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Abstract: Accurately detecting defects while reconstructing a high-quality normal background in
surface defect detection using unsupervised methods remains a significant challenge. This study
proposes an unsupervised method that effectively addresses this challenge by achieving both accurate
defect detection and a high-quality normal background reconstruction without noise. We propose
an adaptive weighted structural similarity (AW-SSIM) loss for focused feature learning. AW-SSIM
improves structural similarity (SSIM) loss by assigning different weights to its sub-functions of
luminance, contrast, and structure based on their relative importance for a specific training sample.
Moreover, it dynamically adjusts the Gaussian window’s standard deviation (σ) during loss calcu-
lation to balance noise reduction and detail preservation. An artificial defect generation algorithm
(ADGA) is proposed to generate an artificial defect closely resembling real ones. We use a two-stage
training strategy. In the first stage, the model trains only on normal samples using AW-SSIM loss,
allowing it to learn robust representations of normal features. In the second stage of training, the
weights obtained from the first stage are used to train the model on both normal and artificially
defective training samples. Additionally, the second stage employs a combined learned Perceptual
Image Patch Similarity (LPIPS) and AW-SSIM loss. The combined loss helps the model in achieving
high-quality normal background reconstruction while maintaining accurate defect detection. Exten-
sive experimental results demonstrate that our proposed method achieves a state-of-the-art defect
detection accuracy. The proposed method achieved an average area under the receiver operating
characteristic curve (AuROC) of 97.69% on six samples from the MVTec anomaly detection dataset.

Keywords: autoencoder; surface defect detection; structural similarity; perceptual similarity; artificial
defect generation

1. Introduction

In the ever-evolving landscape of industrial automation, surface defect inspection
plays a crucial role in ensuring product quality and propelling the journey toward smarter
manufacturing. Surface defects are common in many industrial products, such as fabric [1],
steel [2], wood [3], and ceramic [4]. By meticulously examining surfaces for imperfections
like scratches, cracks, or discoloration, automated systems guarantee consistent product
integrity, minimizing the risk of faulty components reaching consumers. This not only
enhances brand reputation and customer satisfaction but also prevents costly recalls and
rework, streamlining production processes. Moreover, automated defect inspection paves
the way for further automation by providing valuable data for process optimization.

In recent decades, various methods have been proposed for surface defect inspection,
mainly categorized into traditional and deep learning-based methods. Traditional methods
can be further divided into different categories, including texture feature-based methods,
color feature-based methods, and shape feature-based methods [5]. Texture feature-based
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methods analyze the surface texture patterns to identify defects like scratches, cracks, and
unevenness [6]. Color feature-based methods utilize color variations to detect defects like
stains, discoloration, and foreign objects. Song et al. [7] proposed a classification method
based on the percentage color histogram feature and feature vector texture of an image
block for wood surface defect detection. Shape feature-based methods extract and analyze
geometric features of defects like size, shape, and depth. They often rely on edge detection,
blob analysis, or geometric measurements to identify the defect shape. Wang et al. [8]
proposed a hybrid method based on the Fourier transform and Hough transform for
the detection of surface-cutting defects on magnets. Tsai et al. [9] proposed a method
based on global Fourier image reconstruction and template matching for detecting and
locating small defects on electronic surfaces. Traditional methods are capable of extracting
features like texture, color, and shape from an image surface. However, traditional methods
require domain expertise to design relevant features, struggle with complex textures and
new defect types, and are sensitive to variations in lighting and imaging conditions. In
contrast, deep learning methods have a strong automatic feature extraction ability and
good generalization on a large amount of data. Deep learning methods can be categorized
as supervised and unsupervised learning.

Many supervised methods have been proposed for the detection and localization of
surface defects in the past decade. Ren et al. [10] proposed an automatic surface defect detec-
tion using a pre-trained deep learning network. PGA-Net [11] realizes pixel-wise detection
using a pyramid feature fusion and global context attention network. Tabernik et al. [12]
presented a segmentation-based deep learning architecture for surface defect detection.
Many methods [13–15] have been proposed for printed circuit board (PCB) defect detec-
tion and localization based on YOLO. Cheng et al. [16] proposed a deep neural network
DEA_RetinaNet (RetinaNet) with difference channel attention and adaptively spatial fea-
ture fusion for steel surface defect detection. However, fully supervised methods [17–19]
demand carefully annotated bounding boxes within datasets, a process that can be time
consuming, laborious, and prone to inconsistencies. Furthermore, these methods often
struggle with unseen defects not encountered in the training data, potentially requiring an
ever-expanding dataset, making data collection an ongoing challenge.

Unlike supervised learning methods, which require labeled data for training, unsuper-
vised learning approaches operate with unlabeled normal samples. They learn the under-
lying distribution from these normal samples during training and identify instances that
deviate significantly from this learned distribution as potential defects. This capability al-
lows unsupervised methods to detect previously unseen defects [20–22]. Schlegl et al. [23]
proposed an anomaly detection generative adversarial network (AnoGAN) to learn the
distribution of defect-free texture image patches using GAN techniques. It then de-
tects defects by searching for a latent sample that reproduces a given input image patch.
Bergmann et al. [24] proposed a defect inspection method by applying a structural simi-
larity to an autoencoder (AE-SSIM). An unsupervised reconstruction-based method for
surface defect detection using a combined structural similarity and mean absolute (L1) loss
was proposed in [25]. Bionda et al. [26] proposed a deep autoencoder for anomaly detection
based on Complex Wavelet Structural Similarity (CW-SSIM). Chamberland et al. [27] pro-
posed a method to detect defects on cast components using a convolution neural network
(CNN) autoencoder. While effective at detecting and localizing most defects, these methods
face challenges when dealing with defects that closely resemble the normal background
and do not achieve a noise-free reconstruction of the normal background.

Surface defect detection methods trained only on normal samples tend to produce
higher reconstruction errors for defect areas compared to the normal background. This
indicates their ability to identify deviations from the learned normal patterns. Using the
residual (difference) between the input and the reconstructed image, we can localize the
defects. However, this approach faces two main challenges:
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1. Partial defect reconstruction: Sometimes, the trained model might also reconstruct
the defective region, thereby diminishing its ability to distinguish between defective
and non-defective regions.

2. Noise-free normal background: Even if defects are identified, the reconstructed normal
background often contains noise, making it harder to isolate the defects accurately.

Therefore, achieving a clear and informative residual image requires a high-quality
normal background reconstruction and non-reconstruction of the defect. Finding this
balance between the reconstruction of a high-fidelity normal background and accurate
defect detection has been a significant challenge.

In this paper, we propose an autoencoder-based method with training in two stages.
The first stage of training is exclusively conducted only on normal samples, and the second
stage is training on normal and artificially defective samples using the model weight from
the first stage. Experiments in [25] demonstrated that using the mean difference for the
luminance calculation in the structural similarity (SSIM) metric [28] can be problematic
when used as a loss function for image reconstruction tasks. This is because the mean is
insensitive to the range of pixel values within a local area, leading to identical SSIM scores
for images with the same average brightness but significantly different light–dark variations.
Inspired by this, we propose an adaptive weighted structural similarity (AW-SSIM) loss
by introducing addition instead of multiplication between the luminance, contrast, and
structure sub-functions. This allows for the removal of the independence between the three
sub-functions to compensate for the luminance’s limitations through contrast or structure.
Additionally, we dynamically adjust the standard deviation (σ) for the Gaussian window.
This parameter governs the spread of the window, influencing the level of detail captured
during SSIM calculations.

Artificial anomalies have recently gained widespread use in enhancing a model’s
ability to distinguish the defective part from the normal region of an image. AFEAN [29]
uses artificial anomaly generation by combining defect-free images and random masks.
CutPaste [30] uses a method that involves cropping a rectangular image patch and pasting
it at a random location within a larger image. CMA-AE [31] uses a general artificial anomaly
generation algorithm and involves cropping a rectangular area from a natural image in
the ImageNet dataset [32] and pasting it at a random location within a normal training
image. In our work, we propose an artificial defect generation algorithm (ADGA). This
algorithm generates artificial defects that closely mimic natural defects by creating defects
with varying shapes and sizes.

To enhance the reconstructed image quality and achieve noise-free reconstruction
on the normal background image, we introduce a combined structural and perceptual
loss function. For the second stage of training, Learned Perceptual Image Patch Similarity
(LPIPS) loss [33] is used in combination with the AW-SSIM to enhance the model’s ability
to reconstruct a high-quality and noise-free normal background. The LPIPS aligns well
with a human’s perception of the image quality. Unlike traditional loss functions that
directly compare pixel values between images, the LPIPS operates by extracting features
from the images and comparing them in a latent space using a pre-trained model. Our
experiment results prove that the introduction of the LPIPS loss in the second stage of
training improves the model’s performance significantly in achieving a high-quality normal
background reconstruction. In summary, our key contributions are as follows:

1. We propose a two-stage training strategy involving normal training samples and
training samples with artificial defects.

2. The AW-SSIM loss function is proposed, removing the independence between the
three sub-functions of the SSIM and dynamically adjusting the standard deviation (σ)
for the Gaussian window.

3. We propose an artificial defect generation algorithm (ADGA), a novel algorithm
specifically designed to create artificial defects that closely resemble various real-
world defects.
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4. To improve the quality of normal background reconstruction and defect identification,
we propose a combined SSIM and LPIPS loss function for the second stage of training.

The remainder of this paper is organized as follows. Section 2 introduces the related
works of surface defect detection. In Section 3, the proposed method, including each im-
provement, is discussed in detail. Section 4 presents a set of experiments that demonstrate
the performance of our method. Finally, Section 5 summarizes our work.

2. Related Works

In recent years, defect detection methods based on positive training samples without
labels have gained significant attention. The primary reason for this lies in the fact that the
effectiveness of training deep learning models is primarily influenced by both the quantity
of training samples and the quality of annotations. Autoencoders (AEs) [34] and generative
adversarial nets [20] along with their variants have been used to train defect detection
models only on defect-free training samples. Some of the proposed GAN-based methods
are f-AnoGAN [35], OCGAN [22], and GPND [36]. Popular variants of the autoencoder
used in defect detection tasks include the standard convolutional autoencoder (CAE) [37],
the variational autoencoder (VAE) [21], and the adversarial autoencoder (AAE) [38]. The
CAE has the simplest model and training procedure of these three. Furthermore, the CAE
outperforms the other two variants in certain cases, as demonstrated in [39].

Unsupervised training with convolutional autoencoders (CAEs) focuses on learning
the normal patterns within the data. During training, the autoencoder analyzes normal
images and learns to reconstruct them accurately. This means that it captures the un-
derlying patterns and features that represent normal instances in the training samples.
When presented with a test image containing an unseen defect, the trained model will
likely struggle to accurately reconstruct that specific region. Different CAEs based the
unsupervised method for defect detection have been proposed. Yang et al. [40] proposed a
multiscale feature clustering-based fully convolutional autoencoder (MS-FCAE) for defect
inspection on textured surfaces utilizing multiple CAE subnetworks at different scale levels.
Although traditional loss functions like the mean absolute error (L1) and mean squared
error (MSE) loss work for training autoencoders, they only focus on pixel-level differences.
This neglects the image’s underlying structure, often leading to blurry reconstructions that
hinder effective defect detection. To overcome this limitation, methods utilizing structural
similarity loss have been introduced. Bergmann et al. [24] introduced a method that adopts
SSIM as a loss function for surface defect inspection. Hu et al. [41] introduced a surface de-
fect inspection method based on a reconstruction network using a combined structural and
L1 loss. A deep autoencoder using CW-SSIM for detecting anomalous regions in textured
images was proposed in [26]. Despite improvements, these methods still face challenges.
They struggle to achieve noise-free background reconstructions and often reconstruct de-
fects during testing. Memory-augmented autoencoders [31,42,43] were proposed to solve
the partial reconstruction of defects. Memory-augmented autoencoder-based methods
depend on restoring defects for inspection and often struggle to restore complex defects.
Furthermore, the memory bank used to store the latent representations of training samples
introduces additional computational overhead.

Besides autoencoders, generative adversarial networks (GANs) [20] offer another
approach for unsupervised defect detection. In this method, the GAN’s generator learns
the data distribution of normal images by analyzing a large number of defect-free sam-
ples. F-AnoGAN [35] realizes fast GAN-based anomaly detection. GANomaly [44] uses
conditional GAN-based anomaly detection using an encoder–decoder–encoder generator
framework. Skip-GANomaly [45] introduced a skip-connection to GANomaly to improve
the reconstruction quality of the image background. Xiao et al. [46] proposed a memory-
augmented adversarial autoencoder (MemAAE) that utilizes a memory mechanism to
manipulate latent features. Despite their success in detecting and localizing diverse de-
fects, these GAN-based methods struggle with balancing a noise-free normal background
reconstruction and accurate defect localization.
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3. Methodology

This section delves into the details of our proposed unsupervised defect detection
method. Initially, we present the overall network architecture used in our work. Next, we
discuss the proposed AW-SSIM, an important component that enhances our model’s ability
to capture the most important features during training. Following this, we introduce our
artificial defect generation algorithm (ADGA), which plays a pivotal role in training the
model to recognize real-world defects effectively. Finally, we discuss how the proposed
combined AW-SSIM and LPIPS loss functions improve the model’s ability to reconstruct a
noise-free normal background while accurately detecting defects.

3.1. Overall Network Architecture

The overall architecture of the proposed method is shown in Figure 1. It relies on
three key components: the encoder, decoder, and artificial defect generation algorithm
(ADGA). The encoder compresses the input image into a lower-dimensional representation
using a series of convolutional layers, each employing a sequence of convolution, batch
normalization, and activation functions. This compressed representation is then fed into
the decoder, which utilizes transposed convolutional layers to progressively upsample the
information and reconstruct the original image with high fidelity. Similar to the encoder,
each transposed convolutional layer employs a sequence of transposed convolution, batch
normalization, and activation functions. The ADGA algorithm create images with artificial
defects of various shapes and sizes for the second stage of training. Our model incorporates
skip-connections to significantly enhance the performance of the autoencoder. These skip-
connections facilitate better information flow between the encoder and decoder, preserving
critical fine-grained details in the reconstructed image. While experimenting with various
skip-connection configurations, we found that utilizing two strategically placed connections
yielded optimal results. Notably, applying skip-connections to all layers resulted in partial
defect reconstruction.

Figure 1. The overall network architecture of our proposed method. In the first stage of training, the
model is trained on normal samples (IND) only. This establishes the model’s baseline understanding
of what constitutes a normal sample. During the second stage of training, the model weights from
the first stage and artificially defective samples (IAD) generated by the ADGA in combination with
normal samples are used to train the model to detect defects.

The training is performed in two stages. In the first stage, the training is performed
only on non-defective training samples (IND), focusing on learning the inherent charac-
teristics of normal images. First, the input image is divided into 128 × 128 patches, and
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the latent representation is extracted by the encoder. Then, the latent features are fed into
the decoder to obtain the reconstructed image (I′ND). This stage lays the foundation for
the model to understand what constitutes a normal image. Using the weights learned
from the first stage of training, the second stage focuses on equipping the model for defect
detection. Here, images with artificially introduced defects (IAD) created by the ADGA are
paired with their non-defect counterparts (IND). During training, these pairs are fed into
the model. The normal samples (IND) are used as references to improve the reconstruction
performance of the model by comparing a normal sample with the reconstructed image
(I′AD) from its artificially defective counterpart (IAD). This strategy guides the model to
improve its reconstruction abilities while simultaneously learning to identify defects.

3.2. Artificial Defect Generation Algorithm (ADGA)

For the accurate simulation of real-world defect occurrences, artificial defect genera-
tion must carefully consider the target image’s (IT) specific details where defects will be
introduced. Previous methods, such as Cutpaste [30] and CMA-AE [31], generate artificial
anomalies by cropping a rectangular shape from a random source image and pasting it at
a random position within a target image. Our approach involves cutting a portion from
source images with varying shapes and sizes, and then pasting it randomly onto the target
image as shown in Figure 2. The source images (Is) are carefully selected to represent
realistic defects based on the background color and appearance of the target image. We
randomly cut a portion of the source image (Is) by selecting vertices ranging from 3 to 7,
resulting in an irregular shape. Then, the section is resized to a randomly chosen dimension.
To smoothly integrate this irregularly shaped portion into the target image (IT), we apply a
Gaussian blur. This blurring softens the transition at the edges, ensuring a more natural
and visually appealing blend with the background.

Figure 2. The process of generating artificially defective training samples for the second stage of
training. The ADGA cuts a part of a source image (Is) from a random position with a random vertex
from 3 to 7, applies a Gaussian blur, and pastes it to a random position in the target image (IT). The
ADGA generates artificially defective training samples with defects of different sizes and shapes.

IAD = Paste(IT , GB(Resize(crop(IS)))) (1)

Here, IAD is an image with an artificial defect, IT is a normal image that is used as a
target image on which to paste the cropped section from the source image (Is), and GB is
Gaussian blur. The crop () operation represent the cropping of a portion of a source image,
Resize () represents the resizing of a cropped portion, and the Paste () operation represents
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the pasting of the cropped and resized portion to the target image. As shown in Figure 3,
the proposed artificial defect generation algorithm (ADGA) can create defective images
with defects of different sizes and shapes.

Figure 3. Defects generated by the ADGA on different training samples. The ADGA generates defects
that simulate real-world defects with different shapes and sizes. Source images (Is) that match the
appearance and the color of the normal background in the target images (IT) are selected during the
defect generation.

3.3. SSIM Loss Function Improvement

SSIM stands out as an image quality assessment metric that aligns closely with human
perception, unlike traditional metrics like the mean squared error (MSE) and mean absolute
error (MAE). While the MSE and MAE focus only on pixel-wise differences, the SSIM takes
into account aspects like luminance, contrast, and structure, mirroring how humans judge
image quality. To calculate the structural similarity (SSIM), we compare two images, x
and y, of size m × n. The SSIM assesses similarity based on three key aspects of human
perception: luminance, contrast, and structure. These aspects are represented by functions
l(x, y), c(x, y), and s(x, y) respectively. Each sub-function’s value is determined based on
the mean, variance, and covariance of the corresponding pixel values in the two images
using sliding windows of size ξ × ξ with a step size of 1 in both the horizontal and
vertical directions.

Luminance is calculated using the mean of the patches from the two images. We
obtain a luminance score near 0 if the brightness of the patches differs greatly, and of 1 if
they are similar:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2)

C1 = (K1L)2 (3)

where µx and µy are the local mean for images x and y, respectively, and C1 is a constant
used to avoid instability when the denominator value is close to zero. K1 is a small constant
(0.01 recommended), and L represents the dynamic range of the pixel values in the images.

We compute the contrast using the variance of the corresponding patches from the two
images. The contrast score compares the difference in “texture” between the image patches:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4)
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where σ2
x and σ2

y are the local variances for the corresponding images x and y. C2 = (K2L)2,
and K2 is a small constant value (recommended to be 0.03).

Structure is computed using the cross-covariance σxy between the corresponding
patches in x and y. The score is high when both patches contain an edge with the same
location and orientation, but low if the two patches disagree on the location of an edge:

s(x, y) =
σxy + C3

σxσy + C3
(5)

where C3 is a small constant, usually C3 = 1
2 C2.

Finally, we have

SSIM(x, y, ξ) = (l(x, y))α · (c(x, y))β · (s(x, y))γ (6)

where ξ is the sliding window size. We used (11 × 11) in our work. The parameters α, β,
and γ are set to one in this paper.

The SSIM loss calculation uses multiplication between the three sub-functions to
bring independence between these factors, as shown in Equation (6). As demonstrated
in [25], the mean used to measure the difference in luminance limits the SSIM’s ability to
differentiate between an image with high light–dark variance and an image with more
consistent light and dark if the two images have the same mean luminance value. To
compensate for the mean with the variance and co-variance values, we should remove
the independence between the luminance and other sub-functions through using addition
instead of multiplication.

AW-SSIM(x, y, ξ) = αl(x, y) + βc(x, y) + γs(x, y) (7)

For AW-SSIM, we apply addition between the three sub-functions, as shown in
Equation (6). In addition, we multiply each sub-function, luminance, contrast, and struc-
ture, by a constant α, β, and γ, respectively. This multiplication with a constant determines
the relative importance of each sub-function in the overall AW-SSIM calculation. In weight-
ing the influences of the luminance, contrast, and structure based on the training data
content, the model’s robustness and generalization ability are improved. According to our
experiment, using different weights based on each sub-function’s importance for a specific
training samples, as shown in Figure 4, shows a better result than using equal weights
for all sub-functions. The calculations of the luminance, contrast, and structure values in
AW-SSIM are the same as in the standard SSIM.

The weighting factors in the AW-SSIM equation (α, β, and γ) allow us to prioritize
different aspects of image similarity. Assigning a higher weight (α) to the luminance com-
ponent (l(x, y)) emphasizes the importance of overall brightness differences. Conversely,
a larger weight (β) for the contrast component (c(x, y)) prioritizes preserving local varia-
tions in intensity, which are crucial for images containing intricate textures or fine details.
Finally, the structural similarity component (s(x, y)) with weight (γ) captures how well the
underlying structures, like edges and patterns, are preserved between the images. A higher
weight for the structure would prioritize preserving the spatial arrangement of features,
which is crucial for maintaining the perceptual quality of the image.

We tested this on different samples from the MVTec AD dataset [47] and observed a
better result than using equal weights for each sub-function. For example, if we take the
carpet sample from the MVTec AD dataset, assigning the structure sub-function a higher
weight yields a better result since the intricate details of the weave, such as the thickness
of the threads and the way they interlace, are what define the visual texture of the carpet
image, as shown in Figure 4. The SSIM’s structure sub-function is specifically designed
to capture these details. For training samples like tile, hazelnut, and pill, a higher weight
is given to luminance, since luminance is more important than the other sub-functions in
capturing the lighting variations and changes across the images. The weight values for
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each sub-function are selected after extensive experimentation to determine how they affect
the overall performance of the trained model on specific training samples.

Figure 4. The weights given to each sub-function of the SSIM based on its relative importance for
different training samples. For carpet, leather, and wood data, the highest weight is assigned to
structure (γ), since the structure is more important than brightness and contrast. The highest weight
is assigned to luminance (α) for a training samples like tile, pill, or hazelnut since brightness, lighting,
and color changes are more important than structure.

The SSIM calculation assesses the structural similarity between two images by compar-
ing three key features: luminance, contrast, and structure. This comparison is performed
on localized image regions called patches. To incorporate spatial information, a Gaussian
window function is applied to each corresponding image patch. This window typically
acts as a sliding window, moving pixel by pixel across both patches. The Gaussian window
plays a crucial role in emphasizing the central region of each patch. Pixels closer to the cen-
ter receive higher weights during the SSIM calculation. This weighting scheme gradually
decreases toward the edges of the window, diminishing the influence of outlying pixels.
The calculation of the Gaussian window is performed using the selected window size and
the standard deviation at a specific position in an image patch, as shown in Equation (8):

G(n) = e
−
(

(n−ξ)2

2σ2

)
(8)

where G(n) represents the value of the Gaussian window at position n, and ξ is the sliding
window size. We used a window size of 11 × 11 in our work. σ is the standard deviation
for the Gaussian window. The above formula creates a one-dimensional window, and then
we can create a two-dimensional window using the normalized one-dimensional window.
The Gaussian window assigns weights to pixels based on their distance from the center of
the window. Higher weights are assigned to points closer to the center.

The standard deviation σ of the Gaussian window determines how weights are as-
signed to pixels within the sliding window. A smaller σ creates a narrower window,
concentrating weight near the center and reducing the influence of distant pixels, as shown
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in Figure 5. Conversely, a larger σ results in a wider window, spreading weights more
evenly and increasing the influence of distant pixels.

Figure 5. The effects of different values of standard deviation (σ) for the Gaussian window during
SSIM loss calculation. A small standard deviation (σ) value for the Gaussian window will assign
pixels heavier weights at the center of the window. A bigger σ value results in a wider window
covering more distant pixels.

However, using a single σ value for the entire Gaussian window is not optimal. A
small σ amplifies noise, while a large σ blurs fine details. To address this, we propose
a dynamic approach. Initially, σ is set to a small value. During training, it is gradually
incremented by a small constant after processing every PH × PW patch of the training
images. Importantly, the training samples are shuffled after each epoch, and σ is reset
to its initial value before being incremented again. This approach ensures that different
window sizes are applied to different patches within each image throughout training. By
dynamically adjusting σ, we can reduce the negative effect of using a fixed σ value, leading
to better noise control and improving the preservation of fine details in the final results.

σ = σ +

⌈
number of samples

batch size

⌉
× H

PH
× W

PW
× k (9)

Here, σ is the standard deviation after each epoch, which depends on the number of
training samples and the sizes of the patches (PH × PW ) in patch-based training. H and W
are the height and width of the input image, respectively, and k is a small constant added
to σ after each patch of size PH × PW in the input image.

3.4. Combined AW-SSIM and LPIPS Loss for Stage Two of Training

Structural loss like the SSIM loss is a type of metric aimed at measuring low-level
pixel-wise similarity. In contrast, perceptual loss focuses on capturing high-level visual
similarity as perceived by humans. Perceptual loss uses pre-trained deep neural networks
inspired by the human visual system. In a perceptual loss function, we compare high-level
features extracted from pre-trained convolutional neural networks (CNNs). The goal is
to generate visually pleasing images by minimizing perceptual differences between them.
These differences, such as content and style discrepancies, may not be apparent at the
pixel level. Unlike traditional pixel-wise loss functions, which directly compare raw pixel
values, perceptual loss functions leverage feature maps from various layers of a pre-trained
network. These networks are typically pre-trained on large datasets like ImageNet [32].
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By extracting these feature maps from both the target image and the reconstructed image,
we can compute the differences in the high-level features that the network has learned to
detect, such as edges, textures, and patterns.

In this study, we used LPIPS loss [33], a perceptual loss that utilizes deep features
extracted from pre-trained networks to assess the perceptual similarity between two images.
In our case, we chose AlexNet [48], which is a smaller and faster architecture compared
to other pre-trained networks. During the calculation of the LPIPS loss, two patches are
first passed through a series of convolutional layers of the pre-trained network to extract
high-level features. The perceptual similarity between the two patches is estimated by
comparing their feature vectors extracted from a pre-trained network using a distance
metric. The LPIPS metric is calculated as the average distance between the feature vectors
of the two patches across all layers of the network.

In the second stage of training, we use a combined LPIPS and AW-SSIM loss, with a
higher weight assigned to the AW-SSIM loss. The AW-SSIM loss evaluates local structural
similarities between images, effectively identifying pixel-level variations. Meanwhile, the
LPIPS concentrates on perceptual similarity, spotlighting visually noticeable abnormalities
even with minor pixel-wise differences, making it valuable for detecting subtle texture
changes or shape inconsistencies. This combined loss approach facilitates the high-quality
reconstruction of the normal background while effectively identifying defects.

L(IND, I′AD) = α · AW-SSIM(IND, I′AD) + (1 − α) · LPIPS loss(IND, I′AD) (10)

Here, L(IND, I′AD) is the combined structural and perceptual loss, IND is the original
image without defects, and I′AD is the reconstructed image from the artificially defective
image ( IAD).

4. Experimentation

In this study, we thoroughly evaluated the proposed method’s performance based
on a series of experiments. We compared its overall effectiveness against that of previous
state-of-the-art methods on different samples on the MVTec AD dataset [47]. Additionally,
ablation experiments were conducted to delve into the influence of each improvement
implemented in our approach.

For our experiments, we used diverse anomaly detection samples sourced from the
MVTec AD dataset [47], including leather, carpet, hazelnut, pill, wood, and tile textures.
In total, 1660 and 714 samples were used for training and testing, respectively. All images
were resized to 512 × 512 pixels during training. Training was performed using an Adam
optimizer trained for a total of 25 epochs in two stages. To quantitatively assess the perfor-
mances of various methods, we chose the area under the receiver operating characteristic
curve (AuROC) as the evaluation metric. This metric is insensitive to threshold variations
and provides a more accurate evaluation of the models’ inspection capabilities.

4.1. Overall Performance Comparison

To validate the effectiveness of our proposed method, we compared its defect detection
performance against those of several prominent anomaly and defect detection methods,
including AE-SSIM [24], AnoGAN [23], f-AnoGAN [35], MS-FCAE [40], MemAE [42],
TrustMAE [43], VAE [49], ACDN [50], AFEAN [29], and CMA-AE [31]. Table 1 summarizes
the quantitative analysis results. Our method achieved a superior performance across
various sample types, including wood, carpet, hazelnut, and pill. Additionally, it obtained
the second-best results on the tile and leather samples.

Figure 6 presents the inspection results of our proposed method on six different
samples. We tested the proposed method on different samples with different kinds of
defects like color stains, holes, contamination, etc. By employing a two-stage training
process, using AW-SSIM as a loss function, utilizing the ADGA, and combining structural
and perceptual losses, the model achieves a clear reconstruction of the normal background.
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The trained model is unable to reconstruct defective regions. By taking the residual between
the input and the reconstructed image, we can localize the defects accurately.

Table 1. Different methods’ performances evaluated based on the AuROC on six samples from the
MVTec AD dataset [47]. The proposed method outperformed different state-of-the-art methods on
various samples and achieved the best average result.

Category AE-
SSIM AnoGAN f-

AnoGAN
MS-

FCAE MemAE TrustMAE VAE ACDN AFEAN CMA-
AE Ours

Tile 59.00 50.00 72.00 53.20 70.76 82.48 65.40 93.60 85.70 98.82 96.56
Wood 73.00 62.00 74.00 81.20 85.44 92.62 83.80 92.90 92.20 96.96 97.10

Leather 78.00 64.00 83.00 91.70 92.91 98.05 92.50 98.40 96.10 99.13 98.76
Carpet 87.00 54.00 66.00 78.20 81.16 98.53 73.50 91.10 91.40 91.25 99.20

Hazelnut 96.60 87.00 63.15 78.50 81.16 97.15 98.80 94.10 92.80 97.10 98.89
Pill 89.50 93.25 64.07 80.60 77.88 89.90 93.50 92.80 89.60 92.65 95.64

average 80.51 68.38 70.37 77.23 81.55 93.12 84.50 93.81 91.3 95.98 97.69

Bold text indicates the best results and underlined text indicates the second-best results.

Figure 6. The defect inspection results for our method on different samples from the MVTec AD
dataset [47]. From left to right are the defective input images, the reconstructed images, residual
images, and the ground truth. The model was able to reconstruct the normal region of the testing
images efficiently and struggled to reconstruct the defective regions; the residual between the original
and the reconstructed image can be used for locating the defects.

4.2. Ablation Study

To validate the individual contributions of each proposed improvement in our method,
we conducted a series of ablation experiments. For fair comparisons, all evaluated improve-
ments employed the same parameter settings. The qualitative and quantitative results of
these comparisons are presented in Figure 7 and Table 2, respectively.
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Table 2. A quantitative comparison of the proposed improvements in our method. The improved SSIM
loss (AW-SSIM), LPIPS loss, and the proposed two-stage training improved the AuROC significantly.

Training One-Stage Training Two-Stage Training

Loss SSIM + L1 LPIPS + SSIM AW-SSIM AW-SSIM + LPIPS
AuROC 86.7 90.86 95.60 98.89

Figure 7. The test results of the ablation experiment: (A) one-stage training and (B) two-stage training.
The first row of images are the input and reconstructed images. The second row has the ground
truth and residual images. For each combined loss, a higher weight was assigned to the SSIM and
AW-SSIM loss.

4.2.1. The Influence of AW-SSIM

We improved the SSIM loss function to guide the model toward learning essential
features from training samples. This was achieved by assigning weights to the three sub-
functions (luminance, contrast, and structure) based on their relative significance. This
weighting scheme guides the model to prioritize the most crucial features. Furthermore,
we dynamically adjusted the Gaussian window’s standard deviation (σ) during the SSIM
calculation. This optimizes the balance between using small and large σ values. In Figure 7,
the second column shows the model’s performance trained with the unmodified SSIM loss,
and the result shows a poor reconstruction in the normal region surrounding the defect.
Conversely, the AW-SSIM loss performs better in noise reduction and defect localization, as
shown in the fourth column. Moreover, Table 2 reveals a 4.16% improvement in the AUROC.

4.2.2. The Influence of the Combined LPIPS and AW-SSIM Loss

We proposed a combined LPIPS and AW-SSIM loss to achieve both high-quality, noise-
free normal background reconstruction and accurate defect detection. While the performance
of the AW-SSIM is good in defect localization, its background reconstruction suffers from
noise and quality issues. Interestingly, the combined LPIPS and AW-SSIM loss achieve a better
normal background reconstruction compared to AW-SSIM loss, as shown in Figure 7’s third
column. However, the combined LPIPS and AW-SSIM loss is not able to localize the defect
accurately in only one-stage training. While the LPIPS loss introduces a little computational
overhead, it significantly boosts the model performance in accurately localizing defects and
high-quality normal background reconstruction, as shown in Figure 7.
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4.2.3. Influence of Two-Stage Training

During one-stage training, the model trained with the AW-SSIM loss is able to effec-
tively localize defects but struggles to achieve a high-quality, noise-free reconstruction of
the normal region of the image. Conversely, using the combined LPIPS and AW-SSIM loss
gives a high-quality normal background reconstruction, but the defect localization perfor-
mance is poor. To overcome these limitations, we propose a two-stage training approach
that leverages the strengths of both methods. In the first stage, the model trains only on
normal samples using the AW-SSIM loss function, effectively learning the background char-
acteristics. These learned weights are then transferred to the second stage, which utilizes
artificially generated defects created by the ADGA and employs a combined LPIPS and
AW-SSIM loss. This two-stage approach allows the model to accurately detect defects while
maintaining a high-quality background reconstruction compared to with only one-stage
training. As shown in the last column of Figure 7, this strategy successfully achieves both
goals. Additionally, Table 2 shows that the two-stage training method achieves the highest
AUROC score compared to single-stage training. Another significant advantage of using
LPIPS loss and applying a two-stage training is a reduced training time compared to that in
the single-stage approach with a traditional loss function like the MSE. This efficiency gain
comes from two factors: firstly, LPIPS leverages a pre-trained model for loss calculation,
and secondly, the second stage of training benefits from the weights pre-trained in the first
stage, significantly reducing the overall training time.

5. Conclusions

This paper proposes an unsupervised learning method for surface defect detection. It
directly addresses the challenge of acquiring labeled training data using positive samples
and samples with artificially generated defects, circumventing the need for real defective
images within the training dataset. This approach is particularly significant, as collecting
and labeling real defective data can be a difficult and time-consuming process.

The proposed method employs a two-stage training strategy. The first stage of training
is performed only on normal samples, utilizing the AW-SSIM loss function. AW-SSIM loss
prioritizes the most important features during training by assigning different weights to
the three sub-functions (luminance, contrast, and structure). Additionally, it achieves a
balance between effective noise control and the preservation of fine details by dynamically
adapting the Gaussian window’s standard deviation (σ). In the second stage of training,
artificially defective samples and normal samples are used to train the model and enhance
its ability to localize defects. The proposed artificial defect generation algorithm (ADGA)
generates artificial defects that closely mimic real-world defects. Furthermore, the second
stage of training uses a combined loss function incorporating both AW-SSIM and LPIPS
loss, aiming to improve the quality of normal background reconstruction.

Extensive experiments demonstrate the proposed method’s ability to detect defects
while achieving the high-quality reconstruction of normal backgrounds. Through an
ablation study, we rigorously evaluated the effectiveness of each proposed improvement
within our method. In future research, we will focus on improving LPIPS loss based on
the requirement of training samples, improving the ADGA to generate more complex and
realistic defects, and using a pre-trained network as a feature extractor.
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