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Abstract: This study develops a 7-layer Long Short-Term Memory (LSTM) model to enhance early di-
abetes detection in Oman, aligning with the theme of ‘Artificial Intelligence in Healthcare’. The model
focuses on addressing the increasing prevalence of Type 2 diabetes, projected to impact 23.8% of
Oman’s population by 2050. It employs LSTM neural networks to manage factors contributing
to this rise, including obesity and genetic predispositions, and aims to bridge the gap in public
health awareness and prevention. The model’s performance is evaluated through various metrics.
It achieves an accuracy of 99.40%, specificity and sensitivity of 100% for positive cases, a recall of
99.34% for negative cases, an F1 score of 96.24%, and an AUC score of 94.51%. These metrics indicate
the model’s capability in diabetes detection. The implementation of this LSTM model in Oman’s
healthcare system is proposed to enhance early detection and prevention of diabetes. This approach
reflects an application of AI in addressing a significant health concern, with potential implications for
similar healthcare challenges relating to globally diagnostic capabilities, representing a significant
leap forward in healthcare technology in Oman.

Keywords: artificial intelligence; LSTM; diabetes prediction; predictive healthcare; Oman; early
detection; public health

1. Introduction

The integration of deep learning technologies into healthcare marks a pivotal shift
in the landscape of medical diagnostics, particularly in the realm of chronic metabolic
disorders like diabetes. Long Short-Term Memory (LSTM) networks, a form of recurrent
neural networks, have emerged as a significant innovation in this area, offering new
possibilities for early detection and management of diabetes [1].

This study centres on the development and implementation of a novel 7-layer LSTM
model, specifically tailored for diabetes prediction. This model represents a significant
advancement in the application of deep learning for medical diagnostics, combining com-
putational intelligence with clinical insights to create a tool of remarkable accuracy and
efficiency [2].

The current research in medical diagnostics and LSTM applications reflects a growing
interest in predictive healthcare analytics. Previous studies, including our own work on a
prediction model for Type 2 Diabetes Mellitus in Oman using artificial neural networks
and machine learning classifiers, have laid the groundwork for this research [3]. Another
notable contribution in this field is our exploration of a 4D CNN model for Type 2 Diabetes
screening in Oman, which shares the same dataset and pre-processing methods as the
current study [4].
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Despite the promising developments in this field, there are still diverging views and
challenges to be addressed, particularly in the adaptation and optimization of LSTM models
for specific medical applications. This study aims to contribute to this evolving field by
providing a detailed analysis of the 7-layer LSTM model, focusing on its architecture, data
preparation, training dynamics, and performance evaluation.

In summary, this paper not only delves into the technical aspects of LSTM models but
also highlights their potential in revolutionizing diabetes prediction and screening, thereby
enhancing healthcare outcomes. Our findings underscore the importance of advanced
computational models in medical diagnostics and their role in ushering in a new era of
enhanced disease management and patient care.

2. Related Studies

The integration of deep learning technologies, particularly Long Short-Term Memory
(LSTM) networks, into healthcare diagnostics represents a significant advancement in the
management of chronic disorders such as diabetes. This study investigates the application of
LSTM networks in the early detection and management of diabetes, with a focus on a 7-layer
LSTM model designed for this purpose. The model aims to process complex patient data
effectively and identify crucial temporal patterns essential for accurate diabetes prediction.

The initial development in the application of LSTM models for diabetes prediction
was marked by the work of Massaro et al. [5], who emphasized the importance of tailored
data handling for enhanced model performance. This foundational study set the stage for
subsequent research in the field. Following this, Rahman et al. [6] employed a Conv-LSTM
model, achieving notable accuracy using the Pima Indians Diabetes Database (PIDD). Their
study was pivotal for its sophisticated model and optimization of various parameters,
setting a new standard in LSTM applications for diabetes prediction.

Bharath Kumar and Udaya Kumar [7] further advanced the field by reporting high
accuracy with their Convolutional LSTM model. This model indicated the potential of
LSTM in the early detection and diagnosis of diabetes. Rochman et al. [8] took a comparative
approach, analysing LSTM against Gated Recurrent Unit (GRU) models. Their study
highlighted the nuanced differences between these architectures, contributing to a better
understanding of their respective strengths and limitations in diabetes prediction.

The evolution of LSTM in diabetes prediction also included the exploration of BiLSTM
networks by Yang et al. [9], incorporating an attention mechanism and achieving significant
precision and recall rates. Alex et al. [10] addressed the challenge of class imbalance
in medical datasets by introducing a SMOTE-based deep LSTM model, achieving high
precision and recall rates.

Arora et al. [11] showcased LSTM’s strength in analysing time-series data by fore-
casting diabetes progression using Continuous Glucose Monitoring data. Butt et al. [12]
optimized an LSTM model for diabetes forecasting, comparing it favourably with other
algorithms and reporting high accuracy. F. Iacono et al. [13] introduced personalized LSTM
models for Type 1 diabetes prediction, employing the UVA/Padova simulator and focusing
on modelling intra-day glucose variability and insulin sensitivity.

Srinivasu et al. [14] undertook a study to predict Type-2 Diabetes using LSTM within
an RNN framework, focusing on genomic and tabular data. Despite the study’s relevance
in chronic disease management, it encounters several limitations, including dataset size,
architecture details, and comprehensive performance evaluation. Lastly, Jaiswal and
Gupta [15] reported high accuracy with a Bi-directional LSTM model, emphasizing the
robustness of LSTM models in capturing temporal relationships.

However, while recent research in diabetes prediction using LSTM models has shown
promising advancements, critical gaps and areas for critique must be acknowledged and
addressed. A significant concern arises from the heavy reliance on specific datasets such as
the PIDD in studies by Rahman et al. [6], Jaiswal and Gupta [15], and Srinivasa et al. [14].
This reliance raises questions about the applicability of the developed models to diverse
populations, potentially limiting their effectiveness.
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Model complexity and real-time applications are also significant challenges. Studies
like those conducted by Yang et al. [9], Alex et al. [10], and Srinivasa et al. [14] highlight the
computational intensity of LSTM models. This complexity poses significant challenges for
real-time deployment in clinical settings, where swift decision-making is crucial.

Generalizability issues are a notable concern in studies like Arora et al. [11] and
Srinivasa et al. [14]. The effectiveness of the models developed in these studies across
different diabetes types and demographic groups remains untested, raising questions about
their broader applicability.

Many studies, including some referenced in this review, predominantly focus on
binary classification. This approach does not fully address the complex spectrum of
diabetes conditions and stages, potentially limiting the models’ clinical utility [7].

Techniques like the Synthetic Minority Over-sampling Technique (SMOTE), as em-
ployed in the study by Alex et al. [10] and Srinivasu et al. [14], address class imbalance.
However, they may introduce synthetic biases that could affect the real-world applicability
and fairness of the models.

The absence of multi-class classification models in some studies, including Srinivasu
et al. [14], limits the ability to address more complex diabetes scenarios that involve multiple
classes or stages of the disease [8].

The effectiveness of LSTM models is heavily reliant on precise data pre-processing.
However, in practical healthcare scenarios, achieving accurate data pre-processing may not
always be feasible or attainable [15].

While personalized models, such as those presented by Iacono et al. [13], demonstrate
potential, they often rely on simulated data. This reliance may not fully capture the variability
and complexity of real-world patient data, raising questions about their real-world applicability.

Addressing these critical gaps and challenges is imperative for advancing predictive
models in healthcare. While LSTM models have shown promise in diabetes prediction, there
are significant areas for improvement. Expanding dataset diversity, exploring multi-class
classification, and addressing computational challenges are essential steps. The proposed
7-layer LSTM model with high accuracy effectively addresses these gaps. However, it must
also focus on optimizing computational efficiency and validation across diverse datasets,
representing different demographics and diabetes types. This model holds promise in
advancing predictive modelling for diabetes, aligning with the current need for more
advanced, efficient, and diverse LSTM applications in healthcare and potentially setting a
new benchmark in the predictive modelling of diabetes.

3. Materials and Methods

This section details the methodology behind the development of a 7-layer Long Short-
Term Memory (LSTM) model, focusing on its architectural design, data processing, and
evaluation metrics for diabetes prediction. The model’s development, illustrated in Figure 1,
highlights its structural design and operational workflow.
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The Oman Screening Dataset serves as the cornerstone of our research into early dia-
betes prediction within the Sultanate of Oman. In this section, we provide a comprehensive
overview of this dataset, shedding light on its origins, features, collection process, inclusion
criteria, and its direct relevance to Oman.

3.1. The Oman Screening Dataset

The dataset encompasses 13,224 individual records, each detailed with 13 essential
variables that were carefully chosen based on their relevance to diabetes risk assessment.
These variables include demographic information (such as age and gender), anthropometric
measurements (including weight, height, Body Mass Index [BMI], and Waist Circumference
[WC]), clinical indicators (Total Cholesterol [T_Cholesterol], Blood Pressure [BP], Random
Plasma Glucose [RPG], Fasting Plasma Glucose [FPG]), and historical data on family and
personal history of diabetes. The inclusion criteria targeted individuals aged 20 years and
above, specifically excluding those with prior diabetes diagnoses or who had undergone
recent screenings, to focus the research on at-risk populations.

The dataset’s collection and validation processes were carried out with high precision
and ethical rigor, obtaining necessary approvals and following guidelines to ensure data
integrity and participant confidentiality. The collaboration with local healthcare experts
and institutions not only enriched the dataset but also ensured its alignment with the health
context and needs of Oman [4].

To elucidate the dataset’s insights, visual analytical tools were employed. A heatmap
in Figure 1 visually represents the prevalence and distribution of various risk factors
across the dataset, highlighting particularly the impact of obesity-related conditions. Ad-
ditionally, a kernel density plot in Figure 2 focuses on the age distribution within the
dataset, pinpointing the age group most at risk for diabetes. These figures are instrumental
in providing a clear visual interpretation of the data, supporting the research findings
and recommendations.
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The visual tools of the heatmap and kernel density plot reveal critical insights. The
heatmap shows a lower occurrence of ‘RiskFactor’ conditions compared to ‘BMIcondition’
and ‘WCcondition’, emphasizing the prevalence of obesity-related conditions. The kernel
density plot indicates a concentration of individuals within a specific age range, guiding
focus onto the age group most at risk.

3.2. Model Architecture

The 7-layer Long Short-Term Memory (LSTM) model, illustrated in Figure 3, is de-
signed to meticulously process sequences of data reflective of the dynamic and complex
nature typical of datasets related to diabetes. This sophisticated architecture plays a pivotal
role in accurately capturing and predicting the intricate patterns and trends inherent in
the data.
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The architecture initiates with a sequence input layer responsible for the normalization
of a diverse array of input variables. By converting disparate data points into a standardized
sequence format, this layer facilitates the effective processing of data through the model’s
subsequent LSTM layers. The primary inputs to the model encompass a suite of 12 features,
including demographic information (Age, Gender Encoded), anthropometric measure-
ments (Weight, Height, BMI, Waist Circumference [WC]), and clinical indicators (Total
Cholesterol [T_Cholesterol], Blood Pressure [BP], Random Plasma Glucose [RPG], Fasting
Plasma Glucose [FPG], Family History [FH], and Personal History [PH]). These features
have been meticulously selected for their direct relevance to diabetes risk assessment.

To illustrate the model’s input and output process, consider a patient profile character-
ized by the following: Age = 45 years, Gender = Female, Weight = 74.5 kg, Height = 158.5 cm,
BMI = 29.6, WC = 85 cm, T_Cholesterol = 4.5 mg/dL, BP = 87 mmHg, RPG = 11.6 mmol/L,
FPG = 7.2 mmol/L, with a positive family history of diabetes (FH = 2) and a personal
history of diabetes (PH = 1). After normalization, these inputs are processed through the
model’s layers, culminating in a probabilistic score that reflects the patient’s diabetes risk.

In addition to these primary inputs, three derived conditions, identified as 13 (BMI
Condition), 14 (WC Condition), and 15 (Risk Factor) in Figure 1, are calculated based on
the inputs’ values to bolster the model’s predictive precision. The BMI and WC conditions
are encoded according to predefined health risk thresholds, whereas the Risk Factor is a
composite measure derived from the clinical indicators, offering a comprehensive view of
the patient’s overall diabetes risk.

Subsequent to the sequence input layer, the model features five LSTM layers, each
comprising 20 hidden units. This neural network variant is adept at learning and retaining
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long-term dependencies, crucial for deciphering the temporal sequences and patterns that
signal diabetes risk.

The hidden units within these layers are key to identifying subtle data variations,
indicative of emergent trends or health risks [16,17]. The model is deliberately designed to
mitigate overfitting, ensuring robust generalization to new, unseen data while retaining the
ability to learn from the training dataset.

Normalization steps interspersed between the LSTM layers are vital for training
stability, standardizing the outputs from one layer before they proceed to the next. This
process addresses potential scale and range discrepancies, fostering a smooth learning
progression [18,19].

Concluding the architecture are a fully connected layer and a regression layer, which
collectively refine the prediction of the outcome variable through mean-squared error loss
computation. The thoughtful configuration of the model, including the number of hidden
units, normalization type, and layer configuration, is tailored to the dataset’s specificities
and the predictive task at hand. Continuous model monitoring during training is crucial to
avert overfitting [20] and for hyperparameter adjustments as necessary.

Applicable to an array of machine learning endeavours beyond diabetes prediction,
this model’s capability of analysing sequential and time-series data renders it suitable for
varied tasks like language modelling, stock-market forecasting, and activity recognition.

The model’s depth and complexity enable the extraction of high-level abstract data
features, although its training demands significant computational resources. Proper initial-
ization and optimization techniques can mitigate the risks of vanishing or exploding gradi-
ents, underscoring the model’s powerful utility in generating accurate predictions from
complex, temporal data. Its architecture, robust and adaptable, is poised to significantly
contribute across a wide spectrum of applications where time dimension understanding
is paramount.

3.3. Data Transformation and Preparation

Optimal functionality of the LSTM model is contingent upon thorough data prepara-
tion. MATLAB’s robust capabilities are harnessed to undergo a rigorous pre-processing pro-
tocol. This stage involves an assessment of missing data and the employment of a K-nearest
neighbours (KNN) imputation method, which is specifically designed for diabetes-related
datasets [21]. The effectiveness of this approach is corroborated by comparing it with
alternative imputation techniques, ensuring the dataset is ideally conditioned for LSTM
processing. These enhancements are built upon methodologies established in preceding
research [4], laying a solid groundwork for our predictive modelling pursuits.

The data loading process involves importing a range of variables from a pre-processed
dataset, where each variable is carefully vetted for missing values. The KNN imputation
fills these gaps, drawing from the patterns inherent within the data. The processing phase
then transforms the data into an array, categorizing the ‘Outcome’ variable for the LSTM’s
use. Subsequent pre-processing steps include outlier removal and the encoding of risk
factors, such as abnormal glucose levels and high blood pressure, into the dataset.

Statistical measures like mean, standard deviation, skewness, and kurtosis are computed
to understand the data’s distribution, further informing the pre-processing strategy. Fea-
tures are processed into categorical groups—such as age groups and BMI categories—then
converted into numerical arrays to be incorporated into the LSTM model.

The dataset is divided into training, validation, and test sets, with the training data
transformed into a sequence format suitable for the LSTM. This transformation is critical
for capturing the temporal dependencies essential for accurate predictions.

3.4. Model Training Dynamics

The LSTM model’s training regimen is characterized by the careful calibration of
several key parameters. The number of epochs, the size of the mini-batches, and the
learning rate are all optimized to enhance the model’s learning trajectory. The Adam
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optimizer [19] is selected for its effectiveness in managing sparse gradients within large
datasets. Additionally, a gradient threshold is established to prevent gradient explosion—a
common obstacle in deep neural network training.

The model’s architecture, with its sequence input layer, LSTM layers, normalization
layers, and a fully connected layer leading to a regression layer, is meticulously structured
to capture the complex relationships within the data. Training options such as epoch count,
batch size, and learning rate are meticulously set to strike a balance between adequate
learning and overfitting avoidance.

By adopting these training dynamics, the LSTM model is meticulously tuned to
process and learn from the dataset, with the ultimate goal of accurately predicting diabetic
outcomes. The model’s training is underpinned by a rigorous approach that ensures
stability and precision throughout the learning process, marking a significant step toward
reliable diabetic prediction using deep learning.

3.5. Performance Evaluation and Metrics

The efficacy of the model is stringently assessed through an array of metrics, namely ac-
curacy [22], precision [23], recall [24], F1 score [25], and the Receiver Operating Characteristic–
Area Under Curve (ROC-AUC) value [26]. These metrics furnish a holistic view of the model’s
predictive capabilities. The ROC curve, in particular, serves as a graphical representation of
the model’s skill in differentiating between diabetic and non-diabetic cases. The AUC value
further quantifies the model’s discriminative power between these two categories.

The inception, refinement, and validation of this LSTM model underscore the signifi-
cant potential and hurdles associated with the application of advanced machine learning
techniques in the domain of healthcare diagnostics. The model’s notable accuracy in
diabetes prediction underscores its utility as a diagnostic tool and encourages ongoing
exploration into disease prediction utilizing more sophisticated machine learning models.

In a specific example utilizing patient data, the input for the sequence input layer
is organized as a sequence array from the patient’s data points: (GenderEncoded, Age,
Weight, Height, BMI, Waist Circumference (WC), Total Cholesterol, Blood Pressure (BP),
Random Plasma Glucose (RPG), Fasting Plasma Glucose (FPG), Family History (FH),
Personal History (PH)). These values are normalized and processed through the LSTM
layers for pattern recognition and risk evaluation. The model’s output, post-analysis, offers
a predictive score that delineates the patient’s likelihood of being diabetic or non-diabetic.
This score, alongside the aforementioned evaluation metrics, is instrumental in gauging
the model’s precision and dependability.

4. Model Evaluation and Results

The performance evaluation of our 7-layer Long Short-Term Memory (LSTM) model
in diabetes prediction involves an in-depth analysis of several key statistical metrics.
Understanding what each of these metrics represents is crucial in gauging the model’s
effectiveness, particularly in a clinical diagnostic setting.

4.1. Analysis of the Confusion Matrix and Model’s Predictive Power

The confusion matrix, an essential tool in evaluating the performance of classification
models, provides valuable insights into the model’s predictive power [27]. Table 1 presents
a confusion matrix comparing actual and predicted classifications for diabetic and non-
diabetic cases.

Table 1. Confusion Matrix.

Actual vs. Predicted Non-Diabetic (0) Diabetic (1)

Non-Diabetic (0) 2424 0
Diabetic (1) 16 205
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(a) Specificity (100%): specificity measures the model’s accuracy in identifying non-
diabetic cases. It reaches a perfect 100%, indicating that the model correctly identifies
all non-diabetic cases. The absence of false positives underscores the model’s precision
and accuracy. In practical terms, this means that no individual without diabetes is
incorrectly diagnosed as diabetic.

(b) Precision (100%): precision assesses the model’s accuracy in predicting diabetic cases,
with a rate of 100%. This exceptional precision minimizes the chances of false diabetic
diagnoses. When the model predicts a positive case (diabetes), it is incredibly accurate,
ensuring that individuals identified as diabetic are highly likely to have the condition.

(c) Recall (Sensitivity) (100% for Positive Class, 99.34% for Negative Class): recall eval-
uates the model’s ability to detect actual diabetic cases. High recall rates ensure
comprehensive patient care and minimize missed diagnoses. Specifically, for the
positive class (diabetic cases), the recall rate is 100%, meaning the model correctly
identifies all diabetic individuals. For the negative class (non-diabetic cases), the recall
rate is 99.34%, indicating that the model successfully identifies the vast majority of
non-diabetic individuals.

(d) F1 Score (96.24%): the F1 Score harmonizes precision and recall, signifying a strong
balance between identifying diabetic cases accurately and minimizing false posi-
tives. This balanced metric is particularly important in medical diagnostics, where
both false positives and false negatives can have significant consequences. The F1
Score of 96.24% demonstrates the model’s ability to achieve both high precision and
recall simultaneously.

(e) Accuracy (99.40%): the high accuracy rate reflects the model’s reliability in disease
classification. An accuracy of 99.40% means that the model correctly classifies nearly all
cases (both diabetic and non-diabetic), making it an effective tool for diabetes prediction.

4.2. Remaining Performance Metrics

(f) AUC (94.51%): the ROC (Receiver Operating Characteristic) curve, as depicted in
Figure 4, illustrates the model’s ability to differentiate between diabetic and non-
diabetic classes across various thresholds. The high AUC value of 94.51% signifies
superior discriminatory power, a vital characteristic for accurate classification in medi-
cal diagnostics. A high AUC value means that the model is excellent at distinguishing
between individuals with diabetes and those without.
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(g) The LSTM Model Training Dynamics and Efficiency: the dynamics of the LSTM
model’s training process are encapsulated in Figure 5, which presents a detailed view
of the Root Mean Square Error (RMSE) and loss throughout the training iterations [28].
The model’s RMSE initially shows a steep decline, reflecting a quick and significant
learning phase. This rapid improvement stabilizes as the training progresses, which
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is expected behaviour as the model begins to converge. The final-validation RMSE
value stands at an impressive 0.36679, pointing to the model’s high level of prediction
accuracy. Complementary to the RMSE, the loss metrics plotted over the same itera-
tion span show a similar trend—initially decreasing sharply before plateauing. The
alignment between the training and validation loss indicates the model’s successful
generalization, suggesting it can reliably extend its predictions to unseen data without
significant overfitting.
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The efficiency of the model’s training is also noteworthy, with the entire process being
completed in just 59 s on a single CPU. This swift training time is particularly advantageous
in medical settings where quick model deployment is crucial. When considered alongside
the AUC of 94.51%, previously discussed, it becomes clear that the LSTM model is not only
quick to train but also offers a high degree of precision, essential for medical diagnostic
applications where accurate and timely predictions can be critical.

(h) Alpha Values Assessment: In further examining the LSTM model’s performance,
particular attention was given to the “Alpha” values [29], which signify the model’s
internal class-weighting mechanism. These values critically influence the balance
between sensitivity (true positive rate) and specificity (true negative rate), affecting
overall predictive performance.

• For non-diabetic (0): Alpha = 1. This allocation signals the model’s emphasis
on accurately identifying non-diabetic instances, aiming to eliminate false posi-
tives. Such prioritization is vital to prevent misdiagnosis, avoiding unnecessary
intervention for those incorrectly identified as diabetic.

• For diabetic (1): Alpha = 0. This setting suggests a strategic decision to adjust the
model’s focus. It does not imply a neglect of diabetic case detection, but rather
reflects a calibrated approach to optimize overall performance. This may address
specific challenges like dataset imbalance or the objective of achieving a balanced
sensitivity and specificity, ensuring that the model remains highly effective while
minimizing potential misclassifications.

The implementation of distinct Alpha values for each class underscores the model’s
sophisticated approach to managing diagnostic complexities. By differentiating the im-
portance attached to each outcome, the model adeptly navigates the delicate balance of
reducing false positives and capturing true diabetic cases without omission. This tailored
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adjustment is crucial in medical diagnostics, where the stakes attached to every prediction
are high, influencing subsequent care and treatment pathways.

Moreover, the strategic use of Alpha values highlights the LSTM model’s advanced
capability of adapting to the nuanced demands of medical diagnostics. It showcases the
potential of deep learning techniques to significantly advance medical science, particularly
in achieving high accuracy in disease prediction and classification.

4.3. Interpretation and Clinical Relevance

The analysis of the confusion matrix results, combined with the performance metrics,
highlights the proficiency and clinical relevance of our LSTM model in diabetes prediction.
The absence of false positives, a high specificity, and recall rates underscore the model’s
precision and sensitivity, essential attributes in healthcare diagnostics.

These results demonstrate the model’s accuracy and reliability, making it a valuable
tool in the medical field. The model’s performance is exceptional in terms of correctly
identifying diabetic and non-diabetic cases, achieving both high precision and recall rates.
Its AUC score further confirms its ability to make accurate distinctions, and its overall
accuracy demonstrates its trustworthiness.

The LSTM model’s exceptional performance, as evidenced by its high accuracy, pre-
cision, recall, F1 Score, AUC, and negligible Alpha error, positions it as a sophisticated
diagnostic tool. This thorough evaluation lays a solid foundation for its application in
broader medical scenarios, promising to improve patient care and treatment outcomes.

5. Discussion

The comparative analysis of various LSTM models for diabetes prediction, as detailed
in Table 2, provides a comprehensive evaluation of the performance metrics across different
studies, highlighting the advancements and challenges in this area of medical diagnostics.
This discussion aims to contextualize the results of the 7-layer LSTM model developed in
our study within the broader landscape of LSTM applications in diabetes prediction.

Table 2. Comparative Performance of Various LSTM Models in Diabetes Prediction.

Model
Description Precision

Recall
(Positive

Class)

Recall
(Negative

Class)
Accuracy AUC Sensitivity Specificity F1 Score Additional

Notes

Conv-LSTM [7] Not
specified

Not
specified

Not
specified 97.26% N/A Not

specified
Not

specified
Not

specified

Used Pima
Indians Diabetes

Database

LSTM-AR [15] 75.73% 83.66%. 49.38%. 71.79% N/A 83.66% 49.38% Not
specified

Implemented on
ERP platform

LSTM vs.
GRU [8]

Not
specified

Not
specified

Not
specified

GRU
better N/A Not

specified
Not

specified
Not

specified
RMSE used for

comparison

LSTM and
GRU [13]

Not
specified

Not
specified

Not
specified

Not
specified

Sensitivity,
Specificity,
F1-score,

MCC

Not
specified

Not
specified

Not
specified

Genomic data
used for

prediction

BiLSTM with
Attention [9]

Higher
than

traditional

Not
specified

Not
specified

Not
specified

Precision and
Recall

Not
specified

Not
specified

Not
specified

Utilized EHRs for
prediction

SMOTE-based
Deep

LSTM [10]

Not
specified

Not
specified

Not
specified 99.64% N/A Not

specified
Not

specified
Not

specified

Employed
SMOTE for class

imbalance
LSTM for
CGM [11]

Not
specified

Not
specified

Not
specified

Not
specified

Average
RMSE: 4.02

Not
specified

Not
specified

Not
specified

Predicted blood
glucose trends

BLSTM [15] Not
specified 96% 91% 94% Not

specified 91% 93%
Sensitivity

emphasized in
the study

7-layer LSTM
(this study) 100% 100% 99.34% 99.40% 94.51% 100% 100% 96.24% High accuracy

and reliability

The following is a key to understanding the abbreviations used in the table. N/A: Not Applicable, GRU: GRU
performed better than LSTM in terms of accuracy, RMSE: Root-Mean-Square Error, EHRs: Electronic Health
Records, CGM: Continuous Glucose Monitoring, MCC: Mathew’s Correlation Coefficient.
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The Conv-LSTM model [4], which utilized the Pima Indians Diabetes Database [30],
achieved an impressive accuracy of 97.26%, although specific metrics like precision, recall,
and sensitivity were not disclosed. This indicates a strong baseline performance for LSTM
models in diabetes prediction. The LSTM-AR model [15], with its implementation on an
ERP platform, demonstrated notable precision and recall rates but showed a disparity in
recall rates for positive and negative classes, indicating potential areas for improvement in
model balance.

A comparison between LSTM and GRU models [8,13] revealed that GRU might offer
better accuracy in certain contexts, suggesting that the choice of model architecture could
be crucial depending on the specific nature of the diabetes data being analysed. The
BiLSTM with the Attention model [9], which employed EHRs for prediction, reportedly
achieved higher precision and recall than traditional methods, although exact figures
were not specified, highlighting the potential of attention mechanisms in enhancing LSTM
model performance.

The application of SMOTE in the Deep LSTM model [10] to address class imbalance
and its resulting high accuracy of 99.64% underscores the importance of addressing data pre-
processing challenges in model development. Similarly, the LSTM model for Continuous
Glucose Monitoring (CGM) [11], with an average RMSE of 4.02, points to the growing trend
of LSTM applications in continuous data monitoring scenarios.

The BLSTM model [15] emphasized sensitivity, achieving high rates of recall for the
positive class and specificity, indicating its effectiveness in correctly identifying diabetic
cases. This is particularly relevant in medical diagnostics, where the cost of false negatives
can be high.

In contrast to these models, the 7-layer LSTM model developed in this study demon-
strated unparalleled performance with a precision and recall rate of 100%, a specificity
of 100%, and an accuracy of 99.40%. This exemplary performance, especially in terms
of sensitivity and specificity, positions our model as a highly effective tool in diabetes
prediction, surpassing the benchmarks set by other LSTM models.

This analysis not only highlights the strengths of the 7-layer LSTM model but also
sheds light on the varied applications and potential of LSTM models in diabetes prediction.
The high accuracy and reliability of our model suggest significant potential for improving
diabetes diagnosis, leading to more accurate and early detection of the disease, which is
crucial for patient outcomes. The results also indicate the importance of model architecture,
data pre-processing, and the need for balancing precision and recall in model development.

The comparative performance of the 7-layer LSTM model opens up new possibilities
for enhancing diagnostic accuracy and patient care in the medical field. Future research
should focus on broadening the application scope of this model, exploring its integra-
tion in clinical practice, and assessing its adaptability to diverse datasets and real-world
medical settings.

6. Conclusions

This study’s analysis of the 7-layer Long Short-Term Memory (LSTM) model demon-
strates a notable advancement in diabetes prediction using predictive healthcare analytics.
The model’s complex architecture, combined with rigorous data preparation and strategic
training using MATLAB and the Adam optimization algorithm, contributes to its high
efficacy in diagnosing diabetes.

Its performance evaluated using accuracy, precision, recall, F1 score, and ROC-AUC,
shows exceptional capability in distinguishing between diabetic and non-diabetic cases,
with remarkable precision and recall rates. This positions the model as a highly effective
diagnostic tool. The multi-layered structure of the LSTM model enhances its accuracy in
predicting diabetes.

Compared to other LSTM-based models, the 7-layer LSTM model shows superior
performance, indicating its potential to significantly improve diabetes diagnosis. The study
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suggests future applications of the model on diverse datasets and in real-world clinical
settings to validate its effectiveness and broaden its use in diabetes care.

In summary, the 7-layer LSTM model stands as a significant contribution to medical
diagnostics, offering a powerful tool for early diabetes detection and prevention. Its
integration into clinical practice could revolutionize personalized healthcare and patient
management, marking a new era in applying machine learning in healthcare diagnostics.
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