542V, E545A, E545G, E545K,
Q546E, Q546K, Q546R, E726K, H1047L, H1047R, M1043I, N1044K, G1049R

Endometrial Cancer E542K, E542Q, E545K, E545G, G1007R, Y1021H, Y1021C, A1035V, M1043I, H1047Y, H1047R,
G1050D, T1052K, H1065L

Glioblastoma Multiforme R88E, R88Q, P298T, R310C, V344G, E453K, E542K, E545A, E545K, Y1021C, Y1021N, T1025N,
T1031G, M1043I, N1044S, H1047Y, G1049S

2.6. Three-Dimensional (3D) Analysis Using Peptide-HLA and TCR Complex Modeling

We modeled three peptide-HLA complexes and three peptide-HLA-TCR complexes
to further analyze the binding potentials and TCR interactions of top PIK3CA epitope
output by AutoEpiCollect. The HLA sequences were obtained through the IMGT/HLA
database and input into the Swiss Model to perform homology modeling, which compared
the original sequence to similar templates. The Swiss Model takes in amino acid sequences
as input and searches for templates obtained from its library, ExPDB, which removes
unreliable models and splits the remaining protein chains for alignment from the PDB
database [44,45]. Factors considered for an ideal template include sequence similarity and
model quality. We chose a template with the highest sequence similarity (at least 0.62).
Once the output model was created, the Swiss Model provided information regarding
the stability and reliability of the model by conducting a Ramachandran plot analysis
to validate the results further. We downloaded and edited HLA structures on PYMol.
These edited structures were then input into MDockPeP, where peptide-HLA binding was
performed [46]. We used MolProbity to calculate the clashing score and Ramachandran
plot parameters to choose the best model. Models with the lowest clashing score and
Ramachandran outliers were kept [47].

Using TCRModel, we modeled the peptide-HLA-TCR complexes with the same
peptide-HLA complexes’ structures discussed above and the TRAV/TRBV/TRAJ/TRBJ/
CDR3 TCR gene sequences from VDJdb based on HLA type [48,49]. The models with the
lowest clash scores and Ramachandran outliers calculated with MolProbity were chosen to
model the peptide-HLA-TCR complexes.

3. Results
3.1. Overall Methodology Workflow

Figure 3A illustrates the steps taken to create AutoEpiCollect’s pan-cancer vaccine de-
sign. We initiated the process by creating web-scraping programs to gather gene sequences
and epitope characteristics. These programs played a role in gathering both experimental
and in silico epitope training data for the MHC Class I and II linear regression and proba-
bilistic logistic regression scoring functions. The scoring functions were then trained on the
epitope training data. We decided to make AutoEpiCollect rank epitopes with the logistic
regression scoring functions due to higher performance metrics than the linear regression
models. The web-scraping programs mentioned in the first step were integrated into Au-
toEpiCollect to automatically collect the in silico characteristics needed for epitope selection.
Using these epitope characteristics, we ranked the mutated Class I and II epitopes with the
scoring functions and further filtered the data based on exclusion criteria. The combination
of epitope ranking and individual variable filtration generated our list of top immunogenic
MHC Class I and II epitopes. We completed AutoEpiCollect’s vaccine design by creating a
population coverage tool using PCOptim/PCOptim-CD and IEDB’s Population Coverage
Analysis tool. AutoEpiCollect’s final pan-cancer vaccine design algorithm is a combination
of all these tools.
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tool to calculate the filtered and optimized population coverages of a pan-cancer vaccine 
containing mutated PIK3CA epitopes. The final lists of the top MHC Class I and II 
epitopes and population coverage results were output as .xlsx files for us to analyze. To 
further analyze epitope binding potential and TCR complex interactions, we created pep-
tide-HLA and peptide-HLA-TCR models with three selected immunogenic epitopes. 
From our overall methodology process, we received results regarding the final weights 
and performances of Class I and II scoring functions, the final list of top epitopes gener-
ated by AutoEpiCollect, the calculated pan-cancer vaccine population coverage results, 
and the 3D peptide-HLA and peptide-HLA-TCR complex interactions. 

Figure 3. The overall methodology flowchart for the study. (A) is the workflow chart for AutoEpi-
Collect’s vaccine design process. (B) shows AutoEpiCollect’s vaccine design process applied to a
pan-cancer vaccine targeting PIK3CA-mutated tumors. The steps in red boxes are processes done
without AutoEpiCollect’s help, while the purple steps are automated.

This study applied AutoEpiCollect’s final vaccine design to develop a pan-cancer
vaccine targeting the PIK3CA gene. We chose this gene due to its widespread preva-
lence across multiple cancer types. Furthermore, PIK3CA plays an important role in the
PI3K/Akt/mTOR intracellular signaling pathway. Figure 4 shows the full pathway in
greater detail. Mutations affecting PIK3CA upregulate the kinase activity of the PI3K
protein, leading to uncontrolled cell growth and proliferation [50]. After determining
common PIK3CA-mutated cancer types and prevalent cancer-inducing PIK3CA point
mutations, we input these cancers and mutations into AutoEpiCollect. Figure 3B depicts
the steps taken by AutoEpiCollect to create a pan-cancer vaccine with this data. After
generating point-mutated gene sequences, AutoEpiCollect produced mutated epitopes
and gathered epitope characteristics. It then ranked and filtered Class I and II epitopes
using the trained probabilistic logistic regression scoring functions coupled with individual
variable filtration.

The lists of top immunogenic MHC Class I and II epitopes were optimized for popula-
tion coverage using PCOptim and PCOptim-CD. AutoEpiCollect inputs the filtered and
optimized lists of predicted immunogenic epitopes into the population coverage analysis
tool to calculate the filtered and optimized population coverages of a pan-cancer vaccine
containing mutated PIK3CA epitopes. The final lists of the top MHC Class I and II epitopes
and population coverage results were output as .xlsx files for us to analyze. To further ana-
lyze epitope binding potential and TCR complex interactions, we created peptide-HLA and
peptide-HLA-TCR models with three selected immunogenic epitopes. From our overall
methodology process, we received results regarding the final weights and performances of
Class I and II scoring functions, the final list of top epitopes generated by AutoEpiCollect,
the calculated pan-cancer vaccine population coverage results, and the 3D peptide-HLA
and peptide-HLA-TCR complex interactions.
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mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively 
few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts 
are required to diversify the selection of mutated epitopes tailored to cancers with different genetic 
signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI 
software, capable of generating safe and immunogenic epitopes from missense mutations in any 
oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking 
method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell 
assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and 
running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting 
missense mutations found in the proto-oncogene PIK3CA, which encodes the p110ɑ catalytic subu-
nit of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread preva-
lence as an oncokinase across various cancer types and its lack of presence as a gene target in clinical 
trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I 
epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, 
we identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes 
targeting 11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we 
employed PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine 
population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 
81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further 
construct 3D models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope 
binding potential and TCR interactions. Future studies could aim to validate AutoEpiCollect’s vac-
cine design in murine models affected by PIK3CA-mutated or other mutated tumor cells located in 
various tissue types. AutoEpiCollect streamlines the preclinical vaccine development process, sav-
ing time for thorough testing of vaccinations in experimental trials. 
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subunit,
PI3K catalyzes the phosphorylation of the lipid PIP2, producing PIP3, which serves as a secondary
messenger within the signal cascade for proteins such as Akt. The phosphatase PTEN plays a pivotal
role in suppressing this pathway by dephosphorylating PIP3 [50].

3.2. Linear Regression Model Weights and Performance

The Class I and II linear regression model training datasets each contained 1370 epi-
topes. Equations (4) and (5) show the final linear regression scoring functions with the
weights assigned to each variable after training. Equation (1) provides more information
on what each variable in the function represents:

YMHCI = 0.335 + 0.142
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population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 
81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further 
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Figure 1. AutoEpiCollect follows a specific workflow of tools and collection steps to gather im-
portant epitope characteristics. To start, two distinct tools are used to collect immunogenicity data 
for MHC Class I and II epitopes, both sourced from the IEDB [32,33]. Subsequently, VaxiJen v2.0 is 
used to obtain antigenicity data for both MHC Class I and II epitopes [34]. This is followed by aller-
genicity predictions using AlgPred2.0 and NetAllergen1.0 for Class I and II epitopes, respectively 
[35,36]. After the compilation of these four epitope characteristics required for epitope ranking, Au-
toEpiCollect begins to collect additional characteristics for individual variable filtration. Instability 
indexes, half-lives, aliphatic indexes, GRAVY scores, and isoelectric points of MHC Class I and II 
epitopes are obtained using ProtParam on the ExPASy server [37]. The final in silico tools employed 
for gathering epitope characteristics are ToxinPred for epitope toxicity and IFNepitope for IFN-γ 
release data, both for Class I and II epitopes [38,39]. Additional information about each tool can be 
accessed by referring to the respective manuscripts cited. 

2.2. Developing Scoring Functions to Rank MHC Class I and II Epitopes 
Using the epitope characteristics discussed above, we initially aimed only to apply 

individual filters to construct a vaccine containing epitopes that met all the essential crite-
ria. However, this process prematurely emphasized characteristics like allergenicity, re-
sulting in the exclusion of nearly all epitopes with strong binding affinity and good im-
munogenic potential. We developed a machine learning algorithm to rank epitopes to ad-
dress this issue and achieve a balanced selection of epitopes that can elicit a robust immu-
nogenic response while maintaining normal physiological function. Since our model 
needed to work as a ranking algorithm, we evaluated the performances of two types of 
models: a linear regression model and a probabilistic logistic regression model. The sym-
bolic equations representing these regression models, Equations (1)–(3), show how Au-
toEpiCollect uses the optimal weights assigned to each characteristic—binding affinity, 
immunogenicity, antigenicity, and allergenicity—and outputs a probability, indicating if 
a given epitope is likely to induce an immunogenic response.  Y = β + β ɑ + β Ɣ + β δ + β ε  (1) 

In the linear regression model above, Y represents the probability of an epitope elic-
iting a positive T-cell response. ɑ, Ɣ, δ, and ε represent an epitope’s predicted immuno-
genicity, antigenicity, allergenicity, and binding affinity scores, respectively. The beta (β0, 
β1, β2, β3, β4) represents the weights to be determined after training the linear regression 
model on experimental data. The sign of each beta indicates whether the corresponding 
explanatory variable is expected to positively or negatively influence the probability of an 
epitope being immunogenic. The magnitude of each beta shows the relative strength of 
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used to obtain antigenicity data for both MHC Class I and II epitopes [34]. This is followed by aller-
genicity predictions using AlgPred2.0 and NetAllergen1.0 for Class I and II epitopes, respectively 
[35,36]. After the compilation of these four epitope characteristics required for epitope ranking, Au-
toEpiCollect begins to collect additional characteristics for individual variable filtration. Instability 
indexes, half-lives, aliphatic indexes, GRAVY scores, and isoelectric points of MHC Class I and II 
epitopes are obtained using ProtParam on the ExPASy server [37]. The final in silico tools employed 
for gathering epitope characteristics are ToxinPred for epitope toxicity and IFNepitope for IFN-γ 
release data, both for Class I and II epitopes [38,39]. Additional information about each tool can be 
accessed by referring to the respective manuscripts cited. 
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sulting in the exclusion of nearly all epitopes with strong binding affinity and good im-
munogenic potential. We developed a machine learning algorithm to rank epitopes to ad-
dress this issue and achieve a balanced selection of epitopes that can elicit a robust immu-
nogenic response while maintaining normal physiological function. Since our model 
needed to work as a ranking algorithm, we evaluated the performances of two types of 
models: a linear regression model and a probabilistic logistic regression model. The sym-
bolic equations representing these regression models, Equations (1)–(3), show how Au-
toEpiCollect uses the optimal weights assigned to each characteristic—binding affinity, 
immunogenicity, antigenicity, and allergenicity—and outputs a probability, indicating if 
a given epitope is likely to induce an immunogenic response.  Y = β + β ɑ + β Ɣ + β δ + β ε  (1) 

In the linear regression model above, Y represents the probability of an epitope elic-
iting a positive T-cell response. ɑ, Ɣ, δ, and ε represent an epitope’s predicted immuno-
genicity, antigenicity, allergenicity, and binding affinity scores, respectively. The beta (β0, 
β1, β2, β3, β4) represents the weights to be determined after training the linear regression 
model on experimental data. The sign of each beta indicates whether the corresponding 
explanatory variable is expected to positively or negatively influence the probability of an 
epitope being immunogenic. The magnitude of each beta shows the relative strength of 

+ 0.134δ− 0.029ε (5)

Looking at Equations (4) and (5), we can see that the Class I scoring function assigns
higher probabilities to epitopes with higher antigenicities and higher allergenicities. The
Class II scoring function assigns higher probabilities to epitopes with lower antigenic-
ities and lower allergenicities. Both the Class I and II scoring functions assign higher
probabilities to epitopes with higher immunogenicities and lower binding affinities. The
prioritization of antigenicity and allergenicity scores are inconsistent between the two
functions. These differences are likely due to inconsistencies in the training data for the
two scoring functions. This is shown by the positive weight assigned to these epitope
characteristics. To assess the performances of these two functions, we ran a 5-fold cross-
validation process with a 70:30 training to test split using the sklearn library. The training
and validation sets for the linear regression models consisted of scores for the four distinct
epitope characteristics mentioned above, as well as a predicted probability of an epitope
eliciting a positive T-cell response based on the number of times an epitope elicited a T-cell
response during multiple experimental T-cell assays. The linear regression models aimed
to accurately predict immunogenic potential, based on a linear combination of the four
epitope characteristics. Therefore, R2 was chosen as the best metric to evaluate the fit of the
models. The cross-validation process revealed R2 values of 0.060 for the Class I function
and 0.028 for the Class II function.
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3.3. Probabilistic Logistic Regression Scoring Function Weights and Performance

We employed two probabilistic logistic scoring functions, each involving four variables,
designed for MHC Class I and II epitopes. Like the linear regression models, one scoring
function was trained on MHC Class I data, while the other scoring function was trained on
Class II data. The training dataset for MHC Class I contained 357 epitopes, while the Class
II training dataset contained 713 epitopes. Equations (6) and (7) show the final scoring
functions with weights derived after training the probabilistic logistic regression model.
Equation (2) discusses what each variable in the scoring functions represents:

πMHCI
∗ = 2.311 + 0.893
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Abstract: Previous epitope-based cancer vaccines have focused on analyzing a limited number of 
mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively 
few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts 
are required to diversify the selection of mutated epitopes tailored to cancers with different genetic 
signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI 
software, capable of generating safe and immunogenic epitopes from missense mutations in any 
oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking 
method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell 
assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and 
running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting 
missense mutations found in the proto-oncogene PIK3CA, which encodes the p110ɑ catalytic subu-
nit of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread preva-
lence as an oncokinase across various cancer types and its lack of presence as a gene target in clinical 
trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I 
epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, 
we identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes 
targeting 11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we 
employed PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine 
population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 
81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further 
construct 3D models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope 
binding potential and TCR interactions. Future studies could aim to validate AutoEpiCollect’s vac-
cine design in murine models affected by PIK3CA-mutated or other mutated tumor cells located in 
various tissue types. AutoEpiCollect streamlines the preclinical vaccine development process, sav-
ing time for thorough testing of vaccinations in experimental trials. 

Keywords: epitope-based cancer vaccines; new GUI software; cancer vaccine design 
 

1. Introduction 
In silico vaccine designs provide a cost-effective method for identifying potential im-

munogenic epitopes prior to clinical testing. The development of these vaccine designs 
has been steadily increasing due to the ability of vaccines to safely boost the immune 
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+ 0.831δ− 0.096ε (7)

The equations above reveal that for the Class I scoring function, high immunogenicity
scores and high allergenicity scores lead to high epitope probabilities, while high proba-
bilities are assigned to Class II epitopes with low immunogenicity and low allergenicity
scores. High antigenicity values and low binding affinities are prioritized in both the Class
I and II probabilistic logistic regression scoring functions. The inconsistencies between the
Class I and II scoring functions are likely due to the different in silico tools used to calculate
the Class I and II immunogenicity and allergenicity training data. Next, we evaluated
the scoring functions through a 5-fold cross-validation process with a 70:30 training to
test set split using sklearn. The training and validation sets for the probabilistic logis-
tic regression models were slightly different than the linear regression sets. Instead of a
predicted probability, these datasets contained a straightforward binary value, indicating
whether an epitope elicited a T-cell response during experimental T-cell assays. Due to
this classification approach, AUC and overall dataset accuracy were chosen as the perfor-
mance metrics for the probabilistic logistic regression models. Our analysis revealed the
following performance metrics for the Class I scoring function: an accuracy of 0.76 and
an AUC of 0.73. The Class II scoring function exhibited slightly different performance
indicators, with an accuracy of 0.56 and an AUC of 0.62. Compared to the low R2 values
for the Class I and II linear regression scoring functions, the probabilistic logistic regression
scoring functions exhibited more robust performance metrics. As a result, we decided to
incorporate solely the MHC Class I and II probabilistic logistic regression scoring functions
into AutoEpiCollect’s epitope ranking algorithm.

3.4. Operating AutoEpiCollect’s Graphical User Interface

To operate the AutoEpiCollect GUI, users only need to input the target gene, relevant
point mutations with cancer subtypes, and desired collection options into the numbered
fields labeled in Figure 5. Moreover, users can add to existing epitope data to target addi-
tional point mutations. This is done by selecting the “Update Existing Data” option from
the dropdown menu in the area labeled 2 and inputting a .xlsx with a list of point mutations
and top epitopes previously output by AutoEpiCollect. There are a variety of epitope
characteristics to choose from when designing a pan-cancer vaccine using AutoEpiCollect.
These characteristics address the safety, stability, and immunogenic properties of the top
epitopes. Only the characteristics the user selects will be considered when designing the
vaccine. Population coverage analysis is also optional but recommended for further analy-
sis of the applicability of the final vaccine. At its completion, AutoEpiCollect will output
.xlsx files of final epitope data and population coverage results for a pan-cancer vaccine
containing the predicted immunogenic epitopes. The software’s progress can be monitored
through the output page shown in Figure 6. A complete and detailed installation/user
guide of AutoEpiCollectGUI can be found on the documentation website under the “About
this project” section at https://github.com/mvsamudrala/AutoEpiCollect (accessed on
2 February 2024).

https://github.com/mvsamudrala/AutoEpiCollect
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Figure 6. Output screen of AutoEpiCollect. The software’s progress is displayed in real time in
the textbox for the user to view. When the background program states that it is complete, the user
can click on the “Click for Output” button to display the top epitopes gathered by AutoEpiCollect.
Clicking the “Back” button returns the user to the home screen.

3.5. Top Immunogenic PIK3CA-Mutated Epitopes Identified by AutoEpiCollect

After analyzing 49 PIK3CA point mutations across five different cancer subtypes, we
received 361 potentially immunogenic MHC Class I epitope/HLA pairs and 219 MHC Class
II epitope/HLA pairs. Supplementary Tables S5–S14 show the unfiltered and unranked
MHC Class I and II epitope/HLA pairs by cancer subtype. Supplementary Tables S15 and
S16 detail the final lists of predicted immunogenic Class I and II epitopes by point mutation,
respectively. Table 6 presents an overview of the number of point mutations that generated
MHC Class I and II immunogenic epitopes. Certain point mutations led to the generation
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of both Class I and Class II epitopes, indicating that vaccines incorporating these epitopes
may elicit both CD8+ and CD4+ T-cell responses in patients.

Table 6. Number of point mutations containing immunogenic epitopes.

Cancer
Mutations with Class I

Predicted Immunogenic
Epitopes

Mutations with Class II
Predicted Immunogenic

Epitopes

Total Number
of Mutations

Analyzed

Mutations with Predicted
Immunogenic Class I and

II Epitopes

Colorectal
Adenocarcinoma

R38H, E542K, R1023Q,
M1043I, H1047R, E453Q, M1043I, H1047R 10 M1043I, H1047R

Breast Carcinoma

E542K, M1043I, H1047R,
E453K, E81K, G118D, S405P,

E542V, E545A, E545G,
Q546K, E726K, H1047L,

N1044K, G1049R

E453K, M1043I, H1047R,
H1047L,

N1044K, G1049R
21 E453K, M1043I, H1047R,

H1047L, N1044K, G1049R

Endometrial
Carcinoma

E542K, M1043I, H1047R,
E545G, E542Q, Y1021C,

H1047Y, G1050D,
T1052K, H1065L

M1043I, H1047R, H1047Y,
G1050D, T1052K 14 M1043I, H1047R, H1047Y,

G1050D, T1052K

Glioblastoma
Multiforme

E542K, M1043I, E453K,
E545A, Y1021C, H1047Y,

P298T, R310C, V344G,
T1025N, T1031G,
N1044S, G1049S

E453K, M1043I,
H1047Y, G1049S 17 E453K, M1043I,

H1047Y, G1049S

Meningioma H1047R, E110K, N345K,
I391M, E453K, G914R E453K, H1047R 9 E453K, H1047R

3.6. Pan-Cancer Population Coverage Results for MHC Class I and II Epitopes Calculated by
AutoEpiCollect

AutoEpiCollect calculated the world and regional population coverage for a pan-
cancer vaccine containing all the potentially immunogenic epitopes outlined in this study.
Supplementary Tables S19–S22 show the full filtered and optimized population coverages
and average hits for MHC Class I and II epitopes. The optimized lists of Class I and
II epitope/HLA pairs used to calculate the optimized population coverage results are
in Supplementary Tables S17 and S18, respectively. Furthermore, the filtered and opti-
mized MHC Class I and II population coverage graphs can be found in Supplementary
Figures S1–S4.

The world coverage for the Class I epitope dataset reached an optimized value of
98.09%, whereas the Class II dataset achieved an optimized coverage of 81.81%. Table 7
shows the world population coverage results for filtered and optimized epitope datasets.
Population coverage refers to the predicted percentage of the population who have HLA
alleles covered by the vaccine. The average epitope hit is the average number of epi-
tope/HLA combinations recognized by the population. PC90 refers to the minimum
number of epitope/HLA combinations recognized by 90% of the population. The Class I
data exhibited an average world and regional coverage of 88.92%, with Europe attaining
the highest coverage at 99.45% and Central America having the lowest at 7.76%. The Class
II data showed lower coverage, with an average world and regional coverage of 65.57%.
North America exhibited the highest coverage at 87.89%, while South Africa had the lowest
coverage at 32.1%. The optimized Class I dataset had an average of 3.82 epitope/HLA
combinations recognized by the world population and a minimum number of 2.02 epi-
tope/HLA combinations recognized by 90% of the world population. The optimized Class
II dataset had an average of 1.11 epitope HLA/combinations recognized and a minimum
number of 0.55 epitope/HLA combinations recognized by 90% of the world population.
When assessing the population coverage of MHC Class II epitopes and HLA pairs using
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the IEDB Population Coverage Analysis tool, the web tool did not identify certain HLA
alleles. These unaccounted alleles are detailed in Table 5.

Table 7. World population coverage results for Class I and II epitopes.

Calculation MHC Class I Filtered MHC Class I
Optimized MHC Class II Filtered MHC Class II

Optimized

Population Coverage 98.09% 98.09% 81.81% 81.81%

Average Epitope Hit 27.36 3.82 11.87 1.01

PC90 7.96 2.02 4.4 0.55

3.7. Three-Dimensional (3D) Peptide-HLA and Peptide-HLA-TCR Complex Interaction Results

Three peptide-HLA interactions were modeled through MDockPep using the HLA
template from the Swiss model: AHHGDWTTK binding to HLA-A*31:01, DWTTKMD-
WIFHTIKQ binding to HLA-DPA1*01:03/DPB1*02:01, and HGLQDLLNPIGVTGS binding
to HLA-DQA1*05:01/DQB1*03:01. The peptide-HLA models are shown in Figure 7, along
with their .pdb 3D-coordinate files located in the PDB Models folder within the Supple-
mentary Files. The corresponding HLA alleles and peptides were then bound to TCR
complexes through TCRmodel. The TCR α/β sequences corresponding to each HLA allele
are included in Supplementary Table S26.
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Figure 7. 3D models for peptide-HLA complexes of potentially immunogenic epitopes. MHC
Class I molecule HLA-A*31:01 interaction with endometrial carcinoma epitope AHHGDWTTK (A).
MHC Class II molecule HLA-DPA1*01:03/DPB1*02:01 interaction with endometrial carcinoma epi-
tope DWTTKMDWIFHTIKQ (B). MHC Class II molecule HLA-DQA1*05:01/DQB1*03:01 interaction
with colorectal adenocarcinoma epitope HGLQDLLNPIGVTGS (C). Red represents the peptide bound
to the yellow HLA allele. These three models show relatively linear peptide binding efficiently to the
grooves of the HLA allele.

The finalized peptide-HLA-TCR models, along with their corresponding .pdb 3D-
coordinates, are depicted in Figure 8 and can be found in the PDB Models folder within
the Supplementary Files. The MolProbity scores verifying the binding quality of each TCR
complex structure are located in Supplementary Tables S23–S25. Epitope AHHGDWTTK
bound to HLA-A*31:01 and its corresponding TCR complex had a clashing score of 0.71,
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resulting in less steric strain in the structure. MolProbity uses a reference set of high-
resolution protein structures to compare the input to and provides a Rama z-score that
represents how the structure deviates from the “gold standard” structures [51]. This
indicates that the protein overall is folded accurately, though it has Ramachandran outliers
that could result from unfavorable backbone or side-chain conformations, among other
issues. Ramachandran outliers can be removed by utilizing programs such as Phenix
that refine macromolecular structures [52]. Models B and C have optimal clashing scores,
Ramachandran outliers, favored residues, and Rama z-scores, indicating a stable structure
that has properly folded with minimal backbone and side-chain issues.
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Figure 8. HLA-A*31:01 interaction with peptide AHHGDWTTK and TCR receptor (A). HLA-
DPA1*01:03/DPB1*02:01 interaction with peptide DWTTKMDWIFHTIKQ and TCR receptor (B).
HLA-DQA1*05:01/DQB1*03:01 interaction with peptide HGLQDLLNPIGVTGS and TCR receptor (C).
Green represents the TCR complex α/β chains bound to its corresponding yellow HLA allele. Red
represents the peptide. Based on the models, we can see that peptide-HLA complexes bind effectively
to the TCR complexes.

4. Discussion

AutoEpiCollect was developed to accurately predict safe and potentially immunogenic
MHC Class I and II epitope sequences. This tool is specifically designed for the expedited
development of pan-cancer vaccines targeting any oncogene of interest. AutoEpiCollect
aims to accelerate the tedious task of epitope collection and analysis, with our vaccine
design ultimately allowing the validation of a greater number of pan-cancer vaccines in
clinical settings. Previous cancer vaccine designs subjected mutated epitopes targeting
one cancer subtype of interest to manual variable filtration based on a predetermined
set of exclusion criteria [6–10]. However, these methods are time-consuming and cannot
efficiently analyze a large set of mutated epitopes. It is crucial that vaccines are capable of
targeting a broad spectrum of mutations, since tumors mutate rapidly. We attempted to
mitigate this issue with our deep learning-based method, IntegralVac. While IntegralVac
is a powerful machine learning-based program that drastically increases the accuracy of
MHC Class I in silico predictions, it is missing a comprehensive Class II prediction feature.
This restricts the applicability of vaccines predicted with IntegralVac [11]. Stranzl et al.
also tried to improve upon individual variable filtration through a tool called NetCTL.
NetCTL identifies epitopes and ranks them according to their MHC Class I binding affinity,
Transporter Associated with Antigen Processing transport efficiency, and proteasomal
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cleavage [12]. Although this tool prioritizes the overall effectiveness of an epitope’s binding
affinity, transport, and ability to be broken down, it does not consider immunogenicity,
antigenicity, allergenicity, stability, and toxicity. These variables play a major role in
predicting whether or not an epitope will induce a strong immune response without
triggering an allergic reaction [29,30].

AutoEpiCollect’s mutated epitope selection process incorporates a combination of
machine learned-based ranking and individual variable filtration, as demonstrated by the
studies discussed above [6–12]. We subjected epitopes to a novel ranking system using
a probabilistic logistic regression model that was trained on experimentally validated
epitopes. Unlike a conventional binary logistic regression classification of immunogenic
or non-immunogenic, our model ranked epitopes with a probabilistic logistic regression
function based on the probability of triggering a safe immune response. This prioritization
is rooted in clinically relevant factors, including immunogenicity, antigenicity, allergenicity,
and binding affinity, all of which are crucial determinants for the safety and efficacy of
cancer vaccines [29,30]. The choice of a ranking algorithm over a classification approach
stems from the understanding that epitope selection is a nuanced process, ultimately
determined by researchers conducting clinical trials for vaccine testing. Instead of studying
a definitive set of epitopes, researchers can use the epitopes generated by AutoEpiCollect
as a starting point to identify the epitopes with the highest likelihood of eliciting an
immune response.

However, before finalizing the epitope ranking algorithm, we compared the perfor-
mances of linear regression scoring functions and probabilistic logistic regression scoring
functions to determine which regression model would be the best to incorporate into
AutoEpiCollect. The Class I and II linear regression scoring functions had R2 values of
0.060 and 0.028, respectively. The probabilistic logistic regression scoring function for Class
I epitopes performed at an accuracy of 76% (AUC = 0.73), while the function for Class II
epitopes performed at an accuracy of 56% (AUC = 0.62) with the test data. Based on these
metrics, we realized that the linear regression scoring functions were not viable for epitope
prediction. The low R2 values for the linear regression functions may be attributed to the
lack of experimentally procured epitope characteristics. The immunogenicity, antigenicity,
allergenicity, and binding affinity scores for each training data epitope are based on in
silico prediction tools that use the epitope’s peptide sequence in some way to calculate
scores. The training data from the IEDB solely reports experimentally validated T-cell
assay data. As a result, the training data matches up experimental T-cell data with virtual
epitope characteristics. In addition, we utilized DeepImmuno’s beta–binomial distribution
approach to compute the probability of an epitope eliciting a T-cell response based on the
number of successful and unsuccessful experimental T-cell assays [40]. This was done with
the hope of placing a higher priority on training data epitopes that elicited more positive
T-cell responses. However, this virtual computation combined with the virtual epitope
characteristics may have built-in inconsistencies within the training data for the linear
regression models, leading to a lack of fit for both the Class I and II scoring functions.

While the metrics for the probabilistic logistic regression scoring functions were a
significant improvement over the linear regression metrics, there were still some discrep-
ancies in accuracy observed between Class I and II epitopes. This can be traced back to
distinctions in the in silico prediction tools used for each class. Notably, we collected Class I
and II binding affinity, immunogenicity, and allergenicity epitope data from different tools,
leading to inherent differences in the training datasets. In essence, while operating within
the same program, the Class I and II training data collection processes are distinct tools,
and the discrepancy in model accuracy emerges from all the differences in the two data
collection approaches. In addition, IEDB’s CD4 Immunogenicity tool only calculates the
immunogenicity of 15mers peptides. Thus, we limited the training data to only 15mers
when training our Class II scoring function. This reduced diversity of the Class II training
dataset led to homogeneity, potentially contributing to lower model accuracy. Despite
these limitations, our ranking algorithm outputs the relative immunogenic potential of an
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epitope. This approach allows for a more flexible and informed selection process during
the early stages of vaccine development.

Following ranking, Class I and II epitopes underwent individual variable filtration
following the same process we previously used, based on half-life, instability, toxicity,
and IFN-γ release [6,7]. This filtration method relied on exclusion criteria rather than a
ranking system due to the crucial nature of these variables. The half-life and instability of
an epitope are indicative of the effectiveness of the elicited T-cell response. Regardless of an
epitope’s immunogenic ability, a low half-life and unstable nature will significantly decrease
the sustained immune response, necessitating higher doses and frequent administration.
Furthermore, higher doses may cause more potent side effects, contradicting one of the
primary objectives of this study. Toxicity and IFN-γ release predictions are binary variables,
each characterized as either positive or negative. Similar to half-life and instability, toxicity
is important when considering the potential side effects of vaccine administration. Our
decision to include solely non-toxic epitopes was driven by the imperative to establish
pan-cancer epitope-based vaccines as a powerful immunotherapeutic option for a diverse
patient population without compromising on tolerability. We took IFN-γ release predictions
into account for MHC Class II epitopes due to the fact that the IFNepitope server is only
trained on Class II data. Activated CD8+ T-cells, prompted by MHC Class I molecules,
spearhead the primary antitumor response, while CD4+ helper T-cells, activated by Class II
molecules, play a complementary role by enhancing and prolonging CD8+ effector function.
The secretion of IFN-γ by CD4+ T-cells triggers the expression of chemokines necessary
for recruiting CD8+ T-cells. Furthermore, CD4+ T-cells exhibit direct tumor suppression
through various IFN-γ functionalities. Consequently, MHC Class II epitopes capable
of inducing IFN-γ release prove instrumental in stimulating antitumor effects through
multiple mechanisms [53]. Considering this information, we decided to exclusively include
predicted IFN-γ-releasing Class II epitopes, aiming to amplify the immunogenic effects of
the vaccine.

After finalizing our ranking and individual filtration algorithms, as well as the rest
of AutoEpiCollect, we proceeded to test our machine learning-driven vaccine design on
a pan-cancer vaccine targeting a common oncogene. Our study focused on the PIK3CA
gene due to its pivotal role in the PI3K/Akt/mTOR intracellular signaling pathway, as
illustrated in Figure 4. This pathway governs vital cellular processes such as growth,
proliferation, and differentiation [50]. Mutations within the PIK3CA gene impact the p110
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catalytic subunit of the PI3K protein, disrupting the signaling pathway and leading to
immune disorders, cardiovascular diseases, and cancer in various tissue types [50]. After
inputting prevalent PIK3CA point mutations into AutoEpiCollect, we received Class I
epitopes targeting 34 mutations and Class II epitopes targeting 11 mutations from the total
49 mutations initially input. These Class I and II epitopes demonstrate predicted attributes
of robust immunogenicity, safety, stability, and IFN-γ release. Notably, 10 mutations yielded
overlapping epitopes for both MHC Class I and II, strengthening our vaccine design. This
overlap holds significant potential for eliciting heightened immunogenic responses by
activating both CD8+ cytotoxic T-cells and CD4+ helper T-cells. As illustrated in Figure 2
and Table 6, a substantial portion of the epitopes in the final datasets are directed at
mutations found in either the kinase or helical domain of the p110
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protein. These domains
are recognized as hotspot regions prone to prevalent gain-of-function mutations in the
PI3K kinase protein and underlie many different subtypes of cancer [12]. The targeting
of these hotspot regions by a large number of our final epitopes enhances our vaccine’s
utility and emphasizes its potential efficacy in addressing the major molecular drivers of
PIK3CA-mutated cancers.

Following the optimization of MHC Class I and II epitope datasets using PCOptim and
PCOptim-CD, AutoEpiCollect input the epitope/HLA allele pairs into IEDB’s Population
Coverage Analysis tool, resulting in world population coverages of 98.09% and 81.81%,
respectively. The high Class I epitope coverage underscores the potential for our PIK3CA
vaccine to impact various patients worldwide. In addition, it confirms that AutoEpiCollect’s
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epitope selection method generated an extensive dataset. However, both Class I and II
coverages are not uniformly distributed across regions. Population coverage is contingent
on the prevalence of specific HLA alleles in certain global regions and the corresponding
epitopes that they can bind to. Europe, North America, and East Asia demonstrated the
highest population coverages, since our predicted immunogenic epitopes bind to HLA
alleles common in these areas. In contrast, Central America exhibited lower population
coverages, at 7.76% for MHC Class I alleles and 49.91% for MHC Class II alleles. This
discrepancy arises from the tool’s limitation in accounting for the diverse array of HLA
alleles prevalent in Central America. Future vaccine designs might consider prioritizing
epitopes that bind to alleles prevalent in regions historically characterized by low coverage,
thereby maximizing the vaccine’s applicability. Before calculating population coverage for
the Class II dataset, many epitope/HLA allele pairs had to be excluded due to constraints
within IEDB’s allele dataset. These excluded alleles are detailed in Table 4. As a result, the
population coverage for Class II epitope/HLA allele pairs was based on a restricted dataset
and may not accurately reflect the coverage that would be attained with the inclusion of all
potentially immunogenic epitope/HLA allele pairs.

We modeled the interactions between three top peptides, HLA alleles, and T-cell recep-
tors through TCRmodel and input them into MolProbity to analyze the overall structures.
Additionally, we conducted a Ramachandran plot analysis to determine the Ramachandran
favored and outlier regions along with the Rama z-score. Ramachandra plot analysis is
a representation of the dihedral angles of each amino acid residue. Both phi (Φ) and psi
(ψ) dihedral angle combinations were analyzed to determine Ramachandran favored and
outlier regions [54]. Shown in Supplemental Tables S23–S25, Models B and C had ideal
Ramachandran favored and outlier regions of less than 0.05% and greater than 98%, illus-
trating energetically favored dihedral angle combinations. Model A had a slightly higher
amount of dihedral angle combinations that were energetically unfavorable. However,
since the absolute value of the Rama z-score for all three models met the goal of less than 2,
this demonstrated that no significant structural issues were present and that the proteins
were properly folded. Furthermore, all models had an optimal clashing score at the 90th
percentile or higher. Analyzing the structure through MolProbity not only allows for a more
accurate assessment of the structure but also allows for greater precision when correcting
issues related to the backbone or sidechain of the structure through the use of refinement
and energy minimization software [55].

Looking at the binding affinity, immunogenicity, and antigenicity of the final PIK3CA
Class I and II epitopes, we can see that the top-ranked epitopes are characterized by strong
binders with high immunogenic and antigenic potential. Therefore, AutoEpiCollect’s
pan-cancer epitope-based vaccine design is predicted to elicit a strong, sustained immune
response in patients with PIK3CA-mutated cancer cells. In addition, the high world
population coverage for Class I epitopes shows that our pan-cancer vaccine has the potential
to impact a large percentage of the population. These results support the applicability
of AutoEpiCollect in developing the starting point for a pan-cancer vaccine, drastically
reducing the time it takes it obtain epitopes for in vitro or in vivo studies. However, while
AutoEpiCollect is a powerful tool for developing a pan-cancer vaccine, it ultimately cannot
replace results validated by experimental or clinical data. AutoEpiCollect and our PIK3CA
pan-cancer vaccine data should be used in future murine model trials to test the efficacy of
our novel vaccine design and strengthen future epitope selection methods.

5. Limitations

AutoEpiCollect produced ranked Class I and II epitopes through a probabilistic logistic
regression scoring function. While the Class I function demonstrated relatively high rates
of accuracy at 76%, the Class II function had a significantly lower rate of 56%, due to
epitope size constraints placed by in silico tools when collecting the training data. The
model was ultimately trained based on limited experimental T-cell assays that were filtered
to only include 15mers. This contributed to a lower diversity, as a significant portion of
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training data epitopes were removed. The lack of experimental data was also an issue
when training the linear regression scoring functions, leading to low R2 values. Another
limitation that affected the Class II dataset was the set of HLA alleles unaccounted for by
IEDB’s population coverage analysis tool. Many of the top Class II epitopes output by
AutoEpiCollect were restricted by the HLA alleles shown in Table 4. As a result, they were
not included in the Class II population coverage analysis, leading to an underestimated
world population coverage of 81.81%.

As our study also primarily focused on missense point mutations, the epitopes chosen
only included a small portion of mutations. Mutations such as frameshift and deletion
mutations were not considered in AutoEpiCollect. However, as mutations in the PIK3CA
gene generally result in mosaicism or missense mutations in somatic cells, the software
we created allows for the most common type of mutation to be targeted [56]. As we only
focused on one particular gene to determine the quality and accuracy of AutoEpiCollect, it
assumes homogeneity across different cancer types.

With the epitopes derived from point mutations prevalent in our targeted cancer
populations, we identified three top epitopes to model the interaction between the epitopes,
HLA alleles, and T-cell receptors. All interactions portrayed energetically favored contribu-
tions with minimal clashes, excluding model A. The scores of these interactions are shown
in Supplemental Tables S23–S25. Though model A was properly folded overall, it had
less than optimal Ramachandran outlier regions. These regions demonstrate energetically
unfavorable dihedral angle combinations, contributing to a slightly weakened backbone.
To address this issue, macromolecular refinement software, such as Phenix, can be utilized,
along with energy minimization software [52]. Analysis of these structures in MolProbity
allows for more precise refinement. Moreover, it is crucial to highlight that modeling
of the interactions between HLA alleles, epitopes, and T-cell receptors cannot accurately
illustrate actual interactions within patients. With heterogeneity across different cancers
and immune systems, in vitro and in vivo studies would need to be performed to reveal
authentic interactions.

6. Future Directions

AutoEpiCollect’s scoring functions rank epitopes based on experimentally validated
T-cell data and in silico prediction tools for epitope characteristics. While probabilistic
logistic regression scoring functions aim to leave final epitope selection up to researchers
designing their own experimental studies, it is important to improve the accuracy of the
overall model using updated experimental data. We plan to revamp the MHC Class I and
II scoring functions solely with experimentally validated training data. Our goal is to boost
the accuracy of the models to above 90%. In addition, we want to expand AutoEpiCollect’s
capabilities to include other types of gene mutations such as deletions and insertions.
Although these mutations are uncommon in PIK3CA, they could be prevalent in other
common oncogenes. Adding this capability would significantly increase the applicability
of AutoEpiCollect and widen the number of potential cancer types.

The next step for validating AutoEpiCollect’s vaccine design process is through murine
trials. Therefore, we will incorporate epitope selection methods targeting murine MHC
molecules and oncogenes. This includes adding extra options to AutoEpiCollect’s GUI for
users to toggle between human and murine epitope selection. These murine feasibility
procedures will allow researchers to administer an intravenous (IV) vaccine containing the
top predicted immunogenic epitopes. Our ultimate goals are to directly apply and validate
AutoEpiCollect’s capabilities on the next steps of vaccine development.

7. Conclusions

This study aimed to develop a novel, machine learning-driven vaccine design using
our GUI automation software, AutoEpiCollect. Our software automatically gathers MHC
Class I and II epitopes and outputs a list of top immunogenic epitopes with the use of
a novel probabilistic logistic regression scoring function. With the implementation of
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AutoEpiCollect, pre-clinical processes of epitope collection can be significantly streamlined,
allowing more resources to be allocated toward gathering clinical data for cancer vaccines.
These clinical data can facilitate the advancement of precision oncology by targeting the
underlying mutated genetic signatures of cancer, instead of solely the symptoms. Along
with the potential to be used in combination with conventional therapies to overcome
tumor resistance mechanisms, AutoEpiCollect’s epitope pan-cancer vaccines are applicable
on a global scale for early disease intervention. Our automated epitope selection software
is an invaluable step for the development of future precision oncology treatments and
cancer prevention.

We tested AutoEpiCollect’s pan-cancer vaccine design on common cancers containing
prevalent PIK3CA mutations. Previous cancer vaccines targeting the PIK3CA gene primar-
ily target small sets of missense mutations, thus reducing the scope and efficiency of the
vaccine [1–5]. Therefore, no clinical trials have been conducted with pan-cancer vaccines
targeting the PIK3CA gene. However, AutoEpiCollect aims to strengthen the efficacy of a
pan-cancer vaccine by collecting missense mutations and ranking a large set of epitopes.
After inputting 49 point mutations into AutoEpiCollect, we found MHC Class I epitopes
targeting 34 of these mutations and MHC Class II epitopes targeting 11 mutations. Both
Class I and II epitopes were ranked based on immunogenicity, antigenicity, allergenicity,
and binding affinity and were subsequently filtered based on other clinically relevant pa-
rameters. Optimized Class I epitopes resulted in 98.09% world population coverage, while
optimized Class II epitopes resulted in 81.81% world population coverage. This indicates
that AutoEpiCollect’s pan-cancer vaccine design was able to generate a widely applicable
vaccine for Class I epitopes. Due to the HLA allele constraints of the IEDB population
coverage analysis tool, further analysis must be done to validate the world coverage of
Class II epitope/HLA combinations. Modeled interactions of peptides, HLA alleles, and
T-cell receptors from Figure 8 were analyzed with MolProbity to demonstrate properly
folded structures with minimal clashing.

One challenge when developing AutoEpiCollect’s vaccine design process was when
collecting training data for the Class II scoring function. The lack of available experimental
data for 15mers epitopes significantly decreased the variety of epitopes used to train the
function; as a result, the accuracy for the Class II scoring function was 56% (AUC = 0.62)
when implemented on the test data. To address this issue, more experimental data and
alternative in silico tools will be explored that include predictions for non-15mers epitopes.
This will expand the size and diversity of the Class II scoring function training dataset,
potentially leading to higher model accuracies. Epitope selection is a complex process that
requires a more holistic and nuanced approach. The future architecture of AutoEpiCollect’s
epitope selection algorithm will include a deep learning framework that considers a vast
number of epitope characteristics before predicting top epitopes. The deep learning model
will be able to handle more complex experimental training data as well, thereby represent-
ing a wider range of gold-standard epitopes for a cancer vaccine. These improvements
to the selection algorithm are intended to increase confidence in using in silico methods
among future clinical researchers when conducting experimental cancer vaccine trials.

AutoEpiCollect is a comprehensive Python-based GUI application. To access the instal-
lation and user guide, please visit this project’s GitHub repository at https://github.com/
mvsamudrala/AutoEpiCollect (accessed on 2 February 2024) and click on the link provided
below the “About this project” section. This guide will provide detailed instructions on
how to install and operate AutoEpiCollect.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering11040322/s1, Supplementary Tables S1–S4.
These tables include the training data for the linear regression and logistic regression MHC Class I and
II scoring functions. Supplementary Tables S5–S9. These tables include the unfiltered and unranked
MHC Class I epitope/HLA allele data for each cancer type. Supplementary Tables S10–S14. These
tables include the unfiltered and unranked MHC Class II epitope/HLA allele data for each cancer
type. Supplementary Tables S15 and S16. These tables include the final lists of top filtered and ranked
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MHC Class I and II epitope/HLA allele data by point mutation. Supplementary Tables S17 and S18.
These tables include the MHC Class I and II epitopes used to find the optimized population coverage.
Supplementary Table S19 and S20. These tables include the filtered and optimized population cover-
ages for MHC Class I epitope/HLA combinations. Supplementary Table S21 and S22. These tables
include the filtered and optimized population coverages for MHC Class II epitope/HLA combina-
tions. Supplementary Table S23–S25. These tables include the MolProbity results for the 3D models
of predicted immunogenic peptide–MHC complexes bound to TCR complexes. Supplementary
Table S26. This table includes the TCR α/β sequences of the TCR complexes bound to predicted
immunogenic peptide–MHC complexes. Supplementary Figure S1. Population coverage graphs for
the filtered MHC Class I final epitope data. Supplementary Figure S2. Population coverage graphs for
the optimized MHC Class I final epitope data. Supplementary Figure S3. Population coverage graphs
for the filtered MHC Class II final epitope data. Supplementary Figure S4. Population coverage
graphs for the optimized MHC Class II final epitope data. Supplementary Files 3D coordinate PDB
Files of 3D pMHC-TCR Models.
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