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Abstract: Background and Aims: Accurate recognition of endoscopic instruments facilitates quan-
titative evaluation and quality control of endoscopic procedures. However, no relevant research
has been reported. In this study, we aimed to develop a computer-assisted system, EndoAdd, for
automated endoscopic surgical video analysis based on our dataset of endoscopic instrument images.
Methods: Large training and validation datasets containing 45,143 images of 10 different endoscopic
instruments and a test dataset of 18,375 images collected from several medical centers were used
in this research. Annotated image frames were used to train the state-of-the-art object detection
model, YOLO-v5, to identify the instruments. Based on the frame-level prediction results, we further
developed a hidden Markov model to perform video analysis and generate heatmaps to summarize
the videos. Results: EndoAdd achieved high accuracy (>97%) on the test dataset for all 10 endoscopic
instrument types. The mean average accuracy, precision, recall, and F1-score were 99.1%, 92.0%,
88.8%, and 89.3%, respectively. The area under the curve values exceeded 0.94 for all instrument
types. Heatmaps of endoscopic procedures were generated for both retrospective and real-time
analyses. Conclusions: We successfully developed an automated endoscopic video analysis system,
EndoAdd, which supports retrospective assessment and real-time monitoring. It can be used for data
analysis and quality control of endoscopic procedures in clinical practice.

Keywords: endoscopic resection; surgical video; artificial intelligence; real-time video analysis

1. Introduction

Endoscopic resection procedures, initially developed in Japan to treat superficial gas-
trointestinal lesions, are now performed worldwide [1]. Despite their minimally invasive
nature, these procedures pose significant challenges, particularly for less experienced en-
doscopists, due to their technical complexity and lengthy duration. Suboptimal execution
can lead to adverse events and compromised patient outcomes, highlighting the need for
high-quality training materials for junior endoscopists [2]. Real-time instrument recogni-
tion can assist in monitoring surgical progress, ensuring standardization and safety, and
optimizing workflows. Endoscopic surgical videos provide a wealth of information for
refining techniques, and novice endoscopists increasingly rely on these visual aids, a trend
propelled by their ease of access [3,4]. However, manual video analysis is labor-intensive
and often exceeds junior endoscopists’ capabilities, as it requires considerable experience,
time, and costs that often surpass their resources and processing capabilities [5,6]. The
advent of artificial intelligence (AI) has brought about a shift in workflow and productivity
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in the medical field [7–10], and endoscopic video analysis stands to gain from this techno-
logical revolution [11]. AI applications in gastroenterology include endoscopic analysis
of lesions, detection of cancer, and analysis of inflammatory lesions or gastrointestinal
bleeding during wireless capsule endoscopy [12]. AI-based approaches can process large
amounts of surgical data and recognize anatomical structures, surgical instruments, and
operative steps [13–16]. For instance, AI has been successfully applied to identify operative
phases in endoscopic procedures such as peroral endoscopic myotomy (POEM) with an
accuracy of 87.6% [17]. However, the automation of surgical video data analysis remains
challenging due to the complexity and variability of surgical procedures.

Current AI models, such as convolutional neural networks (CNNs) integrated with
long short-term memory (LSTM) networks and lightweight neural networks, have shown
promising results in identifying operative phases in endoscopic procedures with high
accuracy [18]. Yamazaki et al. developed a system based on the YOLOv3 platform to
detect and classify surgical instruments in laparoscopic gastrectomy videos. The model
achieved high precision (0.87) and sensitivity (0.83) in real-time detection [19]. Cheng et al.
introduced a deep learning model for accurately identifying different phases of laparo-
scopic cholecystectomy. The multi-center approach resulted in an overall phase recognition
accuracy of 91.05% [20]. Kitaguchi et al. focused on real-time phase recognition during
laparoscopic sigmoidectomy using a CNN-based model. The system achieved an accu-
racy of 91.9% for phase recognition and 89.4% for extracorporeal action recognition, with
real-time performance at 32 frames per second [21]. Madad Zadeh et al. introduced the
SurgAI dataset for semantic segmentation in gyncecological laparoscopy [22]. Using Mask
R-CNN, they achieved segmentation accuracies of 84.5% for the uterus, 54.5% for surgical
tools, and 29.6% for ovaries. Nevertheless, performance varies with the complexity of tasks
and the length of surgical phases [23] (Supplementary Table S2). These achievements have
inspired the development of AI-based systems for detecting and classifying endoscopic sur-
gical instruments, which may support the analysis of endoscopic procedures [24]. Several
studies have explored the feasibility of using AI to automate video analysis of laparo-
scopic surgery [19,22,25–27]. The latest developments in computer vision enable various
computer-assisted tasks, including surgical instrument detection, action, and surgical phase
recognition, and even skill assessment [26]. However, similar applications for endoscopic
videos and feasibility assessment of real-time monitoring have been less explored [28].

In this study, we aimed to develop EndoAdd, a cutting-edge computer-assisted system
designed to revolutionize endoscopic surgical video analysis. By leveraging a comprehen-
sive dataset of endoscopic instrument images collected from multiple endoscopy centers
and harnessing the power of efficient AI algorithms, EndoAdd offers a seamless solution
for both retrospective assessment and real-time monitoring of endoscopic procedures.
This innovative system effortlessly integrates into the existing workflow, empowering
surgeons to monitor surgical progress with unparalleled precision, ensure standardization
and safety, optimize workflows, and obtain objective data for post-operative evaluation
and quality control.

Major Contributions of Our System

• First-time accurate recognition of 10 common endoscopic instruments for video analysis;
• Combination of YOLO-v5 and HMM models for precise classification of images and

video segments;
• Innovative use of heatmap visualizations to reveal distinct characteristics of operators

with varying levels of experience;
• Integration into endoscopic training programs, enabling focused learning of instrument-

specific techniques and enhancing surgical performance;
• Real-time instrument recognition capabilities for assisting surgeons in monitoring

surgical progress, ensuring standardization and safety, and optimizing workflows;
• Objective data provided by EndoAdd facilitates post-operative evaluation and quality

control;
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• Lays the groundwork for groundbreaking applications, such as real-time surgical risk
warning and objective skill assessment.

The EndoAdd system’s accurate instrument recognition capabilities in endoscopic
surgery unlock a new era of efficiency in video indexing, enabling focused learning of
specific instrument-related techniques and streamlined video editing for enhanced surgical
training. By setting new standards for educational resources, the integration of EndoAdd
into endoscopic training programs enhances surgical performance through real-time guid-
ance and feedback, ultimately elevating the skills of endoscopists worldwide.

Furthermore, EndoAdd’s real-time instrument recognition offers significant benefits in
clinical practice, promoting optimal outcomes and reducing complications. As the system
continues to evolve, it holds the potential to reshape the landscape of endoscopic surgery
through groundbreaking applications such as surgical risk warning and objective skill
assessment. With its unparalleled accuracy, efficiency, and potential for growth, EndoAdd
is poised to become an indispensable tool in the advancement of intelligent endoscopic
surgery, benefiting patients, surgeons, and the medical community as a whole.

2. Methods
2.1. Dataset and Annotation

The study was approved by the Institutional Review Board of Zhongshan Hospital,
Fudan University (B2021-558). We collected 605 endoscopic videos retrospectively from
June 2018 to June 2019 at Zhongshan Hospital to train the proposed EndoAdd system. We
further collected 172 videos from the endoscopic centers at Zhongshan Hospital, Central
Hospital of Minhang District, Zhengzhou Central Hospital, and Xiamen Branch Zhongshan
Hospital from January 2021 to June 2021 to serve as an external test dataset. The numbers
of videos of different types of endoscopic resections gathered are shown in Supplementary
Table S1. All collected data were strictly anonymized during training and testing. The
instruments in the videos were the following: (1) snare (SD-230U-20, Olympus, Tokyo,
Japan; M00562691 Boston Scientific, Marlborough, MA, USA), (2) metal clips (ROCC-D-26-
19, Micro-Tech, Nanjing, China; M500522600, M500522610, Boston Scientific, Marlborough,
MA, USA; AG-51044-195, Vedkang, Changzhou, China), (3) injection needles (M00518301,
Boston Scientific; NM-400L, Olympus; AF-D1816PN, Alton, Shanghai, China), (4) hook
knife (KD-620LR, Olympus, Marlborough, MA, USA), (5) dual knife (KD-650Q/650L, Olym-
pus, Marlborough, MA, USA), (6) insulation-tipped (IT) knife (KD-612L/612U, Olympus,
Marlborough, MA, USA; AF-D2417HC/2423HC, Alton, Shanghai, China), (7) hybrid knife
(ERBE, Tübingen, Germany), (8) endoloop (MAJ-254, Olympus, Marlborough, MA, USA;
Loop 15, Loop 20, Leomed), (9) argon plasma coagulation (APC, Olympus, Marlborough,
MA, USA), and (10) hot biopsy forceps (FD-410LR, FD-430L, Olympus, Marlborough,
MA, USA).

For image-based instrument detection and classification, we sampled image frames
from the videos every 5 s (i.e., 0.2 frames per second [fps]). The images from the training
videos were randomly split into training (~80%) and validation datasets (~20%) at the
patient level; the images from the test videos were set aside for the evaluation of the
EndoAdd system. The distribution of instrument types in the training, validation, and test
datasets is given in Table 1.
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Table 1. Overview of the image dataset for training and validation.

Instruments Training (n) Validation (n) Test (n)

Snare 1729 439 876
Metal clips 1757 414 778

Injection needle 1740 429 703
Hook knife 1741 445 775
Dual knife 1737 439 1000

Insulation-tipped knife 1760 431 886
Hybrid knife 1735 445 983

Endoloop 1822 455 825
APC 1727 449 870

Hot biopsy forceps 1742 425 901
Background (w/o instruments) 18,052 5230 9778

Total 35,542 9601 18,375

The endoscopic surgical instruments in each image (if any) were manually annotated
by drawing 1 bounding box each around the tip and sheath of the instrument. To establish
a standard operating procedure, templates of the 10 types of surgical instruments were
constructed for annotation reference (Figure 1). In addition to the bounding boxes, each
image was assigned a label for the corresponding type of instrument or background. Several
examples of the annotated images are shared in Figure 1. Three board-certified endoscopists
(YZ, LZ, LD), each with more than 3 years of experience, annotated the images. A senior
endoscopist (QL) reviewed all images and videos for quality control of the annotations.
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Figure 1. Illustration of endoscopic instruments and manual annotations in extracted images. Each 

green box represents the sheath of the instrument and the red box represents the tip. (A) Snare, (B) 

Figure 1. Illustration of endoscopic instruments and manual annotations in extracted images. Each
green box represents the sheath of the instrument and the red box represents the tip. (A) Snare,
(B) hot biopsy forceps, (C) injection needle, (D) metal clips, (E) dual knife, (F) IT knife, (G) hook knife,
(H) endoloop, (I) hybrid knife, (J) argon plasma coagulation (APC).
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2.2. Algorithms and System Design

The proposed EndoAdd system was constructed to adopt the latest developments
in machine learning and computer vision to enable automated endoscopic video analysis
in 2 available system modes: (a) offline mode for retrospective assessment of past video
recordings and (b) online mode for real-time monitoring of in-progress endoscopic pro-
cedures. The primary component of the system is an image detection and classification
module (Figure 2A). The video stream was segmented using a hidden Markov model
(HMM) (Figure 2B). The system also generates heatmaps and timelines as a summary of
the endoscopic procedure for visual analysis.

Bioengineering 2024, 11, x FOR PEER REVIEW 5 of 14 
 

hot biopsy forceps, (C) injection needle, (D) metal clips, (E) dual knife, (F) IT knife, (G) hook knife, 

(H) endoloop, (I) hybrid knife, (J) argon plasma coagulation (APC). 

2.2. Algorithms and System Design 

The proposed EndoAdd system was constructed to adopt the latest developments in 

machine learning and computer vision to enable automated endoscopic video analysis in 

2 available system modes: (a) offline mode for retrospective assessment of past video re-

cordings and (b) online mode for real-time monitoring of in-progress endoscopic proce-

dures. The primary component of the system is an image detection and classification mod-

ule (Figure 2A). The video stream was segmented using a hidden Markov model (HMM) 

(Figure 2B). The system also generates heatmaps and timelines as a summary of the endo-

scopic procedure for visual analysis. 

 

Figure 2. Design of the EndoAdd system. (A) The image detection and classification module adopts 

the YOLO v5 neural network to achieve real-time instrument detection and classification in each 

image frame. (B) The prediction results of each image frame are used as inputs to the hidden Markov 

model to smooth the frame results and segment the video stream. In offline mode, all image frames 

from the video (from time 0 to T) are considered to make retrospective assessments (i.e., smoothing). 

In online mode, only past and current image frames (from time 0 to t) are considered in making real-

time predictions (i.e., filtering). 

2.2.1. Detection and Classification of Endoscopic Instruments 

We used the state-of-the-art object detection algorithm YOLO-v5 (You Only Look 

Once version 5) [29,30] for the detection of surgical instruments and classification of image 

frames. The algorithm is an efficient convolutional neural network (CNN) that provides 

real-time image analysis up to 140 fps. The CNN architecture is detailed in the Supple-

mentary Materials (Supplementary Figure S1) [31]. For a given image frame, the detection 

module outputs the detection results of the possible sheath and tip, including the bound-

ing box coordinates, instrument type, and confidence. Then, the presence of endoscopic 

instruments and their corresponding types are determined and passed to the HMM. 

  

Figure 2. Design of the EndoAdd system. (A) The image detection and classification module adopts
the YOLO v5 neural network to achieve real-time instrument detection and classification in each
image frame. (B) The prediction results of each image frame are used as inputs to the hidden Markov
model to smooth the frame results and segment the video stream. In offline mode, all image frames
from the video (from time 0 to T) are considered to make retrospective assessments (i.e., smoothing).
In online mode, only past and current image frames (from time 0 to t) are considered in making
real-time predictions (i.e., filtering).

2.2.1. Detection and Classification of Endoscopic Instruments

We used the state-of-the-art object detection algorithm YOLO-v5 (You Only Look Once
version 5) [29,30] for the detection of surgical instruments and classification of image frames.
The algorithm is an efficient convolutional neural network (CNN) that provides real-time
image analysis up to 140 fps. The CNN architecture is detailed in the Supplementary
Materials (Supplementary Figure S1) [31]. For a given image frame, the detection module
outputs the detection results of the possible sheath and tip, including the bounding box
coordinates, instrument type, and confidence. Then, the presence of endoscopic instruments
and their corresponding types are determined and passed to the HMM.

2.2.2. Hidden Markov Model for Video Analysis

Despite the high fps provided by YOLO-v5, it inevitably generates some false predic-
tions due to the complexity of the endoscopic environment—due, for example, to image
noise and light reflection—which challenges the robustness of surgical phase identification.
To overcome this limitation of the frame-level analysis, we used an HMM to consider
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contextual frames. First, the class probability p(yt|It) of image frame I at time t was
predicted by the backbone network of YOLO-v5. These were treated as the latest obser-
vations, and the latest estimates were integrated by both the observation and previous
estimates. In online mode (called “filtering” in sequential Bayesian analysis) [32], the latest
estimate integrated the information flow from the past and present frames. In offline mode
(called “smoothing”), the information flow from future image frames was also integrated
following Bayes’ rule, i.e., p(yt|I1:t) ∝ p(yt|I1:t−1)p(yt|It), where I1:t denotes the image
frames up to time t. The detailed algorithms and implementation of HMM are given in the
Supplementary Material (Supplementary Figures S2 and S3) [33,34].

2.3. Model Training

We built YOLO-v5 with PyTorch 1.2 on Ubuntu 18.04 LTS. The training and experi-
ments were performed on a Linux machine with the following configuration: Intel Core
i7-6700K 4.0 GHz processor, 32 GB DDR3 RAM, Toshiba 1 TB HDD, and NVIDIA GTX1660
GPU with 6 GB memory. The training image dataset was used to train the YOLO-v5 net-
work, and early stopping was used to avoid overfitting the data by monitoring the model’s
performance on the internal validation dataset. The loss function used by YOLO-v5 is
an aggregate of three components designed to optimize various aspects of the detection
process, including the bounding box regression loss, the objectness loss, and the classi-
fication loss. The total epoch was set to 300, the learning rate used in the iteration was
set to 0.0005, and the batch size was set at 64. All images were resized to 640 × 640 and
common data augmentation methods were used during training, including random crop-
ping, random horizontal and vertical flipping, and random color jitter. Early stopping was
used to avoid overfitting the data by monitoring the model’s performance on the internal
validation dataset.

2.4. Evaluation

The first part of the evaluation, the retrospective assessment, tested the performance of
the frame-level detection on a test set of still images, which were sampled from the external
test dataset. We calculated the accuracy, positive predictive value (precision), sensitivity
(recall), and F1-score of the image frame classification. Accuracy is the percentage of correct
image label predictions out of all the images and is calculated by (true positives + true
negatives)/(all cases). Precision is the percentage of images with correct object predictions
out of all the images predicted to contain that object, calculated by (true positives)/(true
positives + false positives). Recall is the percentage of images with correct object predictions
out of all the images that contain that object, calculated as (true positives)/(true positives +
false negatives). The F1-score is the harmonic average of precision and recall, calculated as
(2 × precision × recall)/(precision + recall).

For the second part of the evaluation, the video analysis heatmaps were generated
from EndoAdd’s surgical phase identification for visual comparison. Six videos of peroral
endoscopic myotomy (POEM) procedures were collected from the external test dataset.
Among these videos, 3 procedures were performed by a senior endoscopist who had
previously performed more than 1000 POEMs, and the other 3 procedures were performed
by a junior endoscopist who had performed only 10 POEMs. We also integrated EndoAdd
into the monitoring system for real-time monitoring of endoscopic procedures.

3. Results
3.1. Detection and Classification of Endoscopic Instruments

Following approximately 2,000,000 iterations on the training dataset, the performance
of YOLO-v5 on the validation dataset was saturated. The classification results for each
instrument are summarized in Table 2. The model achieved high accuracy (>97%) on
the test dataset for all 10 instrument types. The mean average accuracy, precision, recall,
and F1-score were 99.1%, 92.0%, 88.8%, and 89.8%, respectively. The confusion matrix
(Figure 3A) shows that the majority of weights are distributed on the diagonal, indicating
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satisfactory classification performance. The receiver operating characteristic (ROC) curve
(Figure 3B) shows that the detection module achieved satisfactory performance with an
area under the curve (AUC) exceeding 0.94 for all instrument types. Among the endoscopic
instruments, EndoAdd achieved the best discriminative results for the snare, hybrid knife,
dual knife, IT knife, and APC (AUC = 1.00), and performed worst for the injection needle
(AUC = 0.94). Notably, 199 of the 703 injection needle images (28%) in the test dataset were
misclassified as hybrid knives. The similar performance in terms of frame-wise detection
of the instruments was also recently confirmed in latest object detection model, YOLO-v8
(Supplementary Figure S4).

Table 2. Performance of instrument detection and classification on the test dataset.

Instruments Accuracy Precision Recall F1-Score AUC

Snare 0.994 0.895 0.989 0.939 1.00
Metal clips 0.992 0.916 0.896 0.906 1.00

Injection needle 0.982 0.939 0.572 0.711 0.94
Hook knife 0.985 0.823 0.906 0.863 0.99
Dual knife 0.999 0.982 0.997 0.990 1.00

Insulation-tipped knife 0.996 0.936 0.984 0.959 1.00
Hybrid knife 0.990 0.867 0.893 0.880 0.98

Endoloop 0.984 0.915 0.714 0.802 0.97
APC 0.996 0.956 0.968 0.962 0.98

Hot biopsy forceps 0.997 0.967 0.966 0.966 1.00
Average 0.991 0.920 0.888 0.898 0.99
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Figure 3. (A) Confusion matrix of instrument detection and classification and (B) receiver operat-
ing characteristic curve of the EndoAdd prediction for different endoscopic surgical instruments.
BG, background; SN, snare; HBF, biopsy forceps; IN, injection needle; MC, metal clips; DK, dual
knife; IT, insulation-tipped knife; HK, hook knife; EL, endoloop; HBK, hybrid knife; APC, argon
plasma coagulation.

3.2. Retrospective Analysis of POEM Video Recordings

In offline mode, the EndoAdd system was employed to produce heatmaps for the
six POEM procedure videos included in our test dataset, as illustrated in Figure 4. The
left part of the figure shows the operating patterns of the senior and junior endoscopists.
The right side shows that the junior endoscopists used hot biopsy forceps more frequently,
whereas the senior endoscopists often used them at the end of myotomy. Moreover, the
heatmap shows a longer background period for the junior endoscopists, suggesting in-
creased time expenditures in instrument exchanges or endoscopic adjustments throughout
the procedures.
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Figure 4. Heatmap of automated POEM video analysis results. The left column shows the results
from three senior endoscopists, and the right column shows those of three junior endoscopists.

3.3. Online Monitoring of the Endoscopic Procedure

The EndoAdd system is capable of real-time detection of endoscopic instruments,
processing at an approximate rate of 5 frames per second (fps). A video of the complete
endoscopic procedure is accessible as Supplementary Material. We have incorporated
an online mode of EndoAdd with a real-time surgical monitoring system, as depicted in
Figure 5. This integration facilitates the display of critical information during the procedure,
including the date, room details, operator identity, procedure commencement time, a
real-time heatmap of surgical activity, and the usage status of various instruments.

Bioengineering 2024, 11, x FOR PEER REVIEW 9 of 14 
 

 

Figure 5. Photo of the EndoAdd system performing real-time monitoring. 

4. Discussion 

In this original research, we established the AI-based EndoAdd system for the retro-

spective assessment and real-time monitoring of endoscopic procedures. The model 

achieved high accuracy (>98%) on the test dataset for all 10 types of endoscopic surgical 

instruments considered. The mean average accuracy, precision, recall, and F1-score were 

99.1%, 92.0%, 88.8%, and 89.8%, respectively. The AUC value exceeded 0.94 for all 10 types 

of endoscopic instruments. These encouraging results represent a step forward in the ap-

plication of AI-based systems for the training and skills assessment of endoscopists.  

The main findings of this study have significant implications for the field of endo-

scopic surgery. The EndoAdd system can provide immediate benefits to clinical practice 

due to its high performance in real-time quality monitoring of endoscopic surgical proce-

dures. It can generate heatmaps of endoscopic procedures for visualization. These 

heatmaps allow endoscopists to recognize the different types of surgical instruments 

used, the types of procedures performed, the timing of certain procedures, and the occur-

rence of irregular events or bleeding during operations. Junior endoscopists can review 

specific operative features by selecting the exact time of a particular procedure or instru-

ment use in a surgical video. This saves time and effort when multiple endoscopic video 

recordings need to be analyzed. 

The surgical instruments used for endoscopic procedures were included in our study. 

We measured the performance of the system with our test dataset collected from several 

medical centers, considering the different types of endoscopic instruments applied in the 

different centers. Compared with other studies of laparoscopic surgical instruments 

[19,22,27,35–37], we applied additional categories, thereby increasing the difficulty of an-

notation and challenging the CNN algorithm. For example, the confusion matrix revealed 

that the injection needle was often mistaken for the hybrid knife, likely because of their 

similar tips and functions (i.e., submucosal injection). In contrast to laparoscopic surgical 

instruments, the tips of endoscopic instruments are usually placed under the mucosal 

layer so only the sheath of the instrument is visible, which may further explain the algo-

rithm’s confusion between the injection needle and hybrid knife, especially during sub-

mucosal injection. Other common challenges encountered were view obstructions by ooz-

ing blood, or gas or liquid, generated by the cutting device, and blurred scenes due to 

camera movement. To solve these challenges of tip visibility, the endoscopic surgical in-

struments were manually annotated by drawing two bounding boxes around the tip and 

sheath of the surgical instruments (if any), which doubled the workload. 

Figure 5. Photo of the EndoAdd system performing real-time monitoring.

4. Discussion

In this original research, we established the AI-based EndoAdd system for the ret-
rospective assessment and real-time monitoring of endoscopic procedures. The model
achieved high accuracy (>98%) on the test dataset for all 10 types of endoscopic surgical
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instruments considered. The mean average accuracy, precision, recall, and F1-score were
99.1%, 92.0%, 88.8%, and 89.8%, respectively. The AUC value exceeded 0.94 for all 10 types
of endoscopic instruments. These encouraging results represent a step forward in the
application of AI-based systems for the training and skills assessment of endoscopists.

The main findings of this study have significant implications for the field of endoscopic
surgery. The EndoAdd system can provide immediate benefits to clinical practice due to
its high performance in real-time quality monitoring of endoscopic surgical procedures. It
can generate heatmaps of endoscopic procedures for visualization. These heatmaps allow
endoscopists to recognize the different types of surgical instruments used, the types of
procedures performed, the timing of certain procedures, and the occurrence of irregular
events or bleeding during operations. Junior endoscopists can review specific operative
features by selecting the exact time of a particular procedure or instrument use in a surgical
video. This saves time and effort when multiple endoscopic video recordings need to
be analyzed.

The surgical instruments used for endoscopic procedures were included in our study. We
measured the performance of the system with our test dataset collected from several medical
centers, considering the different types of endoscopic instruments applied in the different
centers. Compared with other studies of laparoscopic surgical instruments [19,22,27,35–37],
we applied additional categories, thereby increasing the difficulty of annotation and chal-
lenging the CNN algorithm. For example, the confusion matrix revealed that the injection
needle was often mistaken for the hybrid knife, likely because of their similar tips and
functions (i.e., submucosal injection). In contrast to laparoscopic surgical instruments, the
tips of endoscopic instruments are usually placed under the mucosal layer so only the
sheath of the instrument is visible, which may further explain the algorithm’s confusion
between the injection needle and hybrid knife, especially during submucosal injection.
Other common challenges encountered were view obstructions by oozing blood, or gas
or liquid, generated by the cutting device, and blurred scenes due to camera movement.
To solve these challenges of tip visibility, the endoscopic surgical instruments were manu-
ally annotated by drawing two bounding boxes around the tip and sheath of the surgical
instruments (if any), which doubled the workload.

Due to disturbances from the complex operating environment (e.g., lighting condi-
tions), the image detection module did not achieve perfect performance. A fully image-
based AI system is insufficiently robust and generalizable. To address this, we developed
an HMM model to apply to the prediction results from the image detection modules, ac-
counting for information flow between consecutive frames. In particular, with the Bayesian
sequential updating approach, we accomplished both online nowcasting and backward
smoothing of historical predictions. The former enabled real-time correction of the YOLO-
v5 predictions, and the latter provided better estimations of instrument states using the
information flow from both historical and future frames in offline mode. Thus, our system
achieved higher accuracy than previous studies [19,22,37]. Moreover, the HMM-based
procedure does not require additional neural network training for video frame analysis,
highlighting its fitness for deployment in clinical edge-computing environments.

Looking ahead, our research directions will focus on integrating state-of-the-art
lightweight neural network models into the EndoAdd system to further enhance its perfor-
mance in the complex environment of endoscopic procedures. Recent developments such
as the Squeeze-and-Excitation Network (SENet), MobileNets, ShuffleNets, EfficientDet,
YOLO-Lite, YOLOv5, Faster R-CNN with Light-Head, and NAS-optimized architectures
have demonstrated significant improvements in efficiency and accuracy for object detec-
tion tasks. These innovations could potentially enhance the performance of EndoAdd,
particularly in challenging endoscopic environments where real-time processing and ac-
curate detection are paramount. Moreover, the adoption of transformer-based models
like DETR may offer new possibilities for handling the sequential nature of endoscopic
video data, leveraging self-attention mechanisms for improved feature recognition and
localization [18].
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Our research may pave the way for the development of other highly impactful deep
learning-based computer-aided applications. The EndoAdd system’s ability to accurately
recognize endoscopic instruments in real time and generate informative heatmaps can
revolutionize endoscopic training, skills assessment, and quality control. This technol-
ogy has the potential to improve patient outcomes by ensuring standardization, safety,
and efficiency in endoscopic procedures. This innovative application has the potential
to automate the annotation and indexing of endoscopic surgical videos. Such automa-
tion not only streamlines the cataloging process, but also creates a structured educational
framework that can greatly benefit novices in the field. By systematically identifying and
labeling the different stages and steps of endoscopic procedures, as well as the specific
maneuvers associated with various instruments, EndoAdd facilitates a more targeted and
effective learning experience for junior endoscopists. In addition to model enhancements,
we plan to expand the proposed dataset with images including more endoscopic details
and annotations, such as the working status of the instruments and specific operative move-
ments. By incorporating this additional information, the system will be better equipped to
provide real-time navigation aids and operative suggestions, significantly improving the
safety and efficacy of endoscopic surgeries. AI-assisted instrument recognition and instant
feedback within endoscopic footage has the potential to reduce procedural errors, and
enhance patient outcomes and the surgical acumen of endoscopists, setting new standards
for educational resources and operational excellence in the field of endoscopy. This future
capability promises to not only enhance the surgical acumen of endoscopists, but also to
elevate the safety profile of the learning curve. By providing instant feedback and guidance,
AI can help to mitigate the risk of procedural errors and improve patient outcomes. The
amalgamation of EndoAdd with endoscopic training and practice is poised to redefine the
standards of educational resources and operational excellence. As the EndoAdd system
continues to evolve and integrate with endoscopic training and practice, we anticipate a
paradigm shift towards a more efficient, safe, and competency-driven approach, in the field
of endoscopy, ultimately benefiting both practitioners and patients alike.

However, the study has several limitations. Firstly, the retrospectively collected videos
used in this study were limited in number. Future work will focus on collecting a more
extensive and diverse dataset of endoscopic videos and annotations. A larger and more rep-
resentative dataset will help improve the generalizability and robustness of the EndoAdd
system. Secondly, the current study did not evaluate the status of the surgical instruments,
such as their open, closed, or implanted states. Although identifying instrument status is a
challenging task for computer-aided recognition, accurately identifying these various states
is crucial for providing more comprehensive and actionable insights during endoscopic
procedures. Third, endoscopists currently only evaluate the heatmaps by relying on color
differences, and more elements and details should be added to these visualizations to
improve analysis. Incorporating additional visual cues and interactive features into the
heatmaps could enhance their interpretability and usefulness for endoscopists. Future
work will focus on three main areas: (1) collecting a more extensive and diverse dataset
of endoscopic videos and annotations to improve the generalizability and robustness of
the EndoAdd system; (2) integrating state-of-the-art lightweight neural network models to
enhance the system’s performance and efficiency; and (3) developing advanced features
such as recognizing operational movements and providing real-time navigation aids and
operative suggestions. These planned research activities aim to further validate the En-
doAdd system’s capabilities and explore its potential for integration into clinical practice.
The expected outcomes include a more comprehensive and reliable AI-based endoscopic
video analysis system that can significantly contribute to the advancement of intelligent
endoscopic surgery.

5. Conclusions

In this original research, we established the AI-based EndoAdd system for the ret-
rospective assessment and real-time monitoring of endoscopic procedures. The model
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achieved high accuracy (>98%) on the test dataset for all 10 types of endoscopic surgical
instruments considered. The mean average accuracy, precision, recall, and F1-score were
99.1%, 92.0%, 88.8%, and 89.8%, respectively. The AUC value exceeded 0.94 for all 10
types of endoscopic instruments. These encouraging results represent a step forward in the
application of AI-based systems for the training and skills assessment of endoscopists.

The EndoAdd system can provide immediate benefits to clinical practice due to its
high performance in real-time quality monitoring of endoscopic surgical procedures. It can
generate heatmaps of endoscopic procedures for visualization, allowing endoscopists to
derive operative features without reviewing entire endoscopic video recordings.

The main findings of this study have significant implications for the field of endoscopic
surgery. The EndoAdd system’s ability to accurately recognize endoscopic instruments
in real time and generate informative heatmaps can revolutionize endoscopic training,
skills assessment, and quality control. This technology has the potential to improve patient
outcomes by ensuring standardization, safety, and efficiency in endoscopic procedures.

However, the study has several limitations. First, the videos applied were retrospec-
tively collected and limited in number. Second, the status of the surgical instruments was
not evaluated, and identifying instrument statuses such as opening, closing, and implanted
is a difficult task for computer-aided recognition. Third, endoscopists currently only evalu-
ate the heatmaps by color differences, and more elements and details should be added to
these visualizations to improve analysis.

The advantages of the EndoAdd system include its high accuracy in detecting and
classifying endoscopic instruments, its ability to generate informative heatmaps for vi-
sualization and analysis, and its potential to streamline endoscopic training and skills
assessment. The disadvantages include the limited number of retrospectively collected
videos used in the study, the lack of evaluation of instrument status, and the need for more
detailed heatmap visualizations.

Future work will focus on three main areas: (1) collecting a more extensive and diverse
dataset of endoscopic videos and annotations to improve the generalizability and robust-
ness of the EndoAdd system; (2) integrating state-of-the-art lightweight neural network
models to enhance the system’s performance and efficiency; and (3) developing advanced
features such as recognizing operational movements and providing real-time navigation
aids and operative suggestions. These planned research activities aim to further validate
the EndoAdd system’s capabilities and explore its potential for integration into clinical
practice. The expected outcomes include a more comprehensive and reliable AI-based
endoscopic video analysis system that can significantly contribute to the advancement of
intelligent endoscopic surgery.
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